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Postulates for provenance:
Instance-based provenance for first-order logic

Anonymous Author(s)

ABSTRACT

Instance-based provenance is an explanation for a query result in
the form of a subinstance of the database. We investigate different
desiderata one may want to impose on these subinstances. Con-
cretely we consider seven basic postulates for provenance. Six of
them relate subinstances to provenance polynomials, three-valued
semantics, and Halpern-Pearl causality. Determinism of the prove-
nance mechanism is the seventh basic postulate. Moreover, we
consider the postulate of minimality, which can be imposed with
respect to any set of basic postulates. Our main technical contribu-
tion is an analysis and characterisation of which combinations of
postulates are jointly satisfiable. Our main conceptual contribution
is an approach to instance-based provenance through three-valued
instances, which makes it applicable to first-order logic queries
involving negation.
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1 INTRODUCTION

One of the main goals in the field of data provenance [8, 14] is to
provide explanations for the results of database queries: Where do
the resulting data come from?Why are they results? Howwere they
produced? In this paper, we focus on the “why” and “where”; the
“how” ties into much broader fields, such as process and workflow
provenance [3, 26, 28], or self-explaining computation [7].

Two forms of explanations for query results can be distinguished,
which we call proof-based and instance-based data provenance, re-
spectively. Proof-based provenance presents a proof, or derivation,
that a given result indeed satisfies a given query evaluated in a
given database. A popular approach in this category is the use of
provenance polynomials [16], which can be viewed as a compact
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representation of all proofs for unions of conjunctive queries. Prove-
nance polynomials were later extended to full first-order logic by
Grädel and Tannen [15, 32].

Instance-based provenance, on the other hand, explains query
results by presenting a subinstance of the database. In the present
paper, we investigate instance-based provenance from a broad per-
spective. Intuitively, the explaining subinstance should list the rele-
vant information in the database that caused the query result under
consideration. The question then becomes how to formalize this
intuition. More broadly, what desiderata do we reasonably want to
require of instance-based provenance? Also, are there requirements
that are mutually incompatible?

Sufficiency, provenance relations, and 3-valued subinstances. The
most evident requirement for instance-based provenance is that
the subinstance should still satisfy the query it purports to explain.
This requirement dates back to the lineage work [9] and was coined
sufficiency by Glavic [14]. We take sufficiency as the defining prop-
erty of a provenance relation: a total, generic mechanism that relates
query results to sufficient subinstances. Totality means that every
query result should get an explanation (possibly several, so non-
determinism is allowed), and genericity means that the mechanism
should not interpret relation names.

In order to support queries involving negation, we need a proper
notion of subinstance that treats the presence of tuples in relations
on equal footing with the absence of tuples. For example, to explain
that a tuple 𝑡 belongs to the difference 𝑅 − 𝑆 of two relations, the
positive fact 𝑅(𝑡) is equally important as the negative fact ¬𝑆 (𝑡).
We will thus define subinstances as 3-valued instances that are
consistent with the database instance under consideration. In our
example, the 3-valued instance 𝐼 = {𝑅(𝑡),¬𝑆 (𝑡)} would then be a
sufficient subinstance to explain that 𝑡 ∈ 𝑅 − 𝑆 in some database 𝐷 .
Here, 𝐼 is 3-valued because it omits (and interprets as unknown) all
other facts and non-facts from 𝐷 , which are indeed irrelevant. Also,
𝐼 is sufficient, because regardless of how we complete it to a total
instance, 𝑡 ∈ 𝑅 − 𝑆 will be true. We thus adopt a certain-answer
semantics, known as supervaluation semantics, for first-order logic
on 3-valued instances [31].

Provenance polynomials and causality for first-order logic. While
we use certain-answer semantics to define sufficiency, it is appropri-
ate to take amore syntactic approach in the definition of provenance
polynomials over 3-valued instances, as they are a proof-theoretic
notion. We evaluate tokens corresponding to unknown facts as zero,
and show that the polynomial for a formula 𝜑 in 𝐼 is nonzero if and
only if 𝜑 evaluates to true in 𝐼 using Kleene semantics. It follows
that the subinstance obtained from all tokens in the provenance
polynomial constitutes a sufficient explanation. We thus generalize
the connection that was known for UCQs to full first-order logic.

In order to define causes for first-order queries in 3-valued in-
stances, we follow the most recent definition of Halpern-Pearl

1
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causality [17]. We will characterize sufficient subinstances as those
that intersect with all possible causes. It follows that the set of
causal facts is another sufficient explanation, albeit quite different
from the one obtained through the provenance polynomial.

Postulates for provenance. Towards our investigation of desider-
ata for instance-based provenance, we formulate seven basic postu-
lates for provenance relations:

Proof containment (K): Let 𝐼 be a subinstance returned as
explanation for a first-order query 𝜑 on database 𝐷 . Proof
containment requires that the provenance polynomial for 𝜑
on 𝐼 contain a monomial from the provenance polynomial
for 𝜑 on 𝐷 . Intuitively, this means that at least one of the
proofs that 𝜑 holds in 𝐷 still works to prove that 𝜑 holds
in 𝐼 . This postulate is indicated by K simply because it is
equivalent to requiring that 𝜑 is Kleene-true in 𝐼 (a stronger
requirement than sufficiency).

Proof preservation (PP): Postulate PP is stronger than K
and requires that the provenance polynomials for 𝜑 on 𝐼

and on 𝐷 be the same. Intuitively, 𝐼 is fully representative
for 𝐷 in the sense that the different possible proofs for
showing that 𝜑 holds are the same in 𝐼 and in 𝐷 .

Cause containment (CC), cause preservation (CP):

Parallel to the previous two, these postulates deal with
causes instead of provenance polynomials.

Proof relevance (PR), causal relevance (CR):

These postulates upper-bound 𝐼 by requiring that it should
only contain facts from the provenance polynomial of 𝜑 on
𝐷 (postulate PR), or facts from causes of 𝜑 on 𝐷 (postulate
CR).

Determinism (D): The seventh postulate is of a different na-
ture and requires that the provenance relation be deter-
ministic: for each query result a unique explanation can be
given, without violating genericity.

On top of these, we consider postulates of minimality, Min(𝑋 ),
for any subset 𝑋 of {K, PP,CC,CP, PR,CR}. This postulate requires
that the returned explanation be a minimal subinstance satisfying
all properties in 𝑋 .

While each basic postulate by itself is certainly reasonable, dif-
ferent postulates may be incompatible. For example, no provenance
relation can be both K and CR, simply because a tautology (always-
true query) has no causes. Also {PR,CC} is unsatisfiable, since
causes may require facts that do not show up in the provenance
polynomial, as we will show. One more unsatisfiable example is
{Min(∅),D}: there may be several minimal sufficient subinstances,
and we cannot deterministically pick one in a generic manner.

On the other hand, {PR,CR,D} can be satisfied by returning the
intersection of the set of facts from the provenance polynomial with
the set of causal facts. Returning just the facts in the polynomial,
or just the causal facts, satisfies {PP,D} and {CC,D}, respectively.
For another example, {CR,Min(PR)} can be satisfied by returning
a minimally sufficient subset of facts from the tokens of the poly-
nomial. Adding D to the latter set of postulates, however, renders
it unsatisfiable again.

