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Abstract—The traditional approach to Model Expansion (MX)
is to reduce the theory to a propositional language and apply a
search algorithm to the resulting theory. Function symbols are
typically replaced by predicate symbols representing the graph
of the function, an operation that blows up the reduced theory.

In this paper, we present an improved approach to handle
function symbols in a ground-and-solve methodology, building
on ideas from Constraint Programming. We do so in the context
of FO(·)IDP, the knowledge representation language that extends
First-Order Logic (FO) with, among others, inductive definitions,
arithmetic and aggregates. An MX algorithm is developed,
consisting of (i) a grounding algorithm for FO(·)IDP, parametrised
by the function symbols allowed to occur in the reduced theory,
and (ii) a search algorithm for unrestricted, ground FO(·)IDP.
The ideas are implemented in the IDP knowledge-base system
and experimental evaluation shows that both more compact
groundings and improved search performance are obtained.

Keywords—Model Expansion, Constraint Programming, Know-
ledge Representation, Grounding

I. INTRODUCTION

Model generation is a widely used problem solving para-
digm. A problem is specified as a theory in a declarative logic
in such a way that models of the theory represent solutions
to the problem. A closely related paradigm is bounded Model
Expansion (MX). Here, a partial input structure over a finite,
known domain is extended into a total structure satisfying
a given theory. These paradigms are studied in the fields of
Constraint Programming (CP) [1], Answer Set Programming
(ASP) [21] and Knowledge Representation (KR) [3].

A state-of-the-art approach is to reduce the input theory,
formulated in an expressive logic, to a theory in a fragment
of the language supported by some search algorithm while
preserving a suitable form of equivalence. Afterwards, this
algorithm searches for models of the theory. For example,
model generation/expansion for the language FO(·) [8] is
performed by reducing theories to a ground fragment of FO(·)
for which a search algorithm is available. The term grounding
refers to both the reduction process and to its outcome; the
2-step approach is called ground-and-solve.

A first generation of MX systems used search algorithms
for (pseudo)-propositional languages, such as Clausal Normal
Form (SAT solvers) and ground ASP (ASP solvers). An
important bottleneck of such systems is the blowup caused by
grounding the input theory, as the size of the theory increases
rapidly with the size of the domain and the nesting depth
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of quantified variables. One apparent approach to reduce the
nesting depth of quantified variables is to replace predicate
symbols with function symbols wherever possible, as follows.

Example I.1. Consider the 2-D packing-problem for squares:
given a set of squares with known size and a rectangular area of
known size, position all squares in a non-overlapping fashion
within the area (if possible). One of the constraints, that two
squares should not overlap horizontally, can be expressed as
follows, using posx(id, x) to express that the top-left corner
of square id is at x and sz(id) for the size of id:

∀id1 id2 x1 x2 : id1 �= id2 ∧ posx(id1, x1) ∧ posx(id2, x2)
⇒ (x1 + sz(id1) ≤ x2 ∨ x2 + sz(id2) ≤ x1).

In fact, posx represents a function mapping squares to x-
coordinates, so it can be rewritten using a function fx(id):

∀id1 id2 : id1 �= id2 ⇒ (fx(id1) + sz(id1) ≤ fx(id2)
∨fx(id2) + sz(id2) ≤ fx(id1)).

Next to being a more natural way to express the constraint,
the rewriting halves the quantifier depth. However, if the target
solver only takes propositional input, the function symbols are
eliminated again during the reduction phase, replacing function
symbols by predicate symbols and adding additional quantifi-
ers. In fact, in the example, it comes down to transforming the
latter sentence into the former one.

Recently, research is being done in ASP to incorporate
techniques from CP, giving rise to the field of ASP modulo
CSP (CASP) [22]. In CASP, the ASP language is extended
with constraint atoms, atoms that stand for the constraints of
a CSP problem [15], [12], and can, for example, contain func-
tion symbols. Second, search algorithms have been developed
that allow ground constraint atoms (instead of only proposi-
tional atoms) in the input. This gives rise to more compact
groundings that often also yield better propagation. Among
those next generation systems are the systems Clingcon [22],
EZ(CSP) [2], Mingo [16] and Inca [9].

In this paper, we work in the context of the language
FO(·)IDP, the language of the knowledge-base system (KBS)
IDP [4]. FO(·)IDP extends FO with, among others, induct-
ive definitions, aggregates and arithmetic. We show that
for FO(·)IDP, allowing the grounding to contain function
terms in fact produces a general form of such “constraint
atoms”, without extending the language. In the above example,
fx(id1) + sz(id1) ≤ fx(id2) is such an atom, for which
efficient propagation techniques exist in the field of CP.
We present a model expansion algorithm for FO(·)IDP that
exploits this idea. It consists of (i) an algorithm to ground
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FO(·)IDP theories without eliminating all function symbols
from the grounding and (ii) a search algorithm for general,
ground FO(·)IDP. As different search algorithms often support
different sets of function symbols, the grounding algorithm
is parametrised by the set of functions allowed to occur
in the grounding. The search algorithm, extends the search
algorithm of the state-of-the-art solver MINISAT(ID) [17]
using the technique of Lazy Clause Generation (LCG) [24], an
approach to support finite-domain constraints in a SAT-solver
by encoding propagation as clauses (for details, see Section
IV). The algorithms are implemented within IDP (i) and its
search algorithm MINISAT(ID) (ii).

