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Abstract

Dynamic systems play a central role in fields such as planning, verification, and databases.
Fragmented throughout these fields, we find a multitude of languages to formally specify dynamic
systems and a multitude of systems to reason on such specifications. Often, such systems are
bound to one specific language and one specific inference task. It is troublesome that performing
several inference tasks on the same knowledge requires translations of your specification to other
languages. In this paper we study whether it is possible to perform a broad set of well-studied
inference tasks on one specification. More concretely, we extend IDP3 with several inferences
from fields concerned with dynamic specifications.
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1 Introduction

Traditionally, systems that reason on declarative specifications take input in a specific

language and perform one specific inference on this input. As argued in Denecker and

Vennekens (2008) and Denecker (2012), it is often useful to perform several different infer-

ence tasks on the same knowledge base; the authors called this idea the Knowledge Base

System (KBS) paradigm. In this paper, we evaluate the usefulness of the KBS paradigm

in the well-studied domain of dynamic action languages. We identify many interesting

inference tasks in this domain and we show that for one concrete action language, the

Linear Time Calculus (LTC) introduced in this paper, each of these tasks can be per-

formed. As a result, we can use the same specification, an LTC-theory, for performing

a wide range of tasks, whereas traditional software development uses different specifica-

tions for different tasks. We illustrate this with different tasks related to development of

a Pac-Man game.

We do not start from scratch, our general approach reduces inference tasks for LTC-

theories to existing inference methods. We do this in the context of the IDP3 system (De

Cat et al. 2014), a KBS that allows manipulation of logical objects (theories, structures,

terms, queries,. . . ) through an imperative layer and hence allows users to glue the differ-

ent inference methods together to construct useful software (De Pooter et al. 2011). For

IDP3, the imperative layer is the Lua scripting language (Ierusalimschy et al. 1996).
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Many action calculi have been developed, including the Situation Calculus (McCarthy

and Hayes 1969; Reiter 2001), Event Calculus (Kowalski and Sergot 1986), and the Plan-

ning Domain Definition Language (PDDL) (Ghallab et al. 1998) and many inference

methods exist for these calculi. Progression inference aims at finding the successor of a

given state, and plays a central role in database applications (Lin and Reiter 1997; Kowal-

ski and Sadri 2013). Simulation uses progression to simulate the execution of a system

based on a formal specification. Planning aims at finding a sequence of actions that

achieve a goal. Other inference tasks are finding and/or proving invariants of a dynamic

system, and verifying complex temporal statements such as LTL or CTL expressions.

Even though many important inference methods—including theorem proving (Fitting

1996), (optimal) model expansion (Wittocx et al. 2008), querying (Vardi 1986) and de-

bugging (Shlyakhter et al. 2003)—are already supported by IDP3, several inferences in

a dynamic context, such as progression, simulation, and proving invariants, are not yet

supported. To overcome this limitation, we show that all of the above inferences can be

implemented in a subclass of theories, the so-called Linear Time Calculus (LTC) theories.

From a dynamic (time-dependent) LTC-theory, we derive two simpler static theories—

an initial theory and a transition theory—and we show that progression on the LTC-

theory can be performed by model expansion on the transition theory and that simulation

can be achieved by repeated progression. Proving invariants is achieved by induction: by

proving it for the initial theory and proving that the property is preserved by the transi-

tion theory. Finally we discuss how one could handle more complex dynamic properties.

The main contributions of this paper are threefold: i) we illustrate the practical advan-

tages of the KBS paradigm in the context of dynamic systems, ii) we implement methods

to perform progression and simulation and to prove invariants on the same theory, and

iii) we study the relation between various declarative problem-solving domains concerned

with dynamic systems and identify which inferences are studied in which domains.

The paper is organised as follows. In Section 2 we recall some preliminaries. Next,

in Section 3, we introduce the class of structures and theories of interest: structures

describing an evolution of a state over time and theories that essentially contain only

local information. Afterwards, in Section 4, we provide an overview of the inferences

applicable to these theories and in Section 5 we compare with other systems. We conclude

in Section 6. Omitted proofs can be found in Appendix B.

2 Preliminaries

We assume familiarity with basic concepts of first-order logic (FO). If J is a structure

over Σ, and σ a symbol in vocabulary Σ, σJ denotes the interpretation of σ in J . If ϕ is

a formula and t1 and t2 are terms, we use ϕ[t2/t1] for the formula obtained from ϕ by

replacing all occurrences of t1 by t2. We use a many-typed logic and write P (t1, . . . , tn)

and f(t1, . . . , tn) : t′ for the predicate P typed t1, . . . , tn respectively the function f with

input arguments of type t1, . . . , tn and output argument typed t′.

FO(ID) extends FO with (inductive) definitions: sets of rules of the form ∀x : P (t)←
ϕ, (or ∀x : f(t) = t′ ← ϕ) where ϕ is a FO formula and the free variables of ϕ and P (t)

are among the x. We call P (t) (respectively f(t) = t′) the head of the rule and ϕ the

body. The connective← is the definitional implication, which should not be confused with

the material implication ⇒. Thus, the expression ∀x : P (t) ← ϕ is not a shorthand for
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∀x : P (t)∨¬ϕ. Instead, its meaning is given by the well-founded semantics (for functions,

semantics of the graph predicate is considered, i.e., as if the rule were Graphf (t, t) ←
ϕ); this semantics correctly formalises all kinds of definitions that typically occur in

mathematical texts (Denecker and Ternovska 2008; Denecker and Vennekens 2014).

To simplify the presentation, we assume, without loss of generality, that an FO(ID)

theory consists of a set of FO sentences and a single definition (Denecker and Ternovska

2008; Mariën et al. 2004); our implementation does not impose this restriction.