In this paper we will present a complete analysis of satisfiability
for all possible combinations of postulates.

Positive formulas. Since much of provenance research has re-
stricted attention to positive queries, or even just UCQs, it is natural
to ask how the postulates behave in restriction to positive formu-
las. Note that we still allow universal quantifiers, something that
seems to have been neglected in earlier work. The main effect of
restricting to positive formulas, as we will show, is that causal facts
necessarily must appear in the provenance polynomial (something
that was already known for Meliou cases in the UCQ case). Conse-
quently, some previously unsatisfiable combinations of postulates
become satisfiable in this setting. The other combinations remain
unsatisfiable, which is now more difficult to prove since we can
only use positive formulas as counterexamples.

Related work. Besides provenance polynomials, graph-based proof
representations for data provenance have been proposed as well
[23, 24].

A version of Halpern-Pearl causality [18] was first applied to
provenance by Meliou et al. [27]. They consider singleton subin-
stances to explain answers and nonanswers to conjunctive queries.
Our definition conservatively extends the approach by Meliou et
al., in the sense that, for positive formulas, a fact belongs to a cause
if and only if it is a Meliou cause. Also, our result that causal facts
for positive queries must appear in the provenance polynomial was
already known for Meliou causes in the conjunctive-query case.

To our knowledge, our work is the first to consider instance-
based provenance for full first-order logic (FO). For unions of
conjunctive queries (UCQ, positive-existential formulas, or rela-
tional algebra without difference), well-known initial approaches
to instance-based provenance are the notions of lineage [9] and
witness [5]. Indeed, witnesses are basically defined to be sufficient
subinstances [8]. Thus, our definition of provenance result is the
generalization of witness to full FO. For UCQs, lineage has been
shown to be sufficient [8]. Note that Cui and Widom have defined
lineage in the presence of difference, but, then, lineage is no longer
sufficient [10].

Still for UCQs, there are already known connections between
proof-based and instance-based provenance [14]. In that case, the
set of all tuples occurring as tokens in the provenance polynomial
yields the lineage, and minimal monomials in the polynomial cor-
respond similarly to minimal witnesses. Also, the tuples in these
minimal monomials are the Meliou causes mentioned above.

Previous works have investigated postulates for other complex
tasks, such as belief revision [19], clustering [20], or ensuring fair-
ness [21]. Cheney [6] explores desiderata for provenance traces of
program executions. Bourgaux et al. consider postulates for Datalog
semantics over annotated databases [4]. While some of their pos-
tulates are specific to Datalog and/or annotation semantics, other
ideas are relevant to our framework. For example, their “necessary”
facts are counterfactual causes. Also, they define “usable” facts
which are related to the tokens in the provenance polynomial.

2 PRELIMINARIES

We fix an infinite set dom called the domain and also assume an
infinite supply of variables var. A schema Σ is a finite set of relation
names, each with an associated arity. A term is either a variable or
an element from dom (in which case the term is called a constant).

2
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A Σ-formula 𝜑 is given by the following grammar:

𝜑 ::= 𝑡1 = 𝑡2 | 𝑅(𝑡1, . . . , 𝑡𝑖 ) | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | ∃𝑥 𝜑 | ∀𝑥 𝜑
where 𝑥 is a variable from var, 𝑡1, 𝑡2, . . . , 𝑡𝑖 are terms, and 𝑅 is
a relation name from Σ of arity 𝑖 . Atomic formulas of the form
𝑅(𝑡1, . . . , 𝑡𝑖 ) are called relation atoms.

Remark 2.1. Inmany exampleswewill use propositional schemas,
i.e., schemas consisting of proposition symbols, i.e., nullary relation
names. Nullary atoms 𝑃 () will be simply written as 𝑃 for clarity.

A positive fact over Σ is a statement of the form 𝑅(𝑎1, . . . , 𝑎𝑖 )
where 𝑅 is a relation name from Σ, of arity 𝑖 , and 𝑎1, . . . , 𝑎𝑖 are
elements from dom. A negative fact over Σ is a statement of the
form ¬𝑅(𝑎1, . . . , 𝑎𝑖 ) where 𝑅(𝑎1, . . . , 𝑎𝑖 ) is a positive fact. We refer
to both positive and negative facts simply as facts. The negation
of a positive fact 𝑓 is defined to be ¬𝑓 , and the negation of ¬𝑓 is
defined to be 𝑓 . We define flipping a set of facts A, denoted by ¬A,
as {¬𝑓 | 𝑓 ∈ A}. We also define the flipping of a subset of facts
D ⊆ A as A[¬D] = (A − D) ∪ ¬D. A set of facts is called consistent

if it does not contain both a fact and its negation.
A Σ-instance is a finite consistent set of facts over Σ. We call B a

subinstance of instance A simply if B is a subset of A.
Remark 2.2. What we call an instance is what is often called a

“three-valued” instance. Standard, total instances will be formally
defined shortly.

A valuation of a formula 𝜑 is a partial mapping 𝜈 from var to
dom, defined at least on all free variables in 𝜑 . We also agree that
every valuation is extended to dom as the identity: so 𝜈 (𝑎) = 𝑎

for every 𝑎 ∈ dom. We also write 𝜈 (𝜑) to denote the formula that
substitutes the free variables of 𝜑 with the corresponding domain
elements. The empty valuation (used when evaluating formulas
without free variables) will be denoted in this paper by 𝜀.

The active domain of an instance A, denoted adom(A), is the
set of all domain elements that occur in A. The active domain of
a formula 𝜑 , denoted adom(𝜑) is the set of domain elements that
occur as constants in 𝜑 .

A relativized instance is an instance on an explicit domain [1].
Formally, a relativized instance of a schema Σ is a tuple (d,A) where
A is a Σ-instance; adom(A) ⊆ d ⊆ dom; and d is finite. A Σ-formula
𝜑 is said to be interpretable in (d,A) if adom(𝜑) ⊆ d.

A completion of (d,A) is a total relativized instance (d, B), on the
same domain, such that A ⊆ B. Here, totality means that (d, B) is
“two-valued”, i.e., B contains either 𝑓 or ¬𝑓 for every fact 𝑓 over Σ
with constants from d. Total relativized instances will henceforth
be simply referred to as total instances. A formal convenience of
our definition is that every total instance has a unique schema,
determined by the relation names in its facts.

Let (d,A) be a total instance, let 𝜑 be a formula that is inter-
pretable in (d,A), and let 𝜈 be a valuation of 𝜑 in d. The notion that
(d,A) satisfies 𝜑 under 𝜈 , denoted (d,A), 𝜈 ⊨ 𝜑 , is well known and
we omit the formal definition [1].

That is for total instances. For general, three-valued, instances,
however, various semantics are in use [31]. In this paper, we will
work with two of them. Supervaluation is a natural certain-answer
semantics; Kleene semantics is the most classical of three-valued
logics.