We take terminology from the logic-based point of view
to model generation. Below, we provide a short overview of
coinciding notions from CP and ASP1. A theory T can be seen
as a set of constraints (CP) or a logic program (ASP). Sym-
bols are by default non-defined/uninterpreted; constants (0-ary
functions symbols) coincide with variables in the Constraint
Programming sense (CP-variables) and n-ary (n > 0) function
symbols can be seen as n-dimensional arrays of CP-variables.
A (partial) interpretation coincides with a (partial) assignment
to CP-variables; a model of T is a total interpretation satisfying
T , i.e., a solution (CP) or answer set (ASP). A domain is a set
of domain elements, e.g., the set of values a CP-variable might
take. Following CP-terminology, the domain of a function
symbol refers to the set of values it can map to. A variable is
a placeholder for instantiation with domain elements.

The paper is organized as follows. In Section II, the
language FO(·)IDP is introduced. Next, the algorithms for
grounding and search are presented in Section III, respectively
Section IV. Experimental evaluation is presented in Section V;
related work and concluding remarks in Section VI.

II. PRELIMINARIES

We assume familiarity with FO. The notation FO(·) [8]
denotes the family of extensions of FO with new language
constructs. The language we consider in this paper is the
language FO(·)IDP. It is a many-sorted extension of FO with
aggregate functions, arithmetic and inductive definitions. We
now give an overview of the language.

A vocabulary Σ consists of a set Σt of types denoted τ
and a set Σs of typed predicate symbols denoted P,Q,R and
function symbols denoted f, g, h. For each type τ , Σ includes
a unary predicate symbol T (τ) representing all elements in τ .

Variables x, y, terms t, atoms A, literals L, domain ele-
ments d, and FO-formulas ϕ are defined as usual. A domain
atom (domain term) is an atom (term) consisting of a predicate
(function) symbol applied to a tuple of domain elements. We
use c to denote domain terms and e to denote domain elements
or domain terms. The set of symbols of a theory T is denoted
voc(T ). Given two tuples x and x′ of terms of equal length n,
x = x′ is a shorthand for

∧
i∈[1,n] xi = x′i. A term t containing

occurrences of a term t′ is denoted as t[t′]; the replacement of
t′ in t by t′′ is denoted as t[t′/t′′] (similarly for formulas).

An interpretation for a type τ is a set of domain elements
Dτ . A (partial) interpretation for a predicate symbol P (τ)

1A formal comparison of FO(·) and ASP is presented in [7]

consists of two disjoint subsets of Dτ1 ×· · ·×Dτn , denoted as
Pct and Pcf . An (partial) interpretation for a function symbol
f(τ) : τ ′ is a function mapping elements of Dτ1 × · · · ×Dτn
to a non-empty subset of τ ′. A (partial) Σ-interpretation I
is then an interpretation for all symbols in Σ; we use sI
to refer to the interpretation of a symbol s in I. An atom
P (d) is true in I if P (d) ∈ P Ict, false if P (d) ∈ P Icf
and unknown otherwise. An atom f(d) = d′ is true in I if
{d′} = fI(d), unknown if {d′} � fI(d) and false otherwise.
An interpretation for a predicate symbol P is two-valued if
Pct = Pcf ; an interpretation for a function symbol is two-
valued if all images are singletons. An interpretation is two-
valued if the interpretation of all its symbols are two-valued.
For a two-valued interpretation I, ϕI (tI) denotes the value
of a formula ϕ (a term t) under I as usual. A well-typed
expression is one in which the type of each argument matches
with the type of its argument position. Badly typed atoms are
false. In this paper, we only consider interpretations where all
types are finitely interpreted and totally ordered.

We extend the notion of term to include aggregate terms.
A set expression is of the form {x : ϕ : t}, {ϕ : t} (if
there are no local variables) or a union of set expressions
{x1 : ϕ1 : t1} ∪ {x2 : ϕ2 : t2} (denoted shortly as
{x1 : ϕ1 : t1, x2 : ϕ2 : t2}). Given an interpretation I and an
assignment d to the free variables y of the set expression,
the interpretation {x : ϕ[y/d] : t[y/d]}I is the multiset

{t[x/d′, y/d]I | ϕ[x/d′, y/d]I = t}. Thus, in the context of a
given assignment for the variables y, the expression denotes the
multiset of tuples t for which ϕ holds. Aggregate terms are of
the form agg(S), with agg an aggregate function (cardinality,
sum, product, minimum or maximum) and S a set expression.
The cardinality function then maps a set interpretation to the
number of elements in the set. The aggregate functions sum,
product, minimum and maximum map a set to respectively the
sum, product, minimum and maximum of the elements in the
set, or to 0, respectively 1, +∞ and −∞ if the set is empty.
Aggregate terms can occur nested in other aggregates; in this
paper however, nested aggregate terms occurring in a definition
cannot contain any symbols defined in that definition.

Definitions Δ are sets of rules of the form ∀x : P (t) ← ϕ,
where P (t) is called the head and ϕ the body of the rule.
Predicates in the head of rules of Δ are called defined pre-
dicates; all other symbols in Δ are called parameters or open
symbols of Δ. Intuitively, for each value of the parameters, Δ
defines the defined predicates in a unique way. The satisfaction
relation of FO is extended to definitions. We say that I satisfies
Δ (I |= Δ) if I is the parametrised well-founded model of
Δ [23]. The well-founded semantics is used here because
it correctly formalises the most common forms of informal
inductive definitions (monotone inductive definitions and defin-
itions over a well-founded order). Definitional implication ←
should not be confused with the material implications ⇐ and
⇒. Intuitively, when the condition of a material implication is
false, its head is arbitrary (true or false), while if the condition
of a definitional rule is false, its head cannot be derived and is
false (unless another rule derives it). This intuition coincides
exactly with inductive definitions as in mathematical texts. The
completion of Δ for a symbol P , defined in Δ by the rules
∀xi : P (ti) ← ϕi with i ∈ [1, n], is the set consisting of
the sentence ∀xi : ϕi ⇒ P (ti) for each i ∈ [1, n] and the
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sentence ∀x : P (x) ⇒ ∨
i∈[1,n](x = ti ∧ϕi). It is well-known

that Δ entails the completion of all its defined symbols, but not
vice versa (e.g., the inductive definition expressing transitive
closure is stronger than its completion).

