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Modular Systems

I Modular expressions:

E ::= ⊥ | Mi | E × E | −E | πδE | σQ≡RE .

I An atomic module is interpreted as a class of structures.

I Compound modules also represent classes of structures.



Modular Systems: Conventions

I We are concerned with the model expansion task for modular
systems.

Definition
The model expansion task for modular systems is: given a
(compound) module E and a partial structure I with finite
domain, find a structure I (or: find all structures I ) such that
I ≥p I and I |= E (if one such exists).

I We assume a finite domain is given and fixed.

I Without loss of generality, we assume all vocabularies are
relational

I A domain atom is an expression of the form P(d) (P
predicate, d domain elements)

I A four-valued Σ-structure I is an assignment P(d)I of a
four-valued truth value (true t, false f, unknown u or
inconsistent i) to each domain atom over Σ.
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Propagators and Solvers for Modular Systems: Goals

I Modular systems: integration on the semantic level (how to
combine information from different domains).

I This paper: integration on the solving level (how to combine
solving techniques from different domains).

I We will assume pieces of software (propagators/solvers) are
given for atomic modules, and research how to obtain
software for combined modules.



Propagators

Definition
A propagator is a mapping P from partial structures to partial
structures such that the following hold:

I P is ≤p -monotone: whenever I ≥p I ′, also P(I)≥p P(I ′).

I P is information-preserving: P(I)≥p I for each I.

Definition
Given a module E , a propagator P is an E-propagator if on
two-valued structures, it coincides with E , i.e., whenever I is
two-valued, P(I) = I if I ∈ E , and P(I) is inconsistent otherwise.



Propagators

Lemma
Let P be an E-propagator. If I is a model of E and I ≥p I, then
also I ≥p P(I).



Propagators: Example

Example

Modern ASP solvers typically contain (at least) two propagators.
One, which we call PPUP , performs unit propagation on the
completion of the program P. The other, which we call PPUFS
performs unfounded set propagation; that is: it maps a partial
structure I to I ∪ {¬p | p ∈ lUFS(P, I)}, where lUFS(P, I) is the
largest unfounded set of P with respect to I [1].
It is easy to see that these two propagators are
information-preserving and ≤p -monotone.



Propagators: Checkers

I How can we create propagators for modules? Back-up plan:
checkers.

Definition
If E is a module, the E-checker is the propagator PE

check defined
by:1

PE
check : I 7→


I if I is consistent but not two-valued
I if I is two-valued and I |= E
I otherwise

I In the paper: how to create checkers for compound modules
(straightforward).

1Here, I denotes the most precise (inconsistent) structure.



Solvers

Definition
Let E be a module. An E-solver is a procedure that takes as input
a four-valued structure I and whose output is the set S of all
two-valued structures I with I |= E and I ≥p I.



Propagators and Solvers

Simple way to create a solver SP
p from a propagator P:

I State is a partial structure

I Depth-first search (choices on domain atoms)

I Before each choice: apply the propagator



Propagators for Compound Modules

Proposition

Let P be an E-propagator, P ′ an E ′-propagator and δ a
sub-vocabulary of τ . We define the following operations:

I P × P ′ : I 7→ lub≤p {P(I),P ′(I)}.
I πδP : I 7→

I if I is inconsistent
I if I is two-valued on δ and SP

p (I|δ) = ∅
lub≤p (P(I|δ)|δ, I|τ\δ) otherwise.

I σQ≡RP : I 7→ (P(I))[Q : L,R : L] where
L = lub≤p (QP(I),RP(I)).

It then holds that P × P ′ is an E × E ′-propagator, πδP is a πδE
propagator and σQ≡R is a σQ≡RE-propagator.



Explanations (informal)

I Idea: propagators not only change the partial interpretation

I They also explain why they do it

I Explanation is itself a propagator again

I The explanation is “simpler” (in a certain sense)

I “Simplest” propagators do not need to explain themselves

I Generalizes lazy clause generation (constraint programming)

I Generlizes cutting plane generation (linear programming)
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Explanations (formal)

Definition
An explaining propagator is tuple (P,C ) where P is a propagator
and C maps each partial structure either to unexplained
(notation ♦) or to an explaining propagator C (I) = (P ′,C ′) such
that the following hold:

I (explains propagation) P(I)≤p P
′(I).

I (soundness): module(P ′) ⊆ module(P)



Explanations

Example

I Example from constraint programming

I Constraint of the form T ⇔ C > D.

I Partial interpretation with T = t,D = 3.

I Propagate C > 3.

I Explanation: T ∧ D ≥ 3⇒ C > 3

I Simpler in the sense: each atom contains at most one integer
variable



Explaining Propagators

I For some of the operations, we define how to combine
explanations,

I We give a general search algorithm that uses such explaining
propagators to build solvers



Conflict-Driven Learning

I We provide a generalisation of CDCL for explaining
propagators

I Abstract conditions on “simplest” propagators that ensure a
generalisation of resolution is possible

I Work in progress



Modular Patterns

I For some modular expressions: compound propagators are
suboptimal

I Better propagators can be created.



Modular Patterns

Example

−(−M1 ×−M2)

If P1 is a M1 propagator and P2 is an M2 propagator,

−(−P1 ×−P2)

is simply a checker. A more precise propagator is:

P1 + P2 : I 7→ glb≤p
(P1(I),P2(I)).



Modular Patterns

I More examples in the paper:

I Propagator for selection (with non-atomary selection formula)

I Propagator for negation of projection



Conclusion

We study:

I Solvers and propagators for Modular Systems

I Explanation mechanism

I Conflict-driven learning

I Modular patterns

Why?

I Generalisation of many existing solving techniques

I Can serve to prove correctness of future techniques

I Integration of different paradigms