Let (d,A) be a relativized instance and let 𝜑 and 𝜈 be as above.

Supervaluation semantics. The supervaluation of 𝜑 in (d,A), de-
noted by ⟦𝜑⟧(d,A),𝜈super , is defined to be t if (d, B), 𝜈 ⊨ 𝜑 for every
completion (d, B) of (d,A); it is f if (d, B), 𝜈 ⊭ 𝜑 for every comple-
tion (d, B) of (d,A); and it is u otherwise. Here, t, f and u stand for
true, false and unknown.

Kleene semantics. The Kleene value, denoted by ⟦𝜑⟧(d,A),𝜈K , is
defined as follows. For relation atoms 𝛼 , we define ⟦𝛼⟧(d,A),𝜈K to be
t if 𝜈 (𝛼) ∈ A; it is f if 𝜈 (¬𝛼) ∈ A; and it is u otherwise.

For equalities, ⟦𝑡1 = 𝑡2⟧(d,A),𝜈K is t if 𝜈 (𝑡1) and 𝜈 (𝑡2) are the same
element; otherwise it is f .

The boolean operators follow the well-known 3-valued truth
tables. Recall that 𝑣1 ∨ 𝑣2 = t if at least one of 𝑣1 and 𝑣2 is t; it is f
if both are f ; and it is u otherwise. Likewise, 𝑣1 ∧ 𝑣2 = f if at least
one of 𝑣1 and 𝑣2 is f ; it is t if both are t; and it is u otherwise. Also,
¬t = f ; ¬f = t; and ¬u = u.

Existential and universal quantifiers ∃𝑥 𝜑1 and ∀𝑥 𝜑1 are treated
as disjunctions

∨
𝑐∈d 𝜑1 [𝑥/𝑐] and conjunctions

∧
𝑐∈d 𝜑1 [𝑥/𝑐], re-

spectively. Here 𝜑1 [𝑥/𝑐] denotes 𝜑1 where 𝑐 is substituted for all
free occurrences of 𝑥 .

The advantage of Kleene semantics is that it is defined in a syn-
tactical, compositional manner. The advantage of supervaluation is
that it is more precise, in the sense that if a formula is Kleene-true
or Kleene-false, then it also has that value under supervaluation.1
On total instances, both semantics coincide with the standard one.

Example 2.3. As a simple example that supervaluation can be
strictly more precise than Kleene, consider the propositional tau-
tology 𝜑 = 𝑃 ∨ ¬𝑃 with 𝑃 nullary. It is always true on total in-
stances, and also always true under supervaluation. Formally, on
the empty relativized instance, we have ⟦𝜑⟧(∅,∅),𝜀super = t. In contrast,
⟦𝜑⟧(∅,∅),𝜀K = u since u ∨ u = u.

Query results and potential query results. Let, as before, be (d,A)
be a relativized instance of some schema Σ, let 𝜑 be a Σ-formula
interpretable on (d,A), and let 𝜈 be a valuation of 𝜑 in d. We refer
to the tuple r = (d,A, 𝜈, 𝜑) as a potential query result; when indeed
⟦𝜑⟧(d,A),𝜈super = t, we call r plainly a query result. When (d,A) is total,
we also call r a total query result.

3 PROVENANCE POLYNOMIALS AND KLEENE

We recall provenance polynomials for first-order logic [15], used
here over the boolean semiring. We adapt them to three-valued
instances, the simple idea being that u collapses to 0.

Let r = (d,A, 𝜈, 𝜑) be a potential query result, with 𝜑 in nega-
tion normal form. The provenance polynomial pol(r) is defined in
Figure 1. It is a polynomial over the boolean semiring, with facts
(positive or negative) from A playing the role of indeterminates.2
The indeterminates are referred to as tokens, and a negative fact
used as token is written in the polynomial as 𝑓 instead of ¬𝑓 .

1A similar property has been exploited in the context of instances with null values
[25].
2The boolean semiring has two elements 0 and 1 with logical or as addition and logical
and as multiplication. Note that, since 1 + 1 = 1, any polynomial 𝑝 is equal to 𝑝 + 𝑝 .
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pol(d,A, 𝜈, 𝛼) =
{
𝜈 (𝛼) if 𝜈 (𝛼) ∈ A

0 otherwise

pol(d,A, 𝜈,¬𝛼) =
{
𝜈 (𝛼) if 𝜈 (¬𝛼) ∈ A

0 otherwise

pol(d,A, 𝜈, 𝑡1 = 𝑡2) =
{
1 if 𝜈 (𝑡1) = 𝜈 (𝑡2)
0 otherwise

pol(d,A, 𝜈, 𝑡1 ≠ 𝑡2) =
{
1 if 𝜈 (𝑡1) ≠ 𝜈 (𝑡2)
0 otherwise

pol(d,A, 𝜈, 𝜑1 ∨ 𝜑2) = pol(d,A, 𝜈, 𝜑1) + pol(d,A, 𝜈, 𝜑2)
pol(d,A, 𝜈, 𝜑1 ∧ 𝜑2) = pol(d,A, 𝜈, 𝜑1) · pol(d,A, 𝜈, 𝜑2)

pol(d,A, 𝜈,∀𝑥 𝜑1) =
∏
𝑎∈d

pol(d,A, 𝜈 [𝑥 ↦→ 𝑎], 𝜑1)

pol(d,A, 𝜈, ∃𝑥 𝜑1) =
∑︁
𝑎∈d

pol(d,A, 𝜈 [𝑥 ↦→ 𝑎], 𝜑1)

Figure 1: Provenance polynomial of a potential query result

for a formula in negation normal form. In the first two lines,

𝛼 stands for a relation atom.

Example 3.1. Let d = {𝑎, 𝑏, 𝑐}, let 𝜑 be ∃𝑥 (𝑃 (𝑥) ∧ ¬𝑄 (𝑥)), and
consider the three instances

𝐴 = {𝑃 (𝑎), 𝑃 (𝑏), 𝑃 (𝑐)}
𝐵 = {𝑃 (𝑎), 𝑃 (𝑏), 𝑃 (𝑐),¬𝑄 (𝑏)}
𝐶 = {𝑃 (𝑎), 𝑃 (𝑏), 𝑃 (𝑐),¬𝑄 (𝑏),¬𝑄 (𝑐)}.

We have:

pol(d, 𝐴, 𝜀, 𝜑) = 0

pol(d, 𝐵, 𝜀, 𝜑) = 𝑃 (𝑏)𝑄 (𝑏)

pol(d,𝐶, 𝜀, 𝜑) = 𝑃 (𝑏)𝑄 (𝑏) + 𝑃 (𝑐)𝑄 (𝑐) . □

The polynomial of a potential query result tells us something
about its Kleene-truth value. Specifically, we have the following
generalization of Proposition 9 from Grädel and Tannen [15] to the
three-valued setting. The proof is straightforward.

Proposition 3.2. Let r = (d,A, 𝜈, 𝜑) be a potential query result.
Then pol(r) ≠ 0 iff ⟦𝜑⟧(d,A),𝜈K = t.

