Propagators and Solvers for the Algebra of
Modular Systems

Bart Bogaerts!2, David Mitchell®, Eugenia Ternovska3

1 Aalto University, Finland, bart.bogaerts@aalto.fi
2 KU Leuven, Belgium, bart.bogaerts@cs.kuleuven.be
3 Simon Fraser University, Burnaby, Canada, {ter,mitchell}@cs.sfu.ca

October 17th, 2016

Overview

v

Modular Systems

v

Propagators and Solvers

v

Explanations and Learning
Modular Patterns

v

Conclusion

v

Modular Systems

» Modular expressions:
E:::J_|M;|EXE|—E|7T5E‘O‘QERE.

» An atomic module is interpreted as a class of structures.

» Compound modules also represent classes of structures.

Modular Systems: Conventions

» We are concerned with the model expansion task for modular
systems.
Definition
The model expansion task for modular systems is: given a
(compound) module E and a partial structure Z with finite
domain, find a structure / (or: find all structures /) such that
I >,7 and | |= E (if one such exists).

Modular Systems: Conventions

» We are concerned with the model expansion task for modular
systems.

Definition

The model expansion task for modular systems is: given a
(compound) module E and a partial structure Z with finite
domain, find a structure / (or: find all structures /) such that
I >,7 and | |= E (if one such exists).

» We assume a finite domain is given and fixed.

» Without loss of generality, we assume all vocabularies are
relational

> A domain atom is an expression of the form P(d) (P
predicate, d domain elements)

» A four-valued ¥-structure Z is an assignment P(d)? of a
four-valued truth value (true t, false f, unknown u or
inconsistent i) to each domain atom over ¥.

Propagators and Solvers for Modular Systems: Goals

» Modular systems: integration on the semantic level (how to
combine information from different domains).

» This paper: integration on the solving level (how to combine
solving techniques from different domains).

» We will assume pieces of software (propagators/solvers) are
given for atomic modules, and research how to obtain
software for combined modules.

Propagators

Definition
A propagator is a mapping P from partial structures to partial
structures such that the following hold:

» Pis <,-monotone: whenever Z>,7’, also P(Z) >, P(T").
» P is information-preserving: P(Z)>,Z for each 7.

Definition

Given a module E, a propagator P is an E-propagator if on
two-valued structures, it coincides with E, i.e., whenever 7 is
two-valued, P(Z) =Z if Z € E, and P(Z) is inconsistent otherwise.

Propagators

Lemma
Let P be an E-propagator. If | is a model of E and | >, T, then
also 1 >, P(Z).

Propagators: Example

Example

Modern ASP solvers typically contain (at least) two propagators.
One, which we call PEP, performs unit propagation on the
completion of the program P. The other, which we call PE,_-S
performs unfounded set propagation; that is: it maps a partial
structure Z to ZU {—p | p € IUFS(P,Z)}, where IUFS(P,Z) is the
largest unfounded set of P with respect to Z [1].

It is easy to see that these two propagators are
information-preserving and <,-monotone.

Propagators: Checkers

» How can we create propagators for modules? Back-up plan:

checkers.
Definition
If E is a module, the E-checker is the propagator Pg,eck defined

by:!

7 if Z is consistent but not two-valued
Pheck : T+ { T ifTistwo-valued and Z |= E
J otherwise

> In the paper: how to create checkers for compound modules
(straightforward).

'Here, J denotes the most precise (inconsistent) structure.

Solvers

Definition
Let E be a module. An E-solver is a procedure that takes as input
a four-valued structure Z and whose output is the set S of all

two-valued structures / with / = E and | >,Z.

Propagators and Solvers

Simple way to create a solver 55 from a propagator P:
» State is a partial structure
» Depth-first search (choices on domain atoms)

» Before each choice: apply the propagator

Propagators for Compound Modules

Proposition
Let P be an E-propagator, P' an E’-propagator and § a
sub-vocabulary of 7. We define the following operations:

» Px P : I+~ lub<, {P(Z), P (7)}.
> 5P 7T —

J if T is inconsistent
J ifZT is two-valued on § and Sf(Z|5) =0
lub<, (P(Zls)ls,Z]r\s) otherwise.

» 0g=RP :Z— (P(2))[Q: L,R : L] where
L=1lub<, (Q"®), RF(D).

It then holds that P x P’ is an E x E'-propagator, msP is a msE
propagator and og=r is a 0Q=rE-propagator.

Explanations (informal)

v

Idea: propagators not only change the partial interpretation

v

They also explain why they do it

v

Explanation is itself a propagator again

v

The explanation is “simpler” (in a certain sense)

v

“Simplest” propagators do not need to explain themselves

Explanations (informal)

> ldea: propagators not only change the partial interpretation
» They also explain why they do it

» Explanation is itself a propagator again

» The explanation is “simpler” (in a certain sense)

» “Simplest” propagators do not need to explain themselves
» Generalizes lazy clause generation (constraint programming)

» Generlizes cutting plane generation (linear programming)

Explanations (formal)

Definition
An explaining propagator is tuple (P, C) where P is a propagator
and C maps each partial structure either to UNEXPLAINED
(notation Q) or to an explaining propagator C(Z) = (P’, C’) such
that the following hold:

» (explains propagation) P(Z) <, P'(Z).

» (soundness): module(P") C module(P)

Explanations

Example

» Example from constraint programming
» Constraint of the form T < C > D.

» Partial interpretation with T =t,D = 3.
» Propagate C > 3.

» Explanation: TAD>3=C>3

» Simpler in the sense: each atom contains at most one integer
variable

Explaining Propagators

» For some of the operations, we define how to combine
explanations,

» We give a general search algorithm that uses such explaining
propagators to build solvers

Conflict-Driven Learning

» We provide a generalisation of CDCL for explaining
propagators

» Abstract conditions on “simplest” propagators that ensure a
generalisation of resolution is possible

» Work in progress

Modular Patterns

> For some modular expressions: compound propagators are
suboptimal

» Better propagators can be created.

Modular Patterns

Example
—(—Ml X —MQ)

If Py is a My propagator and P, is an M, propagator,
—(—P1 x —P>)

is simply a checker. A more precise propagator is:

P1+ Py : I~ glb (Pi(Z), P2(T)).

Modular Patterns

> More examples in the paper:
» Propagator for selection (with non-atomary selection formula)

» Propagator for negation of projection

Conclusion

We study:

» Solvers and propagators for Modular Systems

v

Explanation mechanism

v

Conflict-driven learning
» Modular patterns

Why?
> Generalisation of many existing solving techniques
» Can serve to prove correctness of future techniques
» Integration of different paradigms