3 Linear Time Calculus

We define linear-time vocabularies and structures. Next, we define the progression infer-

ence and analyse when progression can be performed without keeping an explicit history

(when a theory satisfies the Markov property (Markov 1906)). Finally, we define the

Linear Time Calculus, and show that LTC-theories satisfy the Markov property.

3.1 Linear-Time Vocabularies and Structures

Definition 3.1 (Linear-time vocabulary)

A linear-time vocabulary is a many-typed first-order vocabulary Σ such that:

• Σ has a type Time (always interpreted as N), a constant I of type Time (interpreted

as 0) and a function S(Time) : Time (interpreted as the successor function),

• All other symbols in Σ have at most one argument of type Time,

• Apart from I and S, the output argument of functions is not of type Time.

We partition symbols in Σ in three categories: Time, I and S are LTC-symbols, symbols

without a Time argument are static symbols, and all other symbols are dynamic symbols.

For ease of notation, we will assume that the Time always occurs last in dynamic symbols.

In the rest of this paper we assume that Σ is a linear-time vocabulary. Such a structure

describes an evolution of a state over time, i.e., it represents a sequence of states. Here,

a state is a structure over a vocabulary derived from Σ by projecting out Time.

Definition 3.2 (Projected symbol)

If σ(t1, . . . , tn−1, T ime) is a dynamic predicate symbol, then σcurr(t1, . . . , tn−1) is its

projected symbol. Similarly, for a function symbol σ(t1, . . . , tn−1, T ime) : t, its projected

symbol is σcurr(t1, . . . , tn−1) : t.

Definition 3.3 (Derived vocabularies)

The vocabularies derived from Σ are:

• the static vocabulary Σs consisting of all static symbols in Σ;

• the single-state vocabulary Σss which extends the static vocabulary Σs with the

symbol σcurr for each dynamic symbol σ in Σ.

Intuitively, a Σss-structure describes a single state, and σcurr describes the interpretation

of σ on that point in time.
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Example 3.4

A simplification of the Pac-Man game can be modelled with a linear-time vocabulary Σp

consisting of types Time, Agent, Square, and Dir. The vocabulary contains predicate

symbolsNext(Square,Dir, Square),Move(Agent, Dir, T ime), Pell(Square, T ime), and

GameOver(Time). An atom Next(s, d, s′) expresses that the square next to s in direc-

tion d is s′, Move(a, d, t) that agent a moves in direction d at time t, Pell(s, t) that

square s contains a pellet at time t, and GameOver(t) that either all pellets are eaten or

Pac-Man is dead at t. The vocabulary also contains a constant pacman of type Agent and

function symbols Pos(Agent, T ime) : Square mapping each agent at every time-point

to his position, and StartPos(Agent) : Square mapping agents to their initial position.

Σp
s and Σp

ss have the same types as Σp. Σp
s contains the constant pacman, the predicate

symbol Next(Square,Dir, Square), and the function StartPos(Agent) : Square. Σp
ss is

an extension of Σp
s with predicate symbols Movecurr(Agent,Dir), Pellcurr(Square), and

GameOvercurr and the function symbol Poscurr(Agent) : Square.

Definition 3.5 (Projection of a structure)

Let Ω be the interpretation of a dynamic symbol σ/n in a structure and k ∈ N. The set

of tuples (d1, . . . , dn−1) such that (d1, . . . , dn−1, k) ∈ Ω is the k-projection of Ω, denoted

πk(Ω).

The single-state projection of a Σ-structure J on time k ∈ N, denoted πss
k (J), is the

Σss-structure interpreting static symbols σ as σJ and dynamic symbols σcurr as πk(σJ).

Proposition 3.6

Let Σ be a linear-time vocabulary and Σss the corresponding single state vocabulary.

There is a one-to-one correspondence between Σ-structures J and sequences (Jk)∞k=0 of

Σss-structures sharing the same interpretation of static symbols, given by Jk = πss
k (J).

This proposition holds because one can reconstruct the tuples in Ω from the tuples in

πk(Ω). From now on, we will often identify a structure with the corresponding sequence.

Often, we are not only interested in single states, but also in two successive states. In

the following definition, a Σbs-structure describes two subsequent states; σcurr refers to

the first one and σnext to the second.

Definition 3.7 (Bistate vocabulary and structure)

For every dynamic symbol σ in Σ, the next-state symbol is a new symbol σnext with

the same type signature as σcurr. The bistate vocabulary Σbs extends the single-state

vocabulary Σss with the symbol σnext for each dynamic symbol. With J a Σ-structure,

the bistate projection πbs
k (J) over Σbs interprets σnext as πk+1(σJ) and all other symbols

as in πss
k (J). If S and S′ are Σss-structures that are equal on static symbols, we use

(S, S′) for the Σbs-structure with the same interpretation of static symbols and such that

σ
(S,S′)
curr = σS

curr and σ
(S,S′)
next = σS′

curr for dynamic symbols σ.
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3.2 Progression and the Markov Property

Definition 3.8 (k-chain, extension)

Let k be a natural number. A k-chain J over Σ is a sequence (Ji)
k
i=0 of Σss-structures

sharing the same interpretation of static symbols. Slightly abusing notation, we also call

a Σ-structure an ∞-chain (using the identification in Proposition 3.6).

The direct extension of a k-chain J with a Σss structure S, denoted J::S, is the (k+1)-

chain J ′ with J ′j = Jj for j ≤ k and J ′k+1 = S. A chain J ′′ is an extension of J if it is

either a direct extension of J or an extension of a direct extension of J .

Definition 3.9 (T -compatible, T -successor )

Let T be a Σ-theory. A k-chain J is T -compatible if T has a model (an ω-chain) that

extends J . A Σss-structure S′ is a T -successor of a k-chain J if J::S is T -compatible.

Definition 3.10 (Progression inference)

Progression inference is an inference that takes as input a theory T and a T -compatible

k-chain J and returns all T -successors of J .