For a vocabulary Σ and a structure I over Σ, two theories
T and T ’ are {Σ, I}-equivalent if for each model M of T that
extends I, its restriction to Σ can be extended to a model of
T ’ extending I, and vice versa and the extensions are unique.

A formula is in Negation Normal Form (NNF) if implica-
tions and equivalences are eliminated, ¬ only occurs directly
in front of atoms and conjunctions and disjunctions are in left-
associative form. We assume, without loss of generality, our
sentences and rule bodies are in NNF.

III. GROUNDING TO PARAMETRISED GROUND FO(·)
This section describes an algorithm to construct the ground-

ing of a theory Tin over Σ in the context of a 3-valued,
consistent interpretation Iin. The algorithm transforms Tin to
a {Σ, I}-equivalent ground —quantifier-free— theory Tg and
a “mapping” theory Tm consisting of explicit definitions for
symbols of Σ that were eliminated from Tg .

The algorithm takes as parameter a set ResF of “residual”
function symbols, function symbols allowed in Tg . In our
algorithm, functions f/n not in ResF are replaced by their
“graph” predicate symbol gf/n+1. If ResF is empty, then all
atoms in the grounding will be domain atoms; by translating
these into propositional symbols, such a theory can be mapped
into an “equivalent” propositional theory.

The grounding process is described as two stratified se-
quences of {Σ, I}-equivalence preserving rewrite rules, rewrit-
ing the theories Tg and Tm. Theory Tg is initialised as Tin, Tm
as the empty set. The rewrite rules operate on Tg , substituting
expressions or rules by simpler ones, and sometimes introdu-
cing new definitions to Tg or Tm. E.g. ¬¬ϕ ��������� ϕ is the rule
that replaces occurrences of ¬¬ϕ in Tg by ϕ.

A. Phase 1: simplifying the syntax

The first phase consists of iterated rewriting of Tg by the
rewrite rules specified below. The rewriting process terminates
when no more rules are applicable.

• ¬(t ∼ t′) ��������� t �∼ t′. We use ∼ to denote a
comparison operator such as ≤, <,=, �=, . . . and �∼
denotes respectively >,≥, �=,=, . . . .

• Unnest function terms f(t) , f /∈ ResF:
A[f(t)] ��������� ∃x : f(t) = x∧A[f(t)/x] where A is an
occurrence of an atom in an FO sentence or rule body
and A is not of the form f(t) = t.
A[f(t)] ← ϕ ��������� ∀y : A[f(t)/y] ← f(t) = y ∧ ϕ.
{x : ϕ : t[f(t)]} ��������� {x, y : ϕ ∧ f(t) = y : t[y]}.

These rewrite rules ensure that all occurrences of function
symbols f /∈ ResF are top left symbols in equalities f(t) = t.
Note, if ResF is empty, such atoms are of the form f(t) = t
with t1, . . . , tn, t either domain elements (e.g., natural num-
bers) or variables. As final step in this phase, function symbols
are replaced by their graph as follows. For each function
symbol f/n /∈ ResF, we introduce a new predicate symbol

gf/n + 1, apply the rewrite rule f(t) = t ��������� gf (t, t),
add ∀x : #({y : gf (x, y) : 1}) = 1 to Tg and add
∀x y : f(x) = y ⇔ gf (x, y) to Tm.

B. Phase 2: Grounding

From now on, the domains of variables are made explicit
in all expressions, written as ∀x ∈ D : ϕ or {x ∈ D : ϕ : t}.
Initially, D is τIin1 × · · · × τIinn , where τi is the type of xi

2.

The second phase applies the following set of rewrite rules
and also terminates when no more rules are applicable.

• Split conjunctive sentences: ϕ ∧ ψ ��������� ϕ, ψ where
ϕ ∧ ψ is a sentence in Tg .

• Instantiate, for some d ∈ D:
∀x ∈ D : ψ ��������� ψ[x/d] ∧ ∀x ∈ D − d : ψ.
∃x ∈ D : ψ ��������� ψ[x/d] ∨ ∃x ∈ D − d : ψ.
∀x ∈ D : A← ψ ��������� A[x/d] ← ψ[x/d]

∀x ∈ D − d : A← ψ.
{x ∈ D : ϕ : t} ��������� {ϕ[x/d] : t[x/d]}∪

{x ∈ D − d : ϕ : t}.

• Simplify
¬t ��������� f ¬f ��������� t
ψ ∨ t ��������� t ψ ∧ f ��������� f
ψ ∨ f ��������� ψ ψ ∧ t ��������� ψ.

∀x ∈ D : t ��������� t ∃x ∈ D : t ��������� t
∀x ∈ D : f ��������� f ∃x ∈ D : f ��������� f
∀x ∈ ∅ : ψ ��������� t ∃x ∈ ∅ : ψ ��������� f
{x ∈ ∅ : ψ : t} ��������� {f : t} {x ∈ D : f : t} ��������� {f : 0}

• Introduce Tseitin ψ ��������� Tψ , where ψ is an oc-
currence of a formula without free variables in Tg
and Tψ is a newly introduced propositional symbol.
Additionally, if ψ occurs in a definition Δ, the rule
Tψ ← ψ is added to Δ, otherwise, the singleton
definition {Tψ ← ψ} is added to Tg . The rule is not
applied if ψ is a domain literal, sentence or rule body.

