Propagators and Solvers for the Algebra of Modular Systems

Bart Bogaerts^{1,2}, David Mitchell³, Eugenia Ternovska³

1 Aalto University, Finland, bart.bogaerts@aalto.fi 2 KU Leuven, Belgium, bart.bogaerts@cs.kuleuven.be 3 Simon Fraser University, Burnaby, Canada, {ter,mitchell}@cs.sfu.ca

October 17th, 2016

Overview

- Modular Systems
- Propagators and Solvers
- Explanations and Learning
- Modular Patterns
- Conclusion

Modular Systems

Modular expressions:

$$E ::= \bot \mid M_i \mid E \times E \mid -E \mid \pi_{\delta} E \mid \sigma_{Q \equiv R} E.$$

- ▶ An atomic module is interpreted as a class of structures.
- Compound modules also represent classes of structures.

Modular Systems: Conventions

We are concerned with the model expansion task for modular systems.

Definition

The *model expansion task* for modular systems is: given a (compound) module E and a partial structure \mathcal{I} with finite domain, find a structure I (or: find all structures I) such that $I \geq_p \mathcal{I}$ and $I \models E$ (if one such exists).

Modular Systems: Conventions

We are concerned with the model expansion task for modular systems.

Definition

The *model expansion task* for modular systems is: given a (compound) module E and a partial structure \mathcal{I} with finite domain, find a structure I (or: find all structures I) such that $I \geq_p \mathcal{I}$ and $I \models E$ (if one such exists).

- We assume a finite domain is given and fixed.
- Without loss of generality, we assume all vocabularies are relational
- A domain atom is an expression of the form $P(\overline{d})$ (P predicate, \overline{d} domain elements)
- A four-valued Σ-structure \mathcal{I} is an assignment $P(\overline{d})^{\mathcal{I}}$ of a four-valued truth value (true \mathbf{t} , false \mathbf{f} , unknown \mathbf{u} or inconsistent \mathbf{i}) to each domain atom over Σ .

Propagators and Solvers for Modular Systems: Goals

- ► Modular systems: integration on the semantic level (how to combine *information* from different domains).
- This paper: integration on the solving level (how to combine solving techniques from different domains).
- We will assume pieces of software (propagators/solvers) are given for atomic modules, and research how to obtain software for combined modules.

Propagators

Definition

A *propagator* is a mapping P from partial structures to partial structures such that the following hold:

- ▶ P is \leq_p -monotone: whenever $\mathcal{I} \geq_p \mathcal{I}'$, also $P(\mathcal{I}) \geq_p P(\mathcal{I}')$.
- ▶ P is information-preserving: $P(\mathcal{I}) \geq_p \mathcal{I}$ for each \mathcal{I} .

Definition

Given a module E, a propagator P is an E-propagator if on two-valued structures, it coincides with E, i.e., whenever $\mathcal I$ is two-valued, $P(\mathcal I)=\mathcal I$ if $\mathcal I\in E$, and $P(\mathcal I)$ is inconsistent otherwise.

Propagators

Lemma

Let P be an E-propagator. If I is a model of E and $I \geq_p \mathcal{I}$, then also $I \geq_p P(\mathcal{I})$.

Propagators: Example

Example

Modern ASP solvers typically contain (at least) two propagators. One, which we call $P_{UP}^{\mathcal{P}}$, performs unit propagation on the completion of the program \mathcal{P} . The other, which we call $P_{UFS}^{\mathcal{P}}$ performs unfounded set propagation; that is: it maps a partial structure \mathcal{I} to $\mathcal{I} \cup \{ \neg p \mid p \in IUFS(\mathcal{P}, \mathcal{I}) \}$, where $IUFS(\mathcal{P}, \mathcal{I})$ is the largest unfounded set of \mathcal{P} with respect to \mathcal{I} [1]. It is easy to see that these two propagators are information-preserving and $\leq_{\mathcal{P}}$ -monotone.

Propagators: Checkers

How can we create propagators for modules? Back-up plan: checkers.

Definition

If E is a module, the E-checker is the propagator P_{check}^{E} defined by:¹

$$P_{\mathit{check}}^{\mathit{E}}: \mathcal{I} \mapsto \left\{ \begin{array}{l} \mathcal{I} \quad \text{if } \mathcal{I} \text{ is consistent but not two-valued} \\ \mathcal{I} \quad \text{if } \mathcal{I} \text{ is two-valued and } \mathcal{I} \models \mathit{E} \\ \mathfrak{I} \quad \text{otherwise} \end{array} \right.$$

► In the paper: how to create checkers for compound modules (straightforward).

¹Here, 3 denotes the most precise (inconsistent) structure.