Of special interest is the case where the T -successors of a k-chain J are determined

solely by the last state in J . It means that the dynamic system has no history. From a

practical point of view this is often important. For example, contemporary databases are

often too large to keep track of the entire history. We refer to such a system as a system

that has the Markov property (Markov 1906).1

Definition 3.11 (Markov property)

A theory T satisfies the Markov property if for every T -compatible k-chain J , and every

T -compatible k′-chain J ′ ending in the same state, i.e., such that Jk = J ′k′ , the T -

successors of J are exactly the T -successors of J ′.

The condition on a k-chain J to be T -compatible is quite strong. It does not only

require that all information in this chain is correct according to T , but it requires that J

is extensible to a model of T . This might require to look into the future. For example in

the Pac-Man game, we could add two constraints: i) agents can not turn back and ii) as

the game is not over, every agent moves. These two sentences are contradictory when an

agent arrives at the end of a dead-end corridor. This means that every k-chain in which

an agent enters a dead-end corridor is not T -compatible, as the agent will eventually

reach the point where it cannot move. On the one hand, this is a good property, because

progression as defined above guarantees that you can never get stuck, that every T -

compatible chain can always be progressed. But on the other hand, from a computational

point of view, this is bad, as progression requires to look arbitrarily far into the future.

In Appendix A, we present the notions of weak T -compatibility, weak progression and

the weak Markov property which are more technical than the one we described here.

Intuitively, these properties are similar to the ones described here, except they do not

require looking into the future. This might results in deadlocks: chains without successors.

We implemented the weak progression; to the best of our knowledge, all systems that

implement progression actually implement weak progression.

1 The Markov property is often used in a probabilistic context. Translated to that context, one could
say that the T -successors of J are the states with non-zero probability.
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3.3 The Linear Time Calculus

Definition 3.12 (static, single-state, bistate)

Let ϕ be either a sentence or a rule. We call ϕ static if it contains no terms of type Time.

We call ϕ initial if it contains the constant I and no other terms of type Time. We call

ϕ single-state if it contains a variable of type Time and no other terms of type Time.

We call ϕ bistate if it contains a variable t typed Time and all terms typed Time in ϕ

are either t or S(t). Furthermore, we call a single-state or a bistate ϕ universal if it is of

the form ∀t : ϕ′ where t is the unique Time-variable in ϕ and t is not quantified in ϕ′.

We now define an LTC theory as a theory that roughly only consists of the above types

of rules and formulas. In this definition, we use the notion of stratification over Time: a

definition is stratified over Time if it does not contain any rules defining atoms in terms

of future values.

Definition 3.13 (LTC-theory)

An LTC-theory over Σ is a theory T that satisfies i) all sentences and rules in T are

either static, initial, universal single-state, or universal bistate, and ii) the definition in

T is stratified over Time.

The first condition ensures that an LTC-theory has no history. For pure FO theo-

ries, this is enough to guarantee the Markov-property. The second condition prevents

nonsensical definitions such as for example defining the state in terms of a future state.

Example 3.14

Below is an LTC theory over Σp (Example 3.4) specifying part of the Pac-Man game2.

∀a, p : Pos(a, I) = p← StartPos(a) = p.

∀a, t, p : Pos(a,S(t)) = p← Pos(a, t) = p ∧ ¬∃d : Move(a, d, t).

∀a, t, p : Pos(a,S(t)) = p← ∃d : Move(a, d, t) ∧Next(Pos(a, t), d, p).
∀s : Pell(s, I).

∀s, t : Pell(s,S(t))← Pell(s, t) ∧ Pos(pacman, t) 6= s.


∀a, t, d, d′ : Move(a, d, t) ∧Move(a, d′, t)⇒ d = d′.

The theory inductively defines the positions of the agent and the pellets at each time point

(in terms of the open predicates Next, StartPos and Move) and states the constraint

that there is only one move at a time.

We now show how an LTC-theory can be translated automatically into two simpler

theories: a Σss-theory that describes valid initial states, and a Σbs-theory that describes

valid transitions.

Definition 3.15 (Elimination of time)

Let ϕ be a universal single-state or bistate sentence or rule with unique Time variable

t. The time-elimination of ϕ is the sentence/rule te(ϕ) obtained from ϕ by (i) dropping

the universal quantification of t, (ii) for every occurrence of S(t) in a dynamic (predicate

or function) symbol σ, replacing σ by σnext and dropping the argument S(t), and (iii)

for every occurrence of t in a dynamic symbol, replacing σ by σcurr and dropping t.

2 The complete example can be found at Bogaerts (2014).
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For example, the time-elimination of the rule

∀a, t, p : Pos(a,S(t)) = p← ∃d : Move(a, d, t) ∧Next(Pos(a, t), d, p).

is the Σbs-rule

∀a, p : Posnext(a) = p← ∃d : Movecurr(a, d) ∧Next(Poscurr(a), d, p).

Definition 3.16 (Initial and transition theory)

Let T be an LTC-theory. We define two theories. The initial theory T0 consists of:

• all static sentence/rules in T ,

• for each initial sentence/rule ϕ in T , the sentence/rule te(∀t : ϕ[t/I]) (informally,

here we replace I by t and project on t afterwards since te is only defined for

universal sentences; this is the same as projecting on I),

• for each single-state sentence/rule ϕ in T , the sentence/rule te(ϕ).

The transition theory Tt consists of:

• all static sentences/rules in T ,

• for each single-state sentence/rule ϕ in T , the sentences/rules te(ϕ) and te(ϕ[S(t)/t]),

• for each bistate sentence/rule ϕ in T , the sentence/rule te(ϕ).

Example 3.17

For our Pac-Man example, this results in the initial theory T0:{
∀a, p : Poscurr(a) = p←StartPos(a) = p.