• Introduce term t ��������� ct, where t is an occurrence of
a term without free variables in Tg and ct is a newly
introduced constant over the type of t. Additionally,
t = ct is added to Tg . The rule is not applied if t is a
domain element or occurs in an atom of the form P (e),
f(e) ∼ e0 or agg({L1 : e1} ∪ · · · ∪ {Ln : en}) ∼ e0.

• Evaluate t ��������� tIin if t is a domain term with a single
value in tIin . P (d) ��������� P (d)Iin , if P (d)Iin �= u. The
rule is not applied to P (d) in definitions defining P .3

After application of the above rewrite rules, we obtain a theory
in Ground Normal Form (GNF).

Definition III.1. An FO(·) theory T is in Ground Normal
Form (GNF) if all its sentences and rules are of one the

2Recall that Iin specifies a finite domain τIin for every type τ .
3By definition, Evaluate checks well-typedness of expressions.
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following forms (with all Li’s domain literals):

L1 ∨ . . . ∨ Ln. Q(e). f(e) ∼ e0.

agg({L1 : e1} ∪ · · · ∪ {Ln : en}) ∼ e0.

P (e) ← L1 ∧ . . . ∧ Ln.
P (e) ← L1 ∨ . . . ∨ Ln.
P (e) ← Q(e′). P (e) ← f(e) ∼ e0.

P (e) ← agg({L1 : e1} ∪ · · · ∪ {Ln : en}) ∼ e0.

Theorem III.2. For input Tin, Iin and ResF, let Tg and Tm be
the computed theories at any time during the rewrite process.
Then Tin and Tg ∪ Tm are {Σ, I}-equivalent. The rewrite-
process terminates and the resulting theory Tg is in GNF and
contains only function symbols in ResF.

The equivalence follows from the fact that each rewrite rule
preserves {Σ, I}-equivalence. That the resulting theory is in
GNF follows from the fact that none of the rewrite rules apply
in the context of a GNF theory and that at least one rewrite
rule is applicable to any theory not in GNF.

Termination of phase 1 is straightforward. To prove termin-
ation of phase 2, it can be shown that a well-founded order
exists on theories for the presented rewrite rules and that each
application results in a theory ordered strictly lower. This order
depends among others on the nesting depth of symbols, the
nesting and domain size of quantifications and the number of
occurrences of symbols in the theory. The formal presentation
of the well-founded order is out of the scope of this paper.

C. Concrete grounding algorithm

The rewrite process of the previous section is not confluent.
By imposing different rewrite strategies, it can be instanti-
ated to a class of –sound– grounding algorithms. To obtain
a state-of-the-art grounding algorithm, one should select an
instantiation that minimises the number of traversals through
formulas in search for applicable rewrite rules, the memory
and time complexity of the algorithm, the grounding size, . . . .
The rewrite strategy that is implemented in our system is quite
complex and a full presentation is out of the scope of this
paper; we highlight the most important considerations here:

• The top priority is to minimise grounding size, fol-
lowed by minimising running time and memory usage.

• Instantiate is performed top-down and depth-first.
This allows to simplify formulas early and reduces
the memory overhead of storing partial results.

• Simplify and Evaluate are applied eagerly, as they
may considerably reduce the size of formulas.

• The number of introduced symbols should be min-
imised. E.g., by avoiding creating different Tseitin
symbols for different occurrences of the same formula.

A useful optimisation is to first make Iin more precise
by applying symbolic propagation for Tin to it. This leads to
a more precise 3-valued structure Iin’ that approximates all
instances of Iin that are models of Tin [27]. With the refined
structure Iin’, the ground theories are sometimes orders of
magnitude smaller than w.r.t. Iin [28].

IV. MODEL EXPANSION FOR GENERAL GROUND FO(·)
In this section, we present an MX algorithm which takes as

input a general ground FO(·) theory Tg in GNF and a 3-valued
input structure Iin.4 The algorithm is based on existing MX
algorithm for function-free GNF, implemented in the system
MINISAT(ID), described in [17]. That algorithm is a Conflict-
Driven Clause-Learning (CDCL) search algorithm, extended to
handle inductive definitions and aggregates. Recall that running
the algorithm in the previous section with ResF = ∅ results in
function-free GNF. As before, we assume that all types τ are
interpreted as finite sets τIin of domain elements.

A. Adapting CDCL

The state of the algorithm consists of a theory Ts, and a
three-valued interpretation I. We present I as the sequence of
its true literals, ordered by the time at which the literals were
derived. A literal Li in this sequence is annotated LDi if it is
a decision literal; other literals were derived by propagation.
Initially, Ts is the input theory Tg and I is the empty set. For
ease of presentation, we use a slight adaptation of GNF in the
rest of the paper: any sentence A, with A one of the atoms
Q(e), f(e) ∼ e0 or agg({L1 : e1} ∪ · · · ∪ {Ln : en}) ∼ e0, is
generalised as an equivalence P (d) ⇔ A. Any such sentence
A in Tg is then added as the sentence t ⇔ A to Ts.

As an initial step of the algorithm, definitions Δ in Ts are
simplified. If Δ is not recursive (or if it can be stratified), it
can be split in a set of subdefinitions Δ1, . . . ,Δn as shown
in [8]. These are added to Ts and Δ is removed from it.

A number of inference rules operate on such states. The
first four rules describe a basic CDCL SAT-solver: Decide:
Select non-deterministically a domain literal L such that LI =
u, and append LD to I. UP: Apply unit propagation to a
clause in Ts and append the derived literal L to I. Fail: If I
is inconsistent and contains no decision literals, the algorithm
returns “unsatisfiable”. Learn: If I is inconsistent and contains
decision literals, conflict-driven clause-learning is applied to I
and Ts to construct a learnt clause C which is added to Ts.
Backjumping to the level of the second youngest literal of this
clause occurs. The output of the algorithm is either fail or a
three-valued interpretation I expanding Iin such that every
more precise two-valued interpretation I’ is a model of Tg .

