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A distinguishing feature of answer set programming (ASP; [2]) is that all atoms
belonging to a stable model must be founded. This can be made precise by means
of the constructive logic of here-and-there (HT; [9]), whose equilibrium models
correspond to stable models [10]. Foundedness can be regarded by assigning the
smallest Boolean truth value that can be proven, where false is smaller than
true. In recent work, this idea was extended to constructs over non-Boolean
domains, among others in the context of HT [4], resulting in the so-called lower
bound-founded logic of here-and-there (HTLB). Let us illustrate this logic.

Example 1. Imagine, we have a car and know about its maximal range it can
go and its revolutions per minute (rpm). Then, we model the dependency of
increasing rpm to decreasing range by the following set of HTLB rules

rpm ≥ 2000. range ≥ 100. range ≥ 200← rpm < 4000.

In HTLB, this set of rules has a single solution assigning 2000 to rpm and 200 to
range. The foundedness prunes other Pareto minimal assignments like the one
mapping 4000 to rpm and 100 to range, since there is no proof of rpm ≥ 4000.

An alternative way to formalize semantics of logic programs is by means of
fixpoints of a semantic operator. This line of research was initiated by Fitting
[8] and later further developed into a highly generic (algebraic) theory called
Approximation Fixpoint Theory (AFT) [6].

AFT has proven to be very successful for formalizing semantics of extensions
of logic programs (e.g. with aggregates [11]). Essentially, to apply AFT to
extensions of LP only a three-valued truth evaluation of rule bodies is needed.
Since a fragment of HTLB constitutes an extension of normal programs, the
question raises whether their semantics can also be captured easily by AFT.

When defining stable fixpoints, AFT essentially minimizes in function of
the given lattice. Thus, we may directly insert the order used in HTLB (in case
this is a lattice itself) to guarantee foundedness. Moreover, there are many
correspondences between HT and AFT, e.g., AFT was originally based on two-
tuples of elements, similar to HT interpretations. The well-founded semantics
based on HT makes use of tuples of two HT-interpretations as intermediary
concepts. This is reminiscent of the two-input single step operator of Fitting [8],
that was simplified in AFT; an immediate question here is whether the semantics
can be obtained as well by using a simpler operator for HT.

In an upcoming work we investigate a rule-based fragment of HTLB, similar
to normal programs, using AFT. Therefore, we define a semantic operator
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that immediately allows us to derive a stable and well-founded semantics (and
others). There, we show that the HTLB semantics and the AFT-induced semantics
coincide if all atoms are similar in nature to convex aggregates [1] - otherwise
not necessarily. This result is familiar to the situation for aggregates.

In general, our result provides confidence in the HTLB semantics, by showing
that it corresponds, on an important class of projects to the semantics defined by
AFT, we are guaranteed that well-established non-monotonic reasoning principles
are respected in this semantics. Additionally, the application of AFT suggests
a strong relationship between weighted ADFs (formalized in AFT in [3]) and
HTLB. Our hypothesis is that wADFs relate to HTLB in a similar way as to how
ultimate semantics coincide with standard semantics for logic programming [7],
having higher precision at a higher computational cost. Furthermore, for that
class of programs, we now immediately get access to a rich theory, including
algebraic stratification results [5] and predicate introduction results [12] that can
be translated back into HTLB. This also further motivates our goal to extend
these ideas to general HTLB (or at least, to a broader subclass of it).
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