∀s : Pellcurr(s).

}
∀a, d, d′ : Movecurr(a, d) ∧Movecurr(a, d′)⇒ d = d′.

and the transition theory Tt:
∀a, p : Posnext(a) = p← Poscurr(a) = p ∧ ¬∃d : Movecurr(a, d).

∀a, t, p : Posnext(a) = p← ∃p′, d : Poscurr(a) = p′ ∧Movecurr(a, d) ∧Next(p′, d, p).
∀s, t : Pellnext(s)← Pellcurr(s) ∧ ¬Poscurr(pacman) = s.


∀a, d, d′ : Movecurr(a, d) ∧Movecurr(a, d′)⇒ d = d′.

∀a, d, d′ : Movenext(a, d) ∧Movenext(a, d
′)⇒ d = d′.

We now formalise the relation between T , T0, and Tt; proofs can be found in Ap-

pendix B.

Theorem 3.18

Let T be an LTC-theory and J a Σ-structure. Then J is a model of T if and only if

πss
0 (J) |= T0 and for every k ∈ N, πbs

k (J) |= Tt.

Theorem 3.19

Let T be an LTC-theory and J a k-chain. Then, J is weakly T -compatible if and only if

πss
0 (J) |= T0 and for every j < k, πbs

j (J) |= Tt.

Corollary 3.20

LTC-theories satisfy the Markov property and the weak Markov property.
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3.4 Modelling Methodology: Actions, Fluents and Inertia

In many action languages, one often divides dynamic predicates into two sets of predi-

cates: action predicates and fluents. Ever since the frame problem was defined by Mc-

Carthy and Hayes (1969), it has been clear that it is often easier to express state changes

than it is to express the complete next state. Furthermore, from a practical standpoint,

it is often easier to update a state—for example, a database—than it is to compute

the entire next state. Therefore, when modelling in LTC we often introduce three extra

predicate symbols for each fluent P/n: CP /n, expresses that P is caused to be true at

a certain time, C¬P /n expresses that P is caused to be false and IP /(n − 1) expresses

that P holds initially. The relation between these predicates is formalised in LTC:
∀x : P (x, I) ← IP (x).

∀x, t : P (x,S(t))←CP (x, t).

∀x, t : P (x,S(t))←P (x, t) ∧ ¬C¬P (x, t).


I.e., P (x,S(t)) holds if it is either caused to be true or it was already true and is not

caused to be false (inertia). Using this methodology, the modeller simply describes the

effects of actions through CP and C¬P and a reasoning engine can exploit these new

predicates for efficiently updating a persistent state.

4 LTC-Theories in Practice: Inferences and Implementation

This section describes various inference methods we can use on LTC-theories with a brief

description of their implementation in IDP3, available in version 3.3 (IDP 2013).

4.1 Progression

Based on Theorem 3.19, we can use model expansion on the initial theory to infer an

initial state and model expansion on the transition theory to infer a next state from a

given state. To perform these inferences, we added two procedures to IDP3:

• initialise(T,J) takes as input an LTC-theory T over Σ and a partial Σ-structure J

(a structure that at least interprets all types) and returns a set of Σss-structures

that are initial states of T and that agree with J (that expand πss
0 (J)). The number

of generated Σss-structures depends on the option nbmodels.

• progress(T,S) takes as input an LTC-theory T over Σ and any Σss-structure S and

returns a set of Σss-structures S′ for which (S, S′) |= Tt. The number of generated

Σss-structures depends on the option nbmodels.

4.2 Logic-Based Software Development using Interactive Simulation

An LTC-theory describes the evolution of a dynamic system over time. By itself, it cannot

interact with the external world. In order to create such software, we can interactively

simulate an LTC-theory by waiting for user input at each progression step. The simplest

form is a procedure that uses the progression inference to present all possible next states

to a user, and asks to pick one. We implemented this form of interactive simulation
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in IDP3: calling simulate interactive(T,J), with a Σ-LTC-theory T and a partial Σ-

structure J at least interpreting all types in Σ, provides you with an interactive shell to

guide the simulation. Interactive simulation reuses the initialise and progress procedures.

Due to its rather primitive communication with the user, this kind of simulation is not

yet useful for running software based on a logical specification. In order to do so, we need

a more refined form of interaction.

4.2.1 Modelling Methodology: Exogenous and Endogenous Information

One way to achieve a more refined form is by making an explicit distinction between

exogenous and endogenous information, respectively information determined by the en-

vironment and information internal to the system. In most applications, fluents are en-

dogenous and (a subset of the) actions are exogenous. For Pac-Man, the only exogenous

information is the action the player takes: the direction in which he moves. In order

to allow such a distinction (and in the meantime, many other refined control mecha-

nisms), we implemented simulate(T , J , rand, show(), endcheck(), choose()). Besides

an LTC-theory T and a partial structure J , this inference takes as input:

• rand: a boolean; if true, simulations happens randomly, otherwise interactively,

• (optional) show() a Lua-procedure that implements printing of the current state,

• (optional) endcheck() a Lua-procedure that decides whether to stop the simulation,

• (optional) choose() a Lua-procedure that implements choosing a next state.

This procedure also simulates T , but all communication goes through the user provided

procedures. It reuses the initialise and progress procedures. We used the above procedure

to simulate a game of Pac-Man. As show procedure, we passed a call to the visualisation

tool IDP
Draw (IDPDraw 2012); the stop-criterion checks for the atom “GameOver”, and

our choose procedure asks the user which direction to go to. This results in a complete,

playable Pac-Man implementation that can be found at Bogaerts (2014). At the moment,

behaviour of the ghosts is random, but this could easily be replaced by smart AI by

providing a specification for the behaviour of the ghosts.

4.3 Proving Invariants

Definition 4.1

An invariant of an LTC-theory T is a universal single-state sentence ϕ such that T |= ϕ.