Solvers

Definition

Let E be a module. An *E-solver* is a procedure that takes as input a four-valued structure \mathcal{I} and whose output is the set \mathcal{S} of all two-valued structures I with $I \models E$ and $I \geq_p \mathcal{I}$.

Propagators and Solvers

Simple way to create a solver S_p^P from a propagator P:

- State is a partial structure
- Depth-first search (choices on domain atoms)
- ▶ Before each choice: apply the propagator

Propagators for Compound Modules

Proposition

Let P be an E-propagator, P' an E'-propagator and δ a sub-vocabulary of τ . We define the following operations:

- $P \times P' : \mathcal{I} \mapsto \mathsf{lub}_{\leq_{p}} \{ P(\mathcal{I}), P'(\mathcal{I}) \}.$
- $\blacktriangleright \pi_{\delta}P: \mathcal{I} \mapsto$

$$\begin{cases} \mathfrak{I} & \text{if } \mathcal{I} \text{ is inconsistent} \\ \mathfrak{I} & \text{if } \mathcal{I} \text{ is two-valued on } \delta \text{ and } S^P_p(\mathcal{I}|_{\delta}) = \emptyset \\ \mathsf{lub}_{\leq_p} \left(P(\mathcal{I}|_{\delta})|_{\delta}, \mathcal{I}|_{\tau \setminus \delta} \right) & \text{otherwise.} \end{cases}$$

• $\sigma_{Q \equiv R} P : \mathcal{I} \mapsto (P(\mathcal{I}))[Q : L, R : L]$ where $L = \text{lub}_{\leq_{R}} (Q^{P(\mathcal{I})}, R^{P(\mathcal{I})}).$

It then holds that $P \times P'$ is an $E \times E'$ -propagator, $\pi_{\delta}P$ is a $\pi_{\delta}E$ propagator and $\sigma_{Q\equiv R}$ is a $\sigma_{Q\equiv R}E$ -propagator.

Explanations (informal)

- ▶ Idea: propagators not only change the partial interpretation
- ▶ They also explain why they do it
- Explanation is itself a propagator again
- ► The explanation is "simpler" (in a certain sense)
- "Simplest" propagators do not need to explain themselves

Explanations (informal)

- ▶ Idea: propagators not only change the partial interpretation
- ▶ They also explain why they do it
- Explanation is itself a propagator again
- ► The explanation is "simpler" (in a certain sense)
- "Simplest" propagators do not need to explain themselves
- Generalizes lazy clause generation (constraint programming)
- Generlizes cutting plane generation (linear programming)

Explanations (formal)

Definition

An explaining propagator is tuple (P,C) where P is a propagator and C maps each partial structure either to <code>UNEXPLAINED</code> (notation \Diamond) or to an explaining propagator $C(\mathcal{I}) = (P',C')$ such that the following hold:

- (explains propagation) $P(\mathcal{I}) \leq_p P'(\mathcal{I})$.
- ▶ (soundness): $module(P') \subseteq module(P)$

Explanations

Example

- Example from constraint programming
- ▶ Constraint of the form $T \Leftrightarrow C > D$.
- ▶ Partial interpretation with $T = \mathbf{t}, D = 3$.
- ► Propagate *C* > 3.
- ▶ Explanation: $T \land D \ge 3 \Rightarrow C > 3$
- Simpler in the sense: each atom contains at most one integer variable

Explaining Propagators

- For some of the operations, we define how to combine explanations,
- We give a general search algorithm that uses such explaining propagators to build solvers

Conflict-Driven Learning

- We provide a generalisation of CDCL for explaining propagators
- ► Abstract conditions on "simplest" propagators that ensure a generalisation of resolution is possible
- Work in progress

Modular Patterns

- For some modular expressions: compound propagators are suboptimal
- Better propagators can be created.

Modular Patterns

Example

$$-(-M_1 \times -M_2)$$

If P_1 is a M_1 propagator and P_2 is an M_2 propagator,

$$-(-P_1 \times -P_2)$$

is simply a checker. A more precise propagator is:

$$P_1 + P_2 : \mathcal{I} \mapsto \mathsf{glb}_{<_p}(P_1(\mathcal{I}), P_2(\mathcal{I})).$$

Modular Patterns

- More examples in the paper:
- ▶ Propagator for selection (with non-atomary selection formula)
- Propagator for negation of projection

Conclusion

We study:

- Solvers and propagators for Modular Systems
- Explanation mechanism
- Conflict-driven learning
- Modular patterns

Why?

- Generalisation of many existing solving techniques
- Can serve to prove correctness of future techniques
- Integration of different paradigms