Because supervaluation is more precise than Kleene, we have:

Corollary 3.3. Let r = (d,A, 𝜈, 𝜑) be a potential query result. If

pol(r) ≠ 0 then ⟦𝜑⟧(d,A),𝜈super = t.

The converse direction of the corollary does not hold for the
same reason already illustrated in Example 2.3.

4 CAUSES IN FIRST-ORDER LOGIC

Causality is a large subject in the philosophy of science [29]. An
influential proposal to define causality was made by Halpern and
Pearl [18]. Their definition was updated a few times; here we follow
the most recent definition [17].

Halpern and Pearl consider so-called structural models built on
a set of endogenous variables. (There are also exogenous variables,
which we do not consider here.) A structural model assigns to every
such variable 𝑋 a function 𝐹 and a tuple (𝑋1, . . . , 𝑋𝑚) of other vari-
ables to which 𝐹 can be applied. The assignment to 𝑋 , denoted by
𝑋 = 𝐹 (𝑋1, . . . , 𝑋𝑚), is called a structural equation. The dependency
graph on variables described by all the structural equations should
be acyclic.

An actual cause for the values of certain variables is then defined
to be a setting of values to some other variables, that satisfies a
number of conditions [17] which we do not repeat here; below we
will give a self-contained definition directly applied to our purpose.

Our purpose is, of course, the explanation of query results. We
can straightforwardly view a query result (d,A, 𝜈, 𝜑) as a structural
model. As endogenous variables, we take all possible positive facts
on d, plus the pair (𝜑, 𝜈), which we also view as an endogenous
variable. The structural equations for positive facts 𝑓 involve simple
constant functions and take the forms 𝑓 = t or 𝑓 = f or 𝑓 = u,
depending on whether 𝑓 is in 𝐴, or ¬𝑓 is in 𝐴, or neither is in
𝐴. The structural equation for (𝜑, 𝜈) is given by the function that
determines the value of ⟦𝜑⟧(d,A),𝜈super from the values of the facts.

Under the above view, the notion of actual cause for the value
⟦𝜑⟧(d,A),𝜈super = t boils down to the following. The notation 𝐴[¬𝐶] for
flipping 𝐶 in 𝐴 was defined in Section 2.

Definition 4.1. A supercause of a query result r = (d,A, 𝜈, 𝜑) is a
subinstance C of A such that ⟦𝜑⟧(d,A[¬C ] ),𝜈super ≠ t. An actual cause

(or simply cause) is a minimal supercause.

An earlier version of Halpern-Pearl causality was applied to
conjunctive query results by Meliou et al. [27]. In their setting,
actual causes are always single facts, which is not true here, as we
will see in the following example. Nevertheless, we will see later
that in the case of positive formulas, the Meliou causes are exactly
the facts that appear in causes as defined here.

Example 4.2. Let r = (∅,A, 𝜀, 𝜑}) with A = {𝑃,𝑄, 𝑅} and 𝜑 the
propositional formula (𝑃∧𝑄)∨(𝑅∧𝑆). There are two causes, namely,
{𝑃} and {𝑄}. The query result r′ = (∅, B, 𝜀, 𝜑) with B = A∪ {𝑆} has
four causes, namely, {𝑃, 𝑅}, {𝑃, 𝑆}, {𝑄, 𝑅}, and {𝑄, 𝑆}.

Our terminology of supercause and cause is inspired by similar
terminology in dependency theory, where a key is a minimal su-
perkey [1]. This analogy is not perfect, however. In dependency
theory, every superset of a key is a superkey, but here, not every
superset of a cause is a supercause. It is not even true that if𝐶1 and
𝐶2 are supercauses and𝐶1 ⊆ 𝐶3 ⊆ 𝐶2, then𝐶3 must also be a super-
cause. For example, over proposition symbols 𝑃 , 𝑄 and 𝑅, consider
the formula 𝜑 that states that an odd number of said propositions
is true. The supercauses of 𝜑 being true in 𝐴 = {𝑃,𝑄, 𝑅} are all
subsets of 𝐴 of odd cardinality.

Remark 4.3. It is possible for a query result to have no causes
at all. This can only happen when the formula says something
purely about the domain. For example, let d = {𝑎, 𝑏, 𝑐} and let
𝜑 be ∃𝑥1∃𝑥2∃𝑥3∀𝑦 (𝑦 = 𝑥1 ∨ 𝑦 = 𝑥2 ∨ 𝑦 = 𝑥3). This formula
is supervaluation-true on every instance A with adom(A) ⊆ d.
Hence, for any such A, the query result (d,A, 𝜀, 𝜑) has no causes.
In particular, this holds for formulas that are tautologies.
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5 INSTANCE-BASED PROVENANCE AND

SUFFICIENCY

Instance-based provenance attempts to explain a query result by
providing a subinstance that is “sufficient”. The query result may
be assumed to be total, since that is the standard database setting.
The subinstances serving as provenance, however, are typically
not total. We are going to assess these three-valued instances with
respect to the query they purport to explain. This is the reason why
we needed to set up everything for 3-valued logic in the preceding
sections.

Formally, let r = (d,A, 𝜈, 𝜑) be a total query result, and let B be a
subinstance of A. We take sufficiency as the defining property of
instance-based provenance:

Definition 5.1. Subinstance B is called sufficient for r if (d, B, 𝜈, 𝜑)
is also a query result, i.e., if ⟦𝜑⟧(d,B),𝜈super = t. A provenance result is a
pair (r, B) such that B is sufficient for r.

It is important to note that sufficiency is upward closed: if 𝐵 ⊆ 𝐴

is sufficient and 𝐵 ⊆ 𝐵′ ⊆ 𝐴, then also 𝐵′ is sufficient. This holds
because 3-valued logic semantics (both Kleene and supervaluation)
are monotone in information order (where u < t and u < f and
t and f are incomparable). Intuitively, “giving more information
does not hurt”, although later in the paper we will pay attention to
minimality as a desideratum for provenance.

We next explore how provenance results can be obtained from
provenance polynomials and from causality.

5.1 Provenance from polynomials

In the case of unions of conjunctive queries, it is well known that
the lineage or why-provenance of a query result is provided by
the tokens in the provenance polynomial [16]. We generalize this
connection here to full first-order logic.

Formally, let r = (d,A, 𝜈, 𝜑) be a total query result with prove-
nance polynomial 𝑝 = pol(r). Since r is total, ⟦𝜑⟧(d,𝐴),𝜈

K equals
⟦𝜑⟧(d,𝐴),𝜈

super = t. Hence, by Proposition 3.2, the polynomial 𝑝 is
nonzero. For any monomial𝑚 of 𝑝 , we write tokens(𝑚) to denote
the set of facts (positive or negative) occurring as tokens in 𝑝 . From
the definition of 𝑝 it is readily verified that tokens(𝑚) is a subin-
stance of A. We also write tokens(r) for the union of all tokens(𝑚),
i.e., the set of all facts occurring in 𝑝 .