The remaining propagation rules, presented in the next
section, then serve to perform propagation on the non-clausal
components of Ts. In the MINISAT(ID) algorithm, this con-
sists of four additional rules, Aggregate, Completion, Un-
founded and Wellfounded. The first checks for propagation
over aggregate expressions by reasoning on the bounds of
the aggregate function (the minimum and maximum value the
function can still take in a partial structure). The latter two
rules apply to inductive definitions. The rule Completion is
only executed in the initial phase; it applies to a definition
Δ and adds its completion to Ts. If Δ is equivalent with its
completion (for example for Tseitin symbols introduced only
in sentences), Δ can be dropped from Ts, as shown in [8].
Unfounded searches for unfounded sets [26] in a definition
Δ and if an unfounded set U is found, propagates all its

4The theory Tg computed during grounding contains only explicit defini-
tions of symbols that do not occur in Tg and can be ignored during search.
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atoms as f (i.e., it appends ¬U to I.). When I is a 2-valued
interpretation, Wellfounded checks if I is a well-founded
model of a definition Δ, as shown in [26]. In what follows,
these rules will be extended (and new ones will be added), to
handle the more general format of GNF.

We omit a discussion on CDCL improvements such as the
2-watched literal scheme and restarts; they can be incorporated
straightforwardly in the presented algorithm. The experimental
evaluation is based on a state-of-the-art CDCL algorithm.

B. Approach to extend to GNF

Any GNF theory can be transformed into a {Σ, I}-
equivalent function-free GNF theory. In that case, the inference
rules presented above are sufficient for a complete algorithm.
One approach to obtain such a theory was already presented
in Section III: to apply the rewrite algorithm with an empty
set ResF. However, instead of generating such a function-free
theory eagerly, before search, in the rest of the section we
present a concrete algorithm to generate such a function-free
theory lazily (i.e, during search). The algorithm is based on
the technique of Lazy Clause Generation (LCG), presented
in [24]. LCG alleviates the blowup of creating the full function-
free ground theory in advance in two ways: first it uses
smarter technique than graphing functions, and second, it only
generates these clauses when they would contribute to the
search, i.e. on the moment that they would propagate. We
generalise the scheme by lazily generating GNF sentences.

In the rest of the section, we show how the various
GNF expressions that possibly contain function terms are
supported. For each of these, the presentation consists of
three components. First, a set of (non-ground) sentences of
the form ∀x : ϕ ⇒ L; intuitively, these will be the set of
propagations or decompositions we consider for the expression
at hand, propagating the right-hand side (the head) when the
left-hand side (the body) is true. Second, a discussion on how
to quickly find instances of x for which ϕ holds in I and LI
is not true. The algorithm then consists of adding the sentence
ϕ[x/d] ⇒ L[x/d] for the relevant instantiations d of x. Third,
a discussion on when such derived sentences will be added to
Ts, which will depend on the expression at hand. As discussed
previously, the type of the derived sentences should be ordered
below the type of the original expression.

C. Encoding functions

To handle constraints over functions f/n with domain D
in a solver that decides on domain atoms, we use the order
encoding [25]. A domain term c of the form f(d) with f
mapping to the domain D = {d1, . . . , dn} is encoded by
the predicate symbol Tc≤/1. Trivially, any atom Tc≤(d) with
d /∈ D is interpreted true if d > dn, false if d < d1 and as
Tc≤(d′) otherwise, with d′ the domain element in D closest
to d but still smaller. In the sequel, we use �c ≤ t�, with
t a term, to denote the atom Tc≤(t). All other comparison
operators ∼ can be defined in terms of ≤. We use �c ∼ d�
as a shorthand for those rewritings. E.g, �c �= di� denotes
�c ≤ di−1� ∨ ¬ �c ≤ di�. The dependencies between different
atoms is expressed by the following sentences:

∀x ∈ D − dn : �c ≤ x� ⇒ �c ≤ next(x)� .
∀x ∈ D − d1 : �c > x� ⇒ �c > prev(x)� .

The propagation rule Encode is applied to a domain term c
the first time it appears in Ts, and it adds the grounding of the
above formulas to Ts. For small domains D (|D| < 100), this
is done eagerly; for larger ones this is done lazily as described
in [24]. We do not elaborate the details here. Additionally,
to take care of interpreting f when we have a model of the
encoding clauses, Encode adds the mapping sentence ∀x ∈
D :

⌈
f(d) = x

⌉
⇒ f(d) = x to Tm.

For each c, we define minc and maxc as max{d ∈ D |
�c ≥ d�I = t}, respectively min{d ∈ D | �c ≤ d�I = t}. The
range of c is then defined as [minc,maxc]. The values minc
and maxc can be computed from I, but an efficient algorithm
should store them and adapt them incrementally whenever I
changes.

Example IV.1. Consider the theory Tg consisting only of
the sentence P ⇔ f(1) ≤ 3, with f typed as f(τ) : τ ′,
τ interpreted as D, τ as D′. Encode will then add the
grounding of the above sentences for t = f(1). It does not
add instantiations for any other term f(d), d �= 1, which has
an important impact if D is large. In this case, the result of
MX is a three-valued interpretation of which any two-valued
extension is a model of the theory. For example, interpretation
I = {P, f(1) = 3} contains enough information: all structures
more precise than I, are models of Tg .

The order encoding is selected over encoding the function
as a set of equalities Tc=(di) as the encoding of inequalities
is more compact and choices on encoding atoms more often
eliminate subsets of the domain instead of just one value. A
more in-depth comparison is provided in [24].