The straightforward way to prove invariants is theorem proving (deduction inference). In

IDP3, this can be done using the procedure entails(T,f), which checks whether sentence

f is entailed by theory T . IDP3 automatically translates this call to a theorem prover

supporting TFA (Sutcliffe et al. 2012) or FOF (Sutcliffe 2009). Often, theorem provers

are unable to prove entailed invariants. This can happen for example because the nature

of Time (N) is not exploited enough or because this problem is undecidable in general.

The following theorem shows that for LTC-theories, we can prove invariants by induction.

Theorem 4.2

Let T be an LTC-theory and ϕ a universal single-state sentence. Then T |= ϕ if T0 |=
te(ϕ), and (Tt ∧ te(ϕ)) |= te(ϕ[S(t)/t]), where t is the unique time-variable in ϕ.
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We added a procedure isinvariant(T,f) to the IDP3 system; this procedure checks the

two entailment relations from Theorem 4.2. It uses the same transformations as the

progression inference and reuses the existing deduction inference of IDP3.

4.3.1 Fixed-Domain Invariants

Some sentences are not invariants in general, but only in a certain context (i.e., in a given

domain). For example: in a given Pac-Man grid it might be that Pac-Man can always

reach all remaining pellets. This is however not a general invariant of the Pac-Man game

since it is possible to construct grids in which some pellets are completely surrounded

by walls. In case a finite domain for all other types than Time and an interpretation for

some static symbols is given, it suffices to search for counterexamples of the invariant in

this specific setting.

Theorem 4.3
Let J be a Σs-structure and let ϕ be a universal single-state sentence with time variable t.

Then ϕ is satisfied in all Σ-structures expanding J if T0∧¬te(ϕ) has no models expanding

J , and Tt ∧ te(ϕ) ∧ ¬te(ϕ[S(t)/t]) has no models expanding J .

We added the procedure isinvariant(T,f,J) to IDP3; this procedure checks whether sen-

tence f is an invariant of T in the context of J using Theorem 4.3. It reuses the trans-

formations implemented for progression and the model expansion inference of IDP3.

4.3.2 More General Properties

Proving invariants is often useful. But in many cases one is interested in proving more

general properties. For example in the Pac-Man game, a desired property would be that

pellets never reappear: ∀t, s : ¬Pell(s, t) ⇒ ¬Pell(s,S(t)). This sentence is a universal

bistate sentence. For these formulas, we find a result similar to Theorem 4.2.

Theorem 4.4
Let T be an LTC-theory and ϕ a universal bistate sentence. Then T |= ϕ iff Tt |= te(ϕ).

The above theorem not only yields a method to prove bistate invariants, but also a

method to prove them in the context of a given domain similar to Theorem 4.3. The

procedures isinvariant(T,f) and isinvariant(T,f,J) automatically detect whether sentence

f is a bistate or a single-state invariant and apply the appropriate methods. For proving

more complex properties ϕ, the only method available yet is directly proving that T |= ϕ.

4.4 Planning

For dynamic domains, planning is an important computational task: finding a sequence

of actions reaching a certain goal state. To do this in IDP3, one typically creates a

second theory describing the goal state. As an example, the condition that Pac-Man

wins, ∃t : ∀s : ¬Pell(s, t), is a goal state. A plan can then be searched through model

expansion inference, after merging the LTC-theory with the goal theory. In the standard

setting, this requires all domains (including Time) to be finite, but recent work on Lazy

Grounding removes this restriction (De Cat et al. 2012).

Often, a cost is associated with each plan, e.g., the number of steps needed to win the

game. The minimisation inference in IDP3 searches for a plan with minimal cost.
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5 Related Work

Many action languages are closely related to LTC; the relation between several of these

calculi has been studied intensively by Thielscher (2011). The focus of this paper is not on

the language, but on the forms of inference we can perform. In what follows, we discuss

several domains and systems concerned with inference for (dynamic) languages. We show

that IDP3 distinguishes itself by the variety of inferences it offers. An overview of the

discussed domains and systems can be found in Table 1.

IDP3 DS Pl TP ASP-CP NuSMV LPS ProB
Progression × × − − − × × ×
Planning × − × − × × × ×
Optimal Planning × − × − × − − ×
Proving Invariants × − − × − − − −
Interactive Simulation × × − − − × × ×
LTL/CTL Model Checking − − − − − × − ×

Table 1. The various inferences (rows) and systems/fields (columns) we consider in

this comparison: IDP3, Database Systems (DS), Planners (Pl), Theorem Provers (TP),

ASP/CP-solvers (ASP-CP), NuSMV, LPS and ProB.

Many database systems implement some form of progression (Lin and Reiter 1997).

Often, these systems use (a variant of) transaction logic (Bonner et al. 1993) to express

progression steps. Other dynamic inferences, such as backwards reasoning, planning,

and verification are, to the best of our knowledge, not possible in these systems. A

very interesting database system is LogicBlox (Green et al. 2012); it supports a refined

interactive simulation by means of a huge set of built-in predicates (windows, buttons,

etc.). Users can specify workflows declaratively; during simulations, the UI is derived

from the interpretations of the built-ins.

Proving invariants can be handled by theorem provers such as SPASS (Weidenbach

et al. 2009), Vampire (Riazanov and Voronkov 2002), and many more. Sutcliffe (2013)

desbribed an overview of state-of-the-art theorem provers. Provers are only able to han-

dle one form of inference, namely deduction. We optimised this for the case of proving

invariants of an LTC-theory using induction. Some interactive theorem provers, for ex-

ample ACL2 (Kaufmann et al. 2000) and Coq (The Coq development team 2004), can

generate inductive proofs but they require guidance from the user.