In a sense, every monomial of the provenance polynomial en-
codes a proof for the query result. In accordance, we establish:

Theorem 5.2. Let r = (d,A, 𝜈, 𝜑) be a total query result, and let
𝑚 be a monomial of pol(r). Then 𝐵 = tokens(𝑚) is sufficient for r.
Actually, 𝐵 is even Kleene-sufficient, meaning that ⟦𝜑⟧(d,𝐵),𝜈K = t.

Proof sketch. For any𝐵 ⊆ 𝐴, the polynomial on𝐵 is a quotient
of the polynomial on 𝐴; formally, pol(d, B, 𝜈, 𝜑) = pol(r)/(A −
B). Hence, if 𝐵 contains tokens(𝑚), the polynomial on 𝐵 still has
𝑚 as a monomial. In particular, the polynomial on 𝐵 is not zero.
Proposition 3.2 then yields ⟦𝜑⟧(d,𝐵),𝜈K = t as desired. □

5.2 Provenance from causality

The following “hitting-set lemma” establishes a close connection
between sufficiency and causality:

Lemma 5.3. Let r be a total query result with instance 𝐴, and let

𝐵 ⊆ 𝐴. Then 𝐵 is sufficient for r if and only if 𝐵 intersects every cause

of r.

This is a good place to note that causes need not be sufficient, as
illustrated by the propositional formula 𝑃 ∧𝑄 on instance {𝑃,𝑄}
with causes {𝑃} and {𝑄}. The above lemma still implies a rather
strong sufficiency result. Similar to tokens(r), which contains all
facts in the provenance polynomial, we define cf (r) (causal facts)
as the union of all causes of r. We establish:

Theorem 5.4. For any total query result r, the intersection cf (r) ∩
tokens(r) is sufficient for r.

Proof. From Theorem 5.2 and the upward-closedness of suffi-
ciency, we know that tokens(r) is sufficient, so by the above Lemma
it intersects with all causes. Then certainly cf (r) ∩ tokens(r) also
intersects with all causes, so the same lemma yields sufficiency. □

The sets cf (r) and tokens(r) are in general incomparable. Intu-
itively this is because the notion of cause is syntax-independent [14]:
it is the same for equivalent formulas. Provenance polynomials are
syntax-dependent.

Example 5.5. Consider the propositional formula 𝜑 = 𝜓 ∨ (𝜓 ∧𝑅)
where𝜓 = 𝑃 ∨ (¬𝑃 ∧𝑄). Note that𝜓 is equivalent to 𝑃 ∨𝑄 . Over
instance 𝐴 = {𝑃,𝑄, 𝑅}, the provenance polynomial for 𝜑 is 𝑃 + 𝑃𝑅,
so tokens(r) = {𝑃, 𝑅}. In contrast, the only cause of 𝜑 being true in
𝐴 is {𝑃,𝑄}.

6 PROPERTIES OF PROVENANCE RESULTS

We introduce a number of natural properties that one may want
to require of provenance results. They will form the basis for the
postulates in the next section.

Definition 6.1 (Properties of provenance results). Let p = (r, 𝐵) be
a provenance result, with r = (d,A, 𝜈, 𝜑).

• p is proof preserving (pp) if pol(d,A, 𝜈, 𝜑) = pol(d, B, 𝜈, 𝜑).
• p is proof containing (pc) if tokens(𝑚) ⊆ B for some mono-

mial𝑚 in pol(d,A, 𝜈, 𝜑).
• p is proof-relevant (pr) if B ⊆ tokens(r).
• p satisfies Kleene (k) if ⟦𝜑⟧(d,B),𝜈K = t.
• p is cause preserving (cp) if r and (d, B, 𝜈, 𝜑) have exactly

the same causes.
• p is cause containing (cc) if B contains a cause for r, on con-

dition that a cause exists; otherwise, cc is trivially satisfied.
• p is cause-relevant (cr) if B ⊆ cf (r).

We call the above basic properties. Let 𝑋 be any set of basic proper-
ties.

• p is minimal for 𝑋 (min(𝑋 )) if 𝐵 is minimal such that p
satisfies all basic properties in 𝑋 .

We use the term ‘proof’ in the properties regarding the prove-
nance polynomial because the monomials in the polynomial encode
the different proofs for a query result. Apart from property Kleene
(see below), there is a clear symmetry in the set of basic properties.
On the one hand we have preservation, containment, and relevance
for proofs; on the other hand, we have the same for causes. Here,
the two relevance properties express upper bounds on the facts that
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appear in the provenance, while the preservation and containment
properties express lower bounds.

One may wonder why proof containment is not defined in an-
other way, requiring that the polynomials on 𝐴 and on 𝐵 have a
monomial in common. Also, one may wonder why property Kleene
is in the list. This is answered in the following:

Proposition 6.2. Provenance result p as above is proof-containing,
iff it satisfies Kleene, iff pol(d,A, 𝜈, 𝜑) and pol(d, B, 𝜈, 𝜑) have a mono-

mial in common.

We will continue with property k and omit the equivalent prop-
erty pc. We can also give equivalent formulations for proof and
cause preservation:

Proposition 6.3. Let provenance result p = (r, 𝐵) be as above.
Then p is pp iff 𝐵 contains tokens(r), and p is cp iff 𝐵 contains cf (r).

The properties we consider here are not all independent. For
example, proof (cause) preservation is stronger than proof (cause)
containment. Also, since proof and cause relevance are upper bound
properties, it is plausible (we prove it formally) that min(pp) and
min(k) imply pr, and similarly that min(cp) and min(cc) imply cr.
Interestingly, also min(∅) implies cr. We list some useful implica-
tions in the following, where we denote logical implication by⇒.
(We do not claim the list is complete.)

Proposition 6.4. (1) pp ⇒ k (2) cp ⇒ cc (3) min(pp) ⇒ pr
(4) min(k) ⇒ pr (5) min(cp) ⇒ cr (6) min(∅) ⇒ cr (7) min(cc) ⇒
cr (8) min(pr) ⇒ min(∅) (9) min(cr) ⇔ min(∅)

7 POSTULATES FOR PROVENANCE

RELATIONS

Provenance relations are our proposed abstraction of mechanisms
for instance-based provenance.

Definition 7.1. A provenance relation is an infinite set Π of prove-
nance results that is total and generic.

By totality we mean that Π has at least one provenance result
for each total query result (over all schemas). There may be sev-
eral provenance results for one total query result, i.e., provenance
relations may be nondeterministic.

By genericity we mean two things. First, Π should not interpret
relation names, i.e., should not provide different provenance for situ-
ations that are identical except for the names of relations. Second, Π
should not make a difference between a disjunction𝜓1 ∨𝜓2 and the
same disjunction𝜓2 ∨𝜓1 in the reverse order, and similarly for con-
junctions. When two formulas differ only in the way disjunctions
and conjunctions are ordered, we call them isomorphic.

Formally, Π is generic if Π is invariant under vocabulary renam-

ing and under formula isomorphism. We omit the formal definition
of these invariances and give an example instead.