D. Comparison constraint

The propagation rule Comparison applies to constraints
P ⇔ c ≤ c′, with P a domain atom and c and c′ domain
terms over a domains D, respectively D′. The propagations
we consider can be represented as the following sentences.

∀x ∈ D ∪D′ : �c ≤ x� ∧ �c′ ≥ x� ⇒ P.
∀x ∈ D ∪D′ : �c > x� ∧ �c′ < x� ⇒ ¬P.
∀x ∈ D : �c′ ≤ x� ∧ P ⇒ �c ≤ x� .
∀x ∈ D : �c′ ≥ x� ∧ ¬P ⇒ �c > x� .
∀x ∈ D′ : �c ≥ x� ∧ P ⇒ �c′ ≥ x� .
∀x ∈ D′ : �c ≤ x� ∧ ¬P ⇒ �c′ < x� .

It is easy to see that together with the encoding of c and c′, this
set of sentences it {Σ, I}-equivalent to the original constraint.
Comparison constraints over comparison operators other than
≤ are converted into 1 or 2 comparison constraints over ≤
(with Tseitin introduction in the latter case).

Instantiations are generated as follows. Rule Comparison
checks for each of the non-ground sentences whether the body
is true, but only for instantiations of x with minc,maxc,minc′
and maxc′ . This is checked whenever one of those values
increases (for min) or decreases (for max) and whenever P
becomes assigned. It is straightforward to show that this is
sufficient, i.e., when UP, Encode and Comparison are at
fixpoint (without conflict), none of the above sentences has a
true body and an unknown or false head for any instantiation.

Example IV.2. Consider a constraint P ⇔ c ≤ c′, with c
a range of [3, 10], c′ a range of [7, 20] and P is true in I.
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When I is extended with �c ≥ 8� to I’, Comparison checks
for x = 8 which of the left-hand sides are true, which is the
case for the sentence �c ≥ 8� ∧ P ⇒ �c′ ≥ 8�. As P is true
in I’, the sentence is added to Ts and UP derives �c′ ≥ 8�.

E. Aggregates

Next, we introduce propagation rules for sentences of the
form P ⇔ agg({L1 : e1} ∪ · · · ∪ {Ln : en}) ≤ e0 where agg
is either a maximum or sum aggregate function. As above,
other comparison operators can be rewritten into constraints
over ≤. Cardinality constraints are rewritten straightforwardly
into sum constraints and minimum into maximum constraints.
The rules for product aggregates are not presented here, as
they are similar to those for sum (although complicated by the
non-monotonicity of product for terms with negative values).

The rule Encodemax rewrites a maximum constraint P ⇔
max(S) ≤ c into the following sentences

P ∧ Li ⇒ ei ≤ e0 for each i ∈ [1, n]
¬P ⇒ ∨

i∈[1,n](Li ∧ ci > e0)

As the rewriting consists of only n+1 ground sentences, it is
done eagerly for any maximum aggregate constraint in Ts.

Enumerating the clauses generated from a sum constraint,
by the Encodesum propagation rule, is out of the scope of this
paper, we only give an example. For some set Sin ⊆ [1, n],
with Sc its complement, the sentence

∀x :

( ∧
i∈Sin

Li ∧ �ei ≤ xi�
)
∧
⌈
e0 ≥

∑
i∈Sin

xi

⌉ ∧
i∈Sc

¬Li ⇒ P

expresses that P has to be true if e0 is larger or equal than the
sum of the maxima of all terms with a true condition (indices
Sin) and all other conditions are false. The other sentences are
similar in idea, but not presented here. Similarly to handling
comparison constraints, propagation is checked for the bounds
of all terms and for all assignments to the associated atoms.

F. General ground atoms

Constraints of the form P ⇔ q(e) and P ⇔ f(e) ∼ e0 are
handled by waiting until all domain terms in e are assigned.
At that moment, the instantiated constraint is generated, which
coincides with instantiations of the sentence5

∀x ∈ dome : �e = x� ⇒ (P ⇔ Q(x)), respectively
∀x ∈ dome : �e = x� ⇒ (P ⇔ f(x) ∼ e0).

The propagation rule Encodegeneral adds the above sen-
tences whenever the value of each of the ci is known (applying
Tseitin introduction to generate sentences in GNF).

Example IV.3. The element constraint element(c,A,i) ex-
presses that a CP-variable (or constant) c takes the value at
index i of array A. It is well-known that an array is in fact a
function fA from indices to values. The element constraint can
then be modelled as the sentence fA(i) = c and handled lazily
as described above, by generating the comparison constraint
fA(d) = c when i is assigned to d in I. It is possible that A
(fA) is very large or not completely known in advance.

5We use �e = x� as a shorthand for
∧

i∈[1,|e|] �ei = xi�.

G. Definitions with function terms

In the standard case (no function terms), definitions are
handled by applying the rules Completion, Unfounded and
Wellfounded. Definitions containing function terms should be
handled carefully, for which we introduce the extended rules
Completion′, Unfounded′ and Wellfounded′.

Consider a definition Δ defining, among others, the symbol
P by the rules {P (e1) ← ϕ1, . . . , P (en) ← ϕn}. The
completion of P for Δ is then the (non-ground) sentence
∀x : P (x) ⇔ ∨

i∈[1,n] �ei = x� ∧ ϕi. The rule Completion′
adds the equivalent sentences∧

i∈[1,n] ϕi ⇒ P (ei)

∀x : P (x) ⇒
(∨

i∈[1,n] �ei = x� ∧ ϕi
)

The former sentence is added eagerly for each i (as it is
already ground). For the latter sentence, Completion′ adds its
instantiation of x with d to Ts for atoms P (d) true in I.