Another community with great interest in dynamic specifications is the planning com-

munity. Many planners support the PDDL language (Ghallab et al. 1998); Amanda et al.

(2012) published an overview of such systems. To the best of our knowledge, these systems

only support one form of inference, namely planning. The planning inference is in fact a

special case of model expansion. This is demonstrated for example by a tool that trans-

lates PDDL specifications into LTC-theories (van Ginkel 2013). Planning problems can

also be encoded in other systems that essentially perform model expansion, such as An-

swer Set Programming (ASP) (Gelfond and Lifschitz 1998) systems, or using constraint

programming (Apt 2003) or (integer) linear programming (Nemhauser and Wolsey 1988).

In ASP, systems that perform other inferences on dynamic systems have been developed

as well. For example oClingo (Gebser et al. 2012) allows stream reasoning, a form of
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interactive simulation and (Haufe et al. 2012) describes methods to prove invariants of

(temporal) ASP encodings of game specifications. However, these various methods have

not been unified in one system to work on the same specification.

The above discussion focuses on general fields tackling (only) one of the problems we

are typically interested in (in a dynamic context). To be fair, it is worth mentioning that

systems in these domains often tackle a more general problem (for example ASP systems

can do much more than only planning). IDP3 tackles these more general problems ef-

ficiently as well. Over the years, IDP and MiniSAT(ID) (the solver underlying IDP3)

have proven to be among the best ASP and CP systems (Calimeri et al. 2011; Alviano

et al. 2013; Amadini et al. 2013).

Many other systems are designed for dynamic domains. For example, NuSMV (Cimatti

et al. 2002) supports progression, interactive simulation, CTL and LTL model checking,

and planning (by giving counterexamples for the LTL statement that the goal cannot be

reached). This system is propositional, hence symbolic, domain-independent proving of

invariants is impossible. CTL and LTL model checking are currently not supported by

IDP3. However, conceptually they form no problem: LTL properties can be translated

into Σ-sentences and deduction inference could be used to prove them. Furthermore,

progression inference could be used to generate a state graph, on which more efficient CTL

and LTL and model checking algorithms can be applied. This is not yet implemented.

The LPS framework from Kowalski and Sadri (2013) has a lot of goals in common with

our work, it aims at providing a unified framework for computing with dynamic systems.

The language is richer than LTC as rules can relate more than two points in time and there

is an explicit representation of external events. The model-theoretic semantics is pretty

close to the FO(ID) semantics. The operational semantics corresponds to simulation:

it works on time-eliminated states and selects a single successor state. Similar to weak

progression, it cannot look in the future, and hence might result in a deadlock. The

current implementation is on top of Prolog and mainly aims at (interactive) simulation.

The ProB system (Leuschel and Butler 2008) is an automated animator and model

checker for the B-Method. It can provide interactive animations (interactive simulation)

and can also be used to do (optimal) planning and automatically verify dynamic speci-

fications. ProB is a very general and powerful system. The only inference studied in this

paper it does not support is domain independent proving of invariants.

6 Conclusion and Future Work

In this paper we studied how the KBS paradigm can be applied in the context of dynamic

domains. We identified many interesting forms of dynamic inference and explained how

all of these inferences can be applied in the context of software development based on

logic. We showed that in principle, each of these inferences can be applied on the same

problem specification, and thus argued the importance of knowledge reuse.

Furthermore, we implemented, with relative ease, all but one of these inference methods

in IDP3. The general approach consisted of translating inference tasks in the context of a

dynamic domain to existing inference methods. Afterwards, we compared IDP3 to other

formalisms and systems and conclude that IDP3 is one of the few systems supporting

this much inferences on dynamic specifications.

Integrating CTL and LTL verification algorithms is a topic for future work.
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Denecker, M. and Vennekens, J. 2014. The well-founded semantics is the principle of
inductive definition, revisited. In KR. AAAI Press. Accepted.

Fitting, M. 1996. First-order logic and automated theorem proving (2nd ed.). Springer-Verlag
New York, Inc., Secaucus, NJ, USA.
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Appendix A Weak Progression

In this section, we show how a weaker variant of progression can be defined using three-

valued logic. We will restrict our attention to function-free vocabularies (i.e.,vocabularies

containing only constant and predicate symbols) here to simplify the presentation. How-

ever, all definitions can be extended to the general case.

A.1 Three-valued logic

We briefly summarise some concepts from three-valued logic. A truth-value is one of the

following: {t, f,u} (true, false and unknown). We define f−1 = t, t−1 = f and u−1 = u.

We define two orders on truth values: the precision order ≤p is given by u≤p t and u≤p f.

And the truth order ≤ is given by f ≤ u ≤ t.

Definition Appendix A.1

A partial set P over D is a function from D to {t, f,u}.

The precision order is extended to partial sets over D: P ≤p P ′ if for all d ∈ D :

P(d)≤p P ′(d).

A partial Σ-structure J consists of 1) a domain, DJ : a set of elements, and 2) a mapping

associating a value to each symbol in Σ. For predicate symbols P of arity n, this is a

partial set P J over (DJ)n. For constants, this is a value in DJ .

We assume that a (partial) structure also interprets variable symbols and denote J [x :

d] for the structure equal to J except interpreting x by d.

If J and J ′ are two partial structures with the same interpretation for constants, J

is less precise than J ′ (J ≤p J
′) if for all symbols σ, σJ ≤p σ

J′
. A partial structure J

is two-valued if interpretations of its symbols map nothing to u. A two-valued partial

structure is exactly a structure.

