Erratum to "Simulating Dynamic Systems Using Linear Time Calculus Theories"

 Đorđe Marković¹, Marc Denecker¹, Bart Bogaerts²
¹Department of Computer Science, KU Leuven {firstname.lastname}@kuleuven.be
²Department of Computer Science, VUB bart.bogaerts@vub.be

June 20, 2024

Abstract

We point out and correct a small mistake in the paper "Simulating Dynamic Systems Using Linear Time Calculus Theories".

Ten years ago, we published a paper on simulating dynamic systems using linear time calculus theories [1]. This paper show how to extend the IDP language and system [2] to capture temporal domains. The original paper, however, contained a faulty claim in one of the theorems. In this short note, we correct the faulty claim and provide a counterexample to the original claim. The original claim (Theorem 4.4 in the original paper) was the following.

Theorem 0.1 Let \mathcal{T} be an LTC-theory and φ a universal bistate sentence. Then $\mathcal{T} \models \varphi$ iff $\mathcal{T}_t \models te(\varphi)$.

However, only one of the implications holds. The corrected version is as follows.

Theorem 0.2 Let \mathcal{T} be an LTC-theory and φ a universal bistate sentence. If $\mathcal{T}_t \models te(\varphi)$ then $\mathcal{T} \models \varphi$.

The reason is that the LTC theory might contain small hidden invariants. A minimal counterexample is

Example 0.3 Consider the LTC theory \mathcal{T} consisting of a single definition

$$\left\{\begin{array}{l} on(\mathcal{I}).\\ \forall t: off(\mathcal{S}(t)) \leftarrow on(t).\\ \forall t: on(\mathcal{S}(t)) \leftarrow off(t). \end{array}\right\}.$$

The theory describes a simple system constantly switching between an "on" and an "off" state. The formula $\varphi := \forall t : on(t) \lor on(\mathcal{S}(t))$ is a bistate invariant of the system in the sense $\mathcal{T} \models \varphi$. However, it is not the case that $\mathcal{T}_t \models te(\varphi)$ since $te(\varphi)$ does not have information about the first time point.

While this was a mistake in the original paper, only the correct direction of the theorem was used later on. This has no impact on the correctness of the rest of the paper.

References

- Bart Bogaerts, Joachim Jansen, Maurice Bruynooghe, Broes De Cat, Joost Vennekens, and Marc Denecker. Simulating dynamic systems using linear time calculus theories. *Theory Pract. Log. Program.*, 14(4-5):477–492, 2014.
- [2] Broes De Cat, Bart Bogaerts, Maurice Bruynooghe, Gerda Janssens, and Marc Denecker. Predicate logic as a modeling language: the IDP system. In Michael Kifer and Yanhong Annie Liu, editors, *Declarative Logic Programming: Theory, Systems, and Applications*, pages 279–323. ACM / Morgan & Claypool, 2018.