An issue with the condition on instantiation is that propaga-
tions might be missed. Indeed, the latter Completion′ sen-
tence is only instantiated for P (d) true in I; however, if(∨

i∈[1,n]
⌈
ei = d

⌉
∧ ϕi

)
is false, then ¬P (d) is entailed. If

P (d) does not occur in Ts (and is never added by other rules),
it will not be decided, resulting in an interpretation of which
not all two-valued extensions are models. It is easy to show
that in a (non-failed) state in which no more inference rules are
applicable, all unassigned domain atoms over defined symbols
have to be false. Extending the interpretation in this way,
denoted as the rule Defined-false, then restores soundness.

For Unfounded′ and Wellfounded′, we take an approach
similar to previous sections: both rules are only applied when
all domain terms occurring in Δ are assigned. In such situ-
ations, replacing all domain terms in Δ with their interpretation
results in a definition to which the existing propagation rules
Unfounded and Wellfounded can be applied. If one of these
generates an explanation clause EC, this clause is only valid
conditionally, as we had to substitute several constants in order
to obtain it. So instead of adding EC to Ts, we add∧

c|c occurs in Δ

⌈
c �= cI

⌉
⇒ EC.

Example IV.4. Consider part of a graph application consisting
of a function next mapping nodes to nodes and a constant
start of type node. Suppose the aim is to compute a relation
r on nodes, all nodes reachable from the start node through
next, defined6 as {r(start). ∀x : r(next(x)) ← r(x).}. In
the context of an interpretation I over domain {a, b, c}, with
startI = a and nextI = {a �→ b, b �→ a, c �→ c}, the definition
reduces to the rules r(a), r(b) ← r(a), r(a) ← r(b), and
r(c) ← r(c), to which Unfounded can be applied. As Unfoun-
ded would derive ¬r(c), Unfounded′ generates (�start = a�∧
�next(a) = b� ∧ �next(b) = a� ∧ �next(c) = c�) ⇒ ¬r(c).

H. Pre-interpretation over some symbols

As discussed above, the grounding algorithm gets as input
a partial, consistent input interpretation Iin, parts of which

6Note that the size of the grounding of this definition is linear in the size
of the domain, instead of quadratic if functions would be graphed.
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are implicit (e.g. interpretations of numerical functions) or
described symbolically (e.g. ranges 0..n). The information in
Iin should be passed to the solver, but we do not want to add
Iin as constraints to the theory, for the same reason as we do
not want to eagerly generate the full propositional grounding.
Instead, the following propagation rule takes care of adding
just enough of Iin to obtain interpretations consistent with
Iin. Rule check-Iin adds a clause (¬)A to Ts for every atom
A in Ts such that AIin = t(f) and (¬)A /∈ I.7

Example IV.5. Consider a theory Ts with constraint P (c) ∨
¬P (c′), with P over a large domain D and interpreted in
Iin. Adding clauses P (d) or ¬P (d) for every domain-element
d ∈ D would cause an immense ground theory. However,
lazily adding this whenever a value for c or c′ is chosen, results
in a theory where only the relevant literals are asserted.

I. Complete search algorithm

Next to the set of propagation rules, a search algorithm
consists of an execution order � on those rules. The execution
order can have a great impact on the efficiency of the search.
E.g., whenever Fail is possible, it is useless to propagate
further; UP is preferred over Unfounded because it is cheaper
and often derives more propagation; etc. An additional concern
is to not generate the same expression lazily multiple times,
preferably without having to explicitly keep track of this. The
approach taken is to order the rules such that propagation on
simpler constraints is performed before propagation on more
complex constraints, resulting in the following order (recall,
Encodemax is executed in the initial phase).

Fail � Learn � UP � check-Iin
� Encode � Comparison � Completion′
� Encodesum � Encodegeneral � Unfounded′
� Decide � Wellfounded′ � Defined-false

Theorem IV.6 (Soundness and completeness). For any GNF
theory T and consistent interpretation Iin over Σ (T ), the al-
gorithm terminates and returns an interpretation I, consistent
with Iin, such that all two-valued extensions of I ∪ Iin are
models of T , or fail if no models of T exist that extend Iin.

V. EXPERIMENTS

The grounding algorithm is implemented in IDP3 [4],
a knowledge-base system supporting state-of-the-art model
expansion, as can be observed from e.g. the previous ASP
competition [5]8. The search algorithm is implemented as
the newest version of the MINISAT(ID) solver, originally
described in [17]. As benchmarks, we used the benchmarks
and instances of the fourth ASP competition9 in the NP com-
plexity class, the classic CP benchmarks disjunctive schedul-
ing and square-packing of the third ASP competition and
a (new) concrete-delivery scheduling application. The search
implementation is currently limited to functions over integer
domains, a constraint satisfied in all considered benchmarks.

Each of the benchmarks and associated instances was
solved using IDP3, measuring performance and size of the

7By definition, check-Iin checks well-typedness of expressions.
8Results of the fourth ASP competition are not available as of this writing.
9Available at https://www.mat.unical.it/aspcomp2013/OfficialProblemSuite