Definition Appendix A.2

Given a partial structure J , the Kleene valuation (KlJ) is defined inductively based on

the Kleene truth tables (Kleene 1938):

• KlJ(P (t)) = P J(t
J

),

• KlJ(¬ϕ) = (KlJ(ϕ))−1

• KlJ(ϕ ∧ ψ) = min≤ (KlJ(ϕ),KlJ(ψ))

• KlJ(ϕ ∨ ψ) = max≤ (KlJ(ϕ),KlJ(ψ))

• KlJ(∀x : ϕ) = min≤
{
KlJ[x:d](ϕ) | d ∈ DJ

}
• KlJ(∃x : ϕ) = max≤

{
KlJ[x:d](ϕ) | d ∈ DJ

}
The Kleene valuation is extended to definitions and theories. For definitions, intuitively,

the value of ∆ is true if all its defined atoms are two-valued and have the correct (defined)

interpretation, its value is false if some defined atom is interpreted incorrectly, and is

unknown otherwise. The exact definition can be found in (Denecker and Ternovska 2008).

In this text, we will only use the following property.

Proposition Appendix A.3

If all defined atoms in a non-empty definition ∆ are interpreted as u in J , then KlJ(∆) =

u.



Simulating Dynamic Systems Using LTC 17

We use KlJ(T ) to denote the Kleene value of a theory T over a structure J . KlJ(T ) = t

if all of T ’s definitions and sentences have value t in structure J . KlJ(T ) = f if one of

T ’s definitions or sentences has value f in structure J . KlJ(T ) = u otherwise.

We summarise some well-known properties about the Kleene-valuation.

Proposition Appendix A.4

If J is a two-valued partial structure (i.e., a structure), then KlJ(T ) is t if and only if

J |= T and KlJ(T ) is f otherwise.

Proposition Appendix A.5

If J and J ′ are partial structures with J ≤p J
′, then for every theory T ,KlJ(T )≤pKlJ′(T ).

A.2 Weakly T -Compatible Chains and Weak Progression

For this paper, we are only interested in a special kind of partial structures: partial

structures that have complete information on an initial segment of time points and that

have no information about other time points. Using the identification of a structure with

an ∞-chain, a k-chain corresponds to such a partial structure. If (Jj)
k
j=0 is a k-chain, we

associate to J the partial structure J equal to the Jj on static symbols and such that for

dynamic symbols σ

σ(d1 . . . dn−1, j)
J =


t if j ≤ k and (d1 . . . dn−1) ∈ σJj

curr

f if j ≤ k and (d1 . . . dn−1) 6∈ σJj
curr

u otherwise

We identify the k-chain and the corresponding partial structure.

Definition Appendix A.6 (Weakly T -compatible, weak T -successor)

A k-chain J is weakly T -compatible with a Σ-theory T if KlJ(T ) 6= f.

A Σss-structure S′ is a weak T -successor of a k-chain J if J::S is weakly T -compatible.

Proposition Appendix A.7

Every T -compatible k-chain J is also weakly T -compatible.

Proof

If J is T -compatible, then there is a model J ′ of T that is more precise than J . Since

J ′ |= T , KlJ′(T ) = t by Proposition Appendix A.4. Now, Proposition Appendix A.5

guarantees that KlJ(T ) is less precise than t, hence it must be either t or u and we

conclude that J is indeed weakly T -compatible.

The reverse of Proposition Appendix A.7 does not hold as the following (simple) ex-

ample shows.

Example Appendix A.8

Let T be the following first-order theory:

P (I).

∀t : Q(S(t))⇔ P (t).

∀t : ¬Q(t).
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It is clear that T has no models, as the second constraint requires Q to be true at time

1, while the last constraint requires Q to be false at all time points. Hence, there are no

T -compatible chains.

However, the 0-chain J such that J0 interprets P by t and Q by f is weakly T -

compatible. The Kleene-valuation of T in J is u.

The above example shows that it is possible that a weakly T -compatible chain cannot

be extended. Such a situation is often called a deadlock.

Definition Appendix A.9 (Deadlock)

A weakly T -compatible chain J is in a deadlock if there are no weakly T -compatible

extensions of J .

Definition Appendix A.10 (Weak Progression inference)

The weak progression inference is an inference that takes as input a theory T and a

weakly T -compatible k-chain J and returns all weak T -successors of J .

Definition Appendix A.11 (Weak Markov property)

A theory T satisfies the weak Markov property if for every weakly T -compatible k-chain

J , and every weakly T -compatible k′-chain J ′ ending in the same state, i.e., such that

Jk = J ′k′ , the weak T -successors of J are exactly the weak T -successors of J ′.

The weak Markov property essentially says the same as the Markov property, namely

that the successors of a given chain only depend on the last state, i.e., that the system

has no history.
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Appendix B Proofs

Proposition 3.6

Let Σ be a linear-time vocabulary and Σss the corresponding single state vocabulary.

Then the mappings πss
k (·) induce a one-to-one correspondence between Σ-structures J

and sequences (Jk)∞k=0 of Σss-structures sharing the same interpretation of static symbols.

Proof

It is clear that given a structure J , (πss
k (J))∞k=0 is indeed such a sequence.

Now, for the other direction, suppose Jk is a sequence of Σss-structures sharing the

same interpretation of static symbols. Let J denote the Σ-structure with the same inter-

pretation of static symbols and such that, for dynamic predicates σ,

σJ = {(d1, . . . , dn−1, k) | (d1, . . . , dn−1) ∈ σJk
curr}.

Then J is indeed a structure such that πss
k (J) = Jk, as desired.

Theorem 3.18

Let T be an LTC-theory and J a Σ-structure. Then J is a model of T if and only if

πss
0 (J) |= T0 and for every k ∈ N, πbs

k (J) |= Tt.

Proof

By the first condition of Definition 3.13, the FO part of the theory only consists of static,

initial, single-state, and bistate sentences. Now, a structure J satisfies a static sentence if

and only if each of its projections satisfy this sentence. A structure J satisfies an initial

sentence, if and only if its initial time-point satisfies the projection of this sentences, etc.

Hence, for the FO part, the result easily follows.