Example 7.2. Over proposition symbols 𝑃 and 𝑄 , consider the
formula 𝜑 = 𝑃 ∨𝑄 and the total instance {𝑃,𝑄}. Clearly, (𝐴,𝜑) is a
total query result; for simplicity in this example we omit the domain
and the valuation from the notation for query and provenance
results. Consider subinstances 𝐵1 = {𝑃} and 𝐵2 = {𝑄}. Both are
sufficient for 𝜑 being true on 𝐴. Intuitively, there is no reason
to prefer symbol 𝑃 over symbol 𝑄 . Accordingly, if a provenance

relation Π would relate (𝐴,𝜑) to 𝐵1, we would expect Π to relate
(𝐴,𝜑) also to 𝐵2, and thus to be nondeterministic. We can see this
formally using genericity. Assume (𝐴,𝜑, 𝐵1) ∈ Π. Formally, let 𝜌 be
the vocabulary renaming that swaps 𝑃 and 𝑄 . By invariance under
renaming, (𝐴,𝜑′, 𝐵2) ∈ Π, where 𝜑 ′ = 𝑄 ∨ 𝑃 . Then by invariance
under isomorphism, also (𝐴,𝜑, 𝐵2) ∈ Π.

Remark 7.3. Genericity is similar in spirit, but formally different,
from the notion of genericity for database queries [1]. The latter
notion is about invariance under isomorphism of instances, whereas
our notion is about invariance on a simple syntactic level (schemas
and formulas). □

The properties of provenance results from Definition 6.1 now
give rise to properties on the level of provenance relations, simply by
requiring them pointwise. We refer to these properties as postulates
that one may want to impose on a provenance relation. We used
lowercase letters for the properties; we now use uppercase letters
for the postulates. In addition to postulates obtained from properties,
we also consider the natural postulate of determinism.

The postulates on a provenance relation Π are as follows.

Polynomial preservation (PP): every p ∈ Π is proof
preserving.

Kleene (K): every p ∈ Π satisfies Kleene.
Proof relevance (PR): every p ∈ Π is proof-relevant.
Cause Preservation (CP): every p ∈ Π is cause preserv-

ing.
Cause Containing (CC): every p ∈ Π is cause containing.
Causal Relevance (CR): every p ∈ Π is cause-relevant.
Determinism (D): for every total query result r, there is

exactly one provenance result (r, 𝐵) in Π.

Let 𝑋 be any set of basic properties from Definition 6.1.

Minimal for 𝑋 (Min(𝑋 )): every p ∈ Π is min(𝑋 ).
We can illustrate some postulates using five “canonical” prove-

nance relations. All five are deterministic. Let r be an arbitrary total
query result about instance 𝐴.

• Πid relates r with 𝐴, as a subinstance of itself. Indeed, the
entire instance is the trivial instance-based provenance. It
satisfies the postulates PP, K, CP, CC, and D.

• Πtok relates r with tokens(r). It satisfies Min(pp), K, PR,
and D.

• Πcf relates r with cf (r). It satisfies Min(cp), CC, CR, and
D.

• Π
tokcf

∩ relates r with tokens(r) ∩ cf (r). It satisfies PR, CR,
and D.

• Π
tokcf

∪ relates r with tokens(r) ∪ cf (r). It satisfies K, CC, D,
and Min(pp, cp).

The above claims follow directly from the definitions, results and
remarks in the preceding sections. For example, that Πcf is a well-
defined provenance relation, i.e., that cf (r) is sufficient for any total
query result r, follows from Theorem 5.4 and the upward-closedness
of sufficiency. That Πtok satisfies K follows from Theorem 5.2 and
the monotonicity of Kleene semantics in information order. That
Πtok satisfies Min(pp) is immediate from Proposition 6.3. And so
on.
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8 YOU CAN’T HAVE IT ALL: SATISFIABILITY

In this section we systematically analyze the satisfiability of dif-
ferent combinations of postulates. Here, a set of postulates X is
called satisfiable if there exists a provenance relation that satisfies
all postulates in X.

We start by considering sets of basic postulates; these are the
postulates PP, K, PR, CP, CC and CR corresponding to the cor-
responding basic properties pp, k, pr, cp, cc and cr of individual
provenance results. For any set 𝑋 of the latter properties, we de-
note the corresponding set of basic postulates by Postulates(𝑋 ). We
also write 𝑋 for the closure of 𝑋 under the implications stated in
Proposition 6.4.

It turns out that when a set of basic postulates is satisfiable, it is
also satisfiable by a deterministic provenance relation. Recall the
canonical provenance relations discussed at the end of the previous
section. We show:

Theorem 8.1. Let 𝑋 be a set of basic properties. If 𝑋 contains

{k, cr} or {pr, cc}, then Postulates(𝑋 ) is unsatisfiable. Otherwise,

Postulates(𝑋 ) ∪ {D} is satisfiable by one of the provenance relations

Πid
, Πtok

, Πcf
, or Π

tokcf

∩ .

Proof. To show {K,CR} is not satisfiable consider any prove-
nance relation Π and the query result r1 = (∅, {𝑃}, 𝜀, 𝑃 ∨ ¬𝑃) over
the proposition symbol 𝑃 . Because of totality, there must be a prove-
nance result (r1, B) ∈ Π. Since 𝑃∨¬𝑃 is a tautology, r1 has no causes,
so cf (r1) = ∅. Therefore, for Π to satisfy CR, the only possible value
for B is ∅. However, (r1, ∅) does not satisfy property k, so Π cannot
satisfy K.

To show {PR,CC} is not satisfiable consider r2 = (∅, {𝑃,𝑄}, 𝜀, 𝜑)
where 𝜑 is 𝑃 ∨ (¬𝑃 ∧ 𝑄), for proposition symbols 𝑃 and 𝑄 . Let
(r2, B) ∈ Π. We can verify pol(r2) = 𝑃 . Also, since 𝜑 is equivalent
to 𝑃 ∨ 𝑄 , there is only one cause {𝑃,𝑄}. For r to satisfy pr, we
should have B ⊆ {𝑃}, but then (r2, B) cannot satisfy property cc,
so Π cannot satisfy CC.

The remaining sets of postulates are satisfiable. We consider all
maximal sets of basic postulates that are not supersets of {K,CR}
or {PR,CC}. The set {PP,K,CP,CC} is satisfied by Πid . The set
{PP,K, PR} is satisfied by Πtok . The set {CR,CP} is satisfied by Πcf .
The set {PR,CR} is satisfied by Π

tokcf

∩ . □

Note how the two unsatisfiable combinations show a symmetry
between proofs and causes. Indeed, {K,CR} requires proof contain-
ment (which we have seen is the same as property k) but causal
relevance, while {CC, PR} requires causal containment but proof
relevance.

We next consider minimality. A single minimality postulate
Min(𝑋 ) is satisfiable if and only if Postulates(𝑋 ) is. However, as
already hinted by Example 7.2, determinism is no longer for free,
so we obtain additional unsatisfiable combinations.