Benchmark # inst. # solved avg. time(sec) avg. size (# atoms)

bottle fill. 30 30(30) 99(98) 9×5 (1× 106)

graceful graphs 30 191919(3) 131131131(489) 8× 1058× 1058× 105(3× 107)

incr. sched. 30 202020(8) 3(1) 5× 1035× 1035× 103(−−−)
no-mystery 30 27(28) 52(64) 2× 105(3× 105)

pattern matching 30 303030(22) 333(44) 5× 1045× 1045× 104(1× 107)
ricochet robots 30 15(15) 402(408) 2× 107(2× 107)

sokoban 30 17(17) 115(113) 5× 1055× 1055× 105(5× 105)
solitaire 27 23(22) 10(9) 3× 104(3× 104)
stable marriage 30 30(30) 124(123) 3× 107(3× 107)

weighted seq. 30 30(30) 3(12) 2× 1032× 1032× 103(5× 105)

disj. scheduling 21 212121(5) 222(27) 3× 1033× 1033× 103(1× 107)

packing 30 303030(9) 111(138) 1× 1041× 1041× 104(1× 107)

crossing min.* 30 9(11) 484848(128) 8× 1038× 1038× 103(4× 105)

still life* 26 3(4) 111(41) 1× 1041× 1041× 104(5× 104)

valve location* 30 666(2) 156(494949) 2× 1062× 1062× 106(6× 106)

concrete deliv.* 30 181818(0) 171171171(−−) 7× 1057× 1057× 105(−−−)
Table I. EXPERIMENTAL RESULTS, FORMATTED AS GROUND(PROP),

WITH CLEAR WINNERS IN BOLD. FOR OPTIMIZATION PROBLEMS (*),
# SOLVED AND AVG. TIME REFLECT SOLVED TO OPTIMALITY.

grounding10. Two different setups were used. The ground
setup applies MX with ResF the set of all functions with
integer domains. The ground setup, able to apply all ideas
presented in this paper, is compared to the (function-free)
reference setup prop, which uses ResF = ∅, resulting in a
(pseudo-) propositional grounding. As discussed earlier, this
results in an effectively propositional grounding, in which the
search collapses to the original MINISAT(ID) algorithm.

In table I, we report on the performance per benchmark,
measured as the number of solved instances, the average total
time for the solved instances, and the average size of the
grounding; bold numbers indicate clear winners. The time limit
was 1000 seconds, the memory limit 5 GB.

The most important conclusion this table gives, is that the
techniques described in this paper are crucial to solve some
problems, such as graceful graphs and concrete delivery, while
disjunctive scheduling, packing and incremental scheduling
clearly favour ground. The opposite does not hold: there
are no problems where prop could solve significantly more
instances than ground. Looking at the problems where the
same number of instances were solved, in all benchmarks the
average solve time is similar or often significantly better for
ground. The average grounding size is in line with the above
results: problems with a much smaller grounding are typically
solved much faster, and vice versa. Note that there are no
benchmarks where using ground leads to a larger average
grounding size compared to prop.

For the optimization problems, it is also interesting to
compare the best solutions found by both approaches within
the time limit, even if the optimal solution was not found (or
proven to be optimal). For still-life, the best solution was found
by prop in 18 cases opposed to only once by ground, and
similarly for crossing-minimisation (14 to 4). The situation is
reversed for valve location (3 to 27) and concrete delivery (0
to 26), where ground clearly outperforms prop. The reason
is that the rules in ground detect propagation later in some
cases, causing more suboptimal models to be found.

The above results imply that the described techniques are a

10Experiments were run on a 64-bit Ubuntu 12.04 system with an Intel Core
i5 3570 processor and 8 GB of RAM. All experimental data is available at
dtai.cs.kuleuven.be/krr/research/experiments
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significant improvement in almost all cases, although the naive
propagation rules should be improved further.

VI. RELATED WORK AND CONCLUSION

The presented work fits in a more general effort to combine
techniques from SAT, CP and high-level knowledge representa-
tion languages. The solver-independent CP language Zinc [18]
is grounded to the language MiniZinc [20], supported by a
range of search algorithms using various paradigms, as can be
seen on www.minizinc.org/challenge2012/results2012.html. In
the context of CASP, several systems ground to ASP extended
with constraint atoms, such as Clingcon [22] and EZ(CSP) [2].
For search, Clingcon combines the ASP solver Clasp [11] with
the CSP solver Gecode [13], while EZ(CSP) combines an off-
the-shelf ASP solver with an off-the-shelf CLP-Prolog system.
The prototype CASP solver Inca [9] searches for answer sets
of a ground CASP program by applying LCG for arithmetic
and all-different constraints. As opposed to extending the
search algorithm, a different approach is to transform a CASP
program to a pure ASP program [10], afterwards applying any
off-the-shelf ASP solver. CASP languages generally only allow
a restricted set of expressions to occur in constraint atoms and
impose conditions on where constraint atoms can occur. For
example, none of the languages allows general atoms P (c)
with P an uninterpreted predicate symbol. One exception is
AC(C), a language aimed at integrating ASP and Constraint
Logic Programming [19]. As shown in [15], the language cap-
tures the languages of both Clingcon and EZ(CSP); however,
only subsets of the language are implemented [14].

The presented ideas only improve performance when func-
tion symbols are present in the input theory. However, mod-
ellers are free to use predicates when some of its arguments
depend functionally on each other and might choose to do so.
In [6], it is investigated how functional relationships can be
detected automatically, using a technique based on theorem
proving, and how to subsequently rewrite the theory to intro-
duce function symbols. Interesting topics for future work are
an experimental comparison with the above-mentioned systems
and an investigation of the effect of improved propagation for
rules such as Encodegeneral and Unfounded′, which now only
fire when all relevant terms are assigned.

To conclude, this paper first presented an FO(·) grounding
algorithm, parametrised by the function symbols allowed in the
grounding. In this way, we can, without changes to the input
language, support the next generation of search algorithms
that integrate techniques from SAT, ASP and CP. Second, we
presented a search algorithm for the ground fragment of FO(·).
To the best of our knowledge, this is the first implementation
for the full ground fragment of FO(·) (combining definitions
with nested uninterpreted functions) and one of the first freely
available implementations of LCG. Experimental results show
that the grounding size can be significantly reduced while
obtaining similar or improved search performance.
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