Furthermore, Definition 3.13 guarantees that all definitions in T are stratified over

time. Now, it follows immediately from Theorem 4.5 in (Vennekens et al. 2006) that we

can split stratified definitions in one definition for each stratification level. Thus, what

we obtain is one definition for each point in time, defining the state at S(t) in terms of

the state in t. This definition corresponds exactly to the definition in Tt, as desired.

Theorem 3.19

Let T be an LTC-theory and J a k-chain. Then, J is weakly T -compatible if and only if

πss
0 (J) |= T0 and for every j < k, πbs

j (J) |= Tt.

Proof

One direction is clear: if J is weakly T -compatible, then πss
0 (J) |= T0 and for every j < k,

πbs
j (J) |= Tt.
For the other direction, suppose πss

0 (J) |= T0 and for every j < k, πbs
j (J) |= Tt. We will

show that J is weakly T -compatible. In order to show this, we will show that KlJ(T ) 6= f,

or said differently, that for every sentence ϕ ∈ T , KlJ(ϕ) 6= f and that for the definition

∆ in T , KlJ(∆) 6= f.

First, let ϕ be any sentence in T . If ϕ is an initial, or a static sentence, then J |= ϕ

because πss
0 (J) |= T0, thus KlJ(ϕ) = t for such sentences. If ϕ is a universal single-

state sentence ∀t : ϕ′(t), we assume that KlJ(ϕ) = f, and will show that this leads to

a contradiction. In this case, using the definition of the Kleene valuation, at least for

one i, KlJ(ϕ[i/t]) = f, or said differently, at least for one i, Ji 6|= te(ϕ). Now, this i

should definitely be greater than k, since Tt contains the constraint te(ϕ). However, since
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Ji is completely unknown on dynamic predicates, we see that Ji≤p J0. Hence, using

Proposition Appendix A.5, we find that also J0 6|= te(ϕ), which is in contradiction with

the assumption that πss
0 (J) |= T0. For bistate sentences, a similar argument holds. Thus

we can conclude that indeed for every sentence ϕ in T , KlJ(ϕ) 6= f.

Now, let ∆ be the definition of T . We should show that KlJ(∆) 6= f. As ∆ is stratified

over time, by Theorem 4.5 in (Vennekens et al. 2006), we can split ∆ in definitions

(∆i)i∈N for each time point. The definitions ∆i with i ≤ k are satisfied in J because

those are the definitions in the theory Tt. For definitions ∆i with i > k, these definitions

define only dynamic atoms with dynamic arguments greater than k. Furthermore, these

dynamic atoms are completely unknown in J . Proposition Appendix A.3 then yields that

KlJ(∆) = u 6= f.

Thus, we also find that KlJ(T ) = u 6= f, i.e., J is indeed weakly T -compatible.

Corollary 3.20

LTC-theories satisfy the Markov property and the weak Markov property.

Proof of Corollary 3.20

We first prove that LTC theories satisfy the Markov property. Let J and J ′ be a k-chain

and a k′-chain respectively with Jk = J ′k′ . Suppose S is a T -successor of J ′. We show

that S is also a T -successor of J . Since J ′::S is T -compatible, there exists a model K ′

of T such that K ′i = J ′i for i ≤ k′ and Kk′+1 = S. Now let K be the structure such that

Kj =

{
Jj for j ≤ k,
K ′k′+j−k otherwise.

We claim that K is a model of T more precise than J::S. The fact that it is more precise

than J ::S follows from the fact that Kk+1 = K ′k′+(k+1)−k = K ′k′+1, which equals S, by

construction of K. In order to prove our claim, we show that for every j, (Kj ,Kj+1),

satisfies Tt. For j ≤ k, this follows from the fact that J is T -compatible; for j > k, from

the fact that K ′ is a model of T . Now using Theorem 3.18, we see that K is a model of

T , which shows that J::S is indeed T -compatible.

We now prove that LTC theories satisfy the weak Markov property. This follows im-

mediately from Theorem 3.19: J ::S is weakly T -compatible if and only if J is weakly

T -compatible and (Jk, S) |= Tt.

Theorem 4.2

Let T be an LTC-theory and ϕ a universal single-state sentence. Then T |= ϕ if T0 |=
te(ϕ), and (Tt ∧ te(ϕ)) |= te(ϕ[S(t)/t]), where t is the unique time-variable in ϕ.

Proof

This theorem is in fact a reformulation of the principle of proofs by induction. The

condition T0 |= te(ϕ) expresses that the invariants holds at time 0, i.e., this is the base

case. The condition (Tt ∧ te(ϕ)) |= te(ϕ[S(t)/t]) expresses that whenever the invariants

holds at t, it also holds at S(t).

Theorem 4.3

Let J be a Σs-structure and let ϕ be a universal single-state sentence with time variable t.

Then ϕ is satisfied in all Σ-structures expanding J if T0∧¬te(ϕ) has no models expanding

J , and Tt ∧ te(ϕ) ∧ ¬te(ϕ[S(t)/t]) has no models expanding J .
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Proof

This theorem is also a reformulation of the principle of proofs by induction, analogue to

Theorem 4.2.

Theorem 4.4

Let T be an LTC-theory and ϕ a universal bistate sentence. Then T |= ϕ if and only if

Tt |= te(ϕ).

Proof

One direction, is clear: if T |= ϕ, it follows immediately that Tt |= te(ϕ).

For the other direction, suppose Tt |= te(ϕ). We should show that T |= ϕ. Therefore, let

J be a model of T . By Theorem 3.18, for every k, Jk |= Tt. Thus, using our assumption,

for every k, also Jk |= te(ϕ). But ϕ is itself an LTC-theory, and ϕi = t and ϕt = te(ϕ).

Thus, using Theorem 3.18 again, we find that J |= ϕ, as desired.