Example 8.2. Example 7.2 basically showed that {Min(∅),D} is
unsatisfiable. A different example is given by {Min(pp, cc),D}. To
see that this is unsatisfiable, consider r = (𝜑,𝐴) with the proposi-
tional formula 𝜑 = (𝑃 ∧𝑄 ∧¬𝑅) ∨𝑅 and the instance𝐴 = {𝑃,𝑄, 𝑅}
(we omit domain and valuation in propositional logic). The poly-
nomial is 𝑅, and there are two causes, namely 𝐵1 = {𝑃, 𝑅} and
𝐵2 = {𝑄, 𝑅}. Crucially, 𝐵1 and 𝐵2 are also the only two minimal

sufficient subinstances that are proof preserving and cause contain-
ing. Reasoning as in Example 7.2, swapping symbols 𝑃 and 𝑄 , we
see that any provenance relation Π containing (r, 𝐵1) must also
contain (r, 𝐵2), and vice versa.

We can show the following.

Theorem 8.3. For 𝑋 a set of basic properties, {Min(𝑋 ),D} is sat-
isfiable if and only if 𝑋 equals the closure of one of {pp}, {cp},
{pp, pr}, {cp, cr}, or {pp, cp}.

Note again the symmetry between proof and cause. Interestingly,
the satisfiable combinations in the above result are “categorical”, in
the sense that each of them is satisfied by exactly one provenance
relation. Indeed, {Min(pp),D} and {Min(pp, pr),D} are equiva-
lent and satisfied only by Πtok ; symmetrically, {Min(cp),D} and
{Min(cp, cr),D} are equivalent and satisfied only by Πcf . Finally
{Min(pp, cp),D} is satisfied only by Π

tokcf

∪ .
Next, we investigate combining aminimality postulate with extra

basic postulates. For Postulates(𝑌 ) ∪ {Min(𝑋 )} to be satisfiable, at
the very least Postulates(𝑋 ∪ 𝑌 ) must be satisfiable, but, it turns
out that many combinations become unsatisfiable.

Example 8.4. Consider {Min(k), PP}. The first postulate restricts
the subinstance to come from just one monomial of the provenance
polynomial; the second forces the subinstance to contain all prove-
nance tokens. Intuitively, the two postulates are opposing each
other and indeed their combination is unsatisfiable. (Consider, for
example, a propositional formula 𝑃 ∨𝑄 on the instance {𝑃,𝑄}.)

For another example, consider {Min(pp),CC}, and consider the
propositional formula 𝑃 ∨ (¬𝑃 ∧ 𝑄) on the instance {𝑃,𝑄}. The
polynomial is 𝑃 , but the only cause is {𝑃,𝑄}, again showing that
the two postulate are opposing each other.

We can characterize the combinations that remain satisfiable as
follows.

Theorem 8.5. For sets𝑋 and𝑌 of basic properties, Postulates(𝑌 )∪
{Min(𝑋 )} is satisfiable if and only if

(1) 𝑌 ⊆ 𝑋 and Postulates(𝑋 ) is satisfiable; or
(2) 𝑋 and 𝑌 fall in the following table:

𝑋 𝑌 Reason

∅ pr or cr or {pr, cr} Min(pr)
pr cr Min(pr)
cr pr Min(pr)
k pr Min(k)
pp pr Min(pp)
cc cr Min(cc)
cp cr Min(cp)

We see that when Postulates(𝑌 ) ∪ {Min(𝑋 )} is satisfiable it is
almost always equivalent to Min(𝑋 ), except in the first line in the
table, where it is Min(pr). This postulate can be satisfied by the
provenance relation Πtok

min that relates each total query result r to
the minimal sufficient subinstances that are contained in tokens(r).
To satisfy postulate Min(k) we can return the minimal monomials
in pol(r). Postulate Min(cc) is satisfiable simply because CC is,
but a simple description of a satisfying provenance relation seems
elusive.
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Of course, the discussed provenance relations are nondetermin-
istic. So what happens when we combine a minimality postulate
with both extra basic postulates and determinism? It turns out that
essentially no satisfiable combinations remain, beyond those that
are equivalent to a combination of a type already seen before. The
same holds when we combine two different minimality postulates.
Thus, our analysis of satisfiability is concluded.

Theorem 8.6. Let 𝑋 and 𝑌 be sets of basic properties.

(1) If {Min(𝑋 ),D} ∪Postulates(𝑌 ) is satisfiable, then it is equiv-
alent to {Min(𝑋 ),D}.

(2) If {Min(𝑋 ),Min(𝑌 )} is satisfiable, then it is equivalent to

Min(𝑋 ) or Min(𝑌 ).

9 POSITIVE QUERIES

A lot of past research on provenance has focused on positive re-
lational algebra, or unions of conjunctive queries (UCQs). It is
therefore interesting to look at the postulates in the absence of
negation. We focus slightly more generally on positive first-order
logic formulas, adapting the grammar from Section 2 as follows:

𝜑 ::= 𝑡1 = 𝑡2 | 𝑡1 ≠ 𝑡2 | 𝑅(𝑡1, . . . , 𝑡𝑖 ) | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | ∃𝑥 𝜑 | ∀𝑥 𝜑
Thus, negation is absent, but universal quantification is still allowed.

In this setting, supervaluation semantics and Kleene semantics
coincide. Also, it is no longer necessary to work with three-valued
instances, since positive formulas are well-known to be monotone
on total instances (𝐷 ≤ 𝐷′ if every positive fact in 𝐷 is also a
positive fact in 𝐷′). For relativized three-valued instances we can
now write (d, 𝐴), 𝜈 ⊨ 𝜑 to mean that (d, 𝐷), 𝜈 ⊨ 𝜑 with 𝐷 the
negative completion that adds unknown facts as negative.

Causes for positive formulas never contain negative facts. More-
over, our Definition 4.1 of cause is compatible with the definition
by Meliou et al. [27] of causes for UCQs:

Definition 9.1. Let r = (d,A, 𝜈, 𝜑) be a total query result, with 𝜑

positive, and let 𝑓 be a positive fact in 𝐴. We call 𝑓 a Meliou cause

for r if there exists a subinstance B ⊆ A (called a contingency) such
that (d, 𝐴 − 𝐵), 𝜈 ⊨ 𝜑 but (d, 𝐴 − 𝐵 − {𝑓 }), 𝜈 ⊭ 𝜑 .

Proposition 9.2. The set of Meliou causes for r equals cf (r).

Note that Meliou causes, being singletons, are not necessarily
causes in themselves. For example, the only cause of 𝑃 ∨𝑄 being
true on instance {𝑃,𝑄} is {𝑃,𝑄} itself. This is because we use the
modified Halpern-Pearl definition which is known for its better
treatment of disjunction.

What makes the positive case simpler (compare Example 5.5)
is that causal facts always appear in the provenance polynomial.
The proof exploits that flipping positive facts simplifies to deleting
them.

Proposition 9.3. cf (r) ⊆ tokens(r) for positive query results r.

As a consequence, the closure 𝑋 of a set 𝑋 of basic properties is
now done with respect to three implications: pp ⇒ cp and cr ⇒ pr
by the above result, and cp ⇒ cc as before. The implication pp ⇒ k
becomes moot in the positive case since k is always satisfied. The
effect is that the combination of postulates {K,CR}, which was
unsatisfiable (Theorem 8.1), simplifies to CR which is satisfied by
Πcf . Also {PR,CC} becomes satisfiable and is satisfied by Πtok .

Indeed, by Proposition 9.3, cc and pr are no longer conflicting
properties.

Only one unsatisfiable combination remains in the positive case.
Intuitively, properties pp and cr are still conflicting since the causal
facts can be a strict subset of the provenance tokens.

Theorem 9.4. For a set 𝑋 of basic properties, Postulates(𝑋 ) is
unsatisfiable in the positive case iff 𝑋 contains {pp, cr}.

For minimality and determinism, compared to Theorem 8.3, there
is one new satisfiable case: since cp and pr are no longer conflicting,
{Min(cp, pr),D} is now satisfied by Πcf .

Theorem 9.5. For 𝑋 a set of basic properties, {Min(𝑋 ),D} is sat-
isfiable in the positive case if and only if 𝑋 equals the closure of one

of {pp}, {cp}, {pp, pr}, {cp, cr}, {cp, pr}.
We omit the treatment of combining minimality with extra basic

postulates. We can again show that the only satisfiable cases are
equivalent to a single minimality postulate. Also, Theorem 8.6
remains verbatim true in the positive case.

10 CONCLUSION

We have reported on a systematic investigation of instance-based
provenance, in its relation to provenance polynomials and causality,
in the setting of first-order queries with negation. We encountered
a number of interesting provenance relations: the deterministic
relations Πtok , Πcf , Πtokcf

∪ and Π
tokcf

∩ , and nondeterministic prove-
nance such as the minimal monomials, the minimally sufficient
subinstances, or the minimally sufficient subinstances that contain
a cause. For example, for 𝑃 ∨ (¬𝑃 ∧𝑄) on {𝑃,𝑄}, subinstance {𝑄}
is minimally sufficient but does not appear in the polynomial.

Given the available variety of combinations of postulates, it
would be interesting to conduct an empirical study on real-life
queries, asking domain experts which provenance relations are
the most practical and useful in different application scenarios.
Moreover, such scenarios may suggest new postulates. Complexity
requirements, or the “non-usable fact” postulate from Bourgaux
et al. which requires that query results with the same polynomial
should have the same provenance [4], are examples of other postu-
lates.

Also, a novel application made possible by instance-based prove-
nance is to return data in response to integrity constraints, i.e.,
boolean queries. This avenue is beginning to be explored in the
context of RDF constraint languages [10, 22]

The complexity of Halpern-Pearl causality is already well studied
[2, 12, 17]. Nevertheless, our particular instantiation of it for first-
order logic query results may have different complexities, and it is a
natural topic for further research to investigate data and combined
complexity. (As done for Meliou causes [27].) Also the complexity
of various properties of provenance results considered in this paper,
such as cp or min(cc), merits further investigation.

Another natural direction for further research is to explore
instance-based provenance, and the application of Halpern-Pearl
causality, for classes of queries beyond first-order, e.g., queries in-
volving aggregation or recursion. There exist proposals for Kleene
semantics in such settings [13, 30]. Proof-based provenance results
are already available through the work on provenance circuits for
Datalog [11].

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Postulates for provenance Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. 1995. Foundations of Databases. Addison-
Wesley.

[2] G. Aleksandrowicz, H. Chockler, J.Y. Halpern, and A. Ivrii. 2014. The com-
putational complexity of structure-based causality. In Proceedings 28th AAAI

Conference, C.E. Brodley and P. Stone (Eds.). 974–980.
[3] Y. Amsterdamer, S.B. Davidson, D. Deutch, T. Milo, J. Stoyanovich, and V. Tannen.

2011. Putting lipstick on Pig: Enabling database-style workflow provenance.
Proceedings of the VLDB Endowment 5, 4 (2011), 346–357.

[4] C. Bourgaux, P. Bourhis, L. Peterfreund, and M. Thomazo. 2022. Revisiting
semiring provenance for Datalog. In Proceedings 19th International Conference on

Principles of Knowledge Representation and Reasoning, G. Kern-Isberner, G. Lake-
meyer, and T. Meyer (Eds.). IJACI Organization, 91–101.

[5] P. Buneman, S. Khanna, and W.C. Tan. 2001. Why and where: A characterization
of data provenance. In Database Theory—ICDT 2001 (Lecture Notes in Computer

Science, Vol. 1973), J. Van den Bussche and V. Vianu (Eds.). Springer, 316–330.
[6] J. Cheney. 2010. Causality and the semantics of provenance. In Proceedings 6th

Workshop on Developments in Computational Models (EPTCS, Vol. 26), S.B. Cooper,
E. Kashefi, and P. Panangaden (Eds.). Open Publishing Association, 63–74.

[7] J. Cheney, U.A. Acar, and R. Perera. 2013. Toward a theory of self-explaining
computation. In In Search of Elegance in the Theory and Practice of Computation,
V. Tannen, L. Wong, et al. (Eds.). Lecture Notes in Computer Science, Vol. 8000.
Springer, 193–216.

[8] J. Cheney, L. Chiticariu, and W.-C. Tan. 2009. Provenance in Databases: why,
how and where. Foundations and Trends in Databases 1, 4 (2009), 379–474.

[9] Y. Cui, J. Widom, and J.L. Wiener. 2000. Tracing the lineage of view data in a
warehousing environment. ACM Transactions on Database Systems 25, 2 (2000),
179–227.

[10] T. Delva, A. Dimou, M. Jakubowski, and J. Van den Bussche. 2023. Data prove-
nance for SHACL. In Proceedings 26th International Conference on Extending Data-
base Technology, J. Stoyanovich, J. Teubner, et al. (Eds.). OpenProceedings.org,
285–297.

[11] D. Deutch, T. Milo, S. Roy, and V. Tannen. 2014. Circuits for Datalog provenance.
In Proceedings 17th International Conference on Database Theory, N. Schweikardt
et al. (Eds.). OpenProceedings.org, 201–212.

[12] T. Eiter and T. Lukasiewicz. 2002. Complexity results for structure-based causality.
Artificial Intelligence 142, 1 (2002), 53–89.

[13] M. Fitting. 1985. A Kripke-Kleene semantics for logic programs. Journal of Logic
Programming 2, 4 (1985), 295–312.

[14] B. Glavic. 2021. Data provenance: Origins, Applications, Algorithms, and Models.
Foundations and Trends in Databases 9, 3–4 (2021), 209–441.

[15] E. Grädel and V. Tannen. 2017. Semiring provenance for first-order model
checking. arXiv:1712.01980.

[16] T.J. Green, G. Karvounarakis, and V. Tannen. 2007. Provenance semirings. In
Proceedings 26th ACM Symposium on Principles of Database Systems. ACM, 31–40.

[17] J.Y. Halpern. 2015. A modification of the Halpern-Pearl definition of causality. In
Proceedings 24th International Joint Conference on Artificial Intelligence, Q. Yang
and M.J. Wooldridge (Eds.). AAAI Press, 3022–3033.

[18] J.Y. Halpern and J. Pearl. 2005. Causes and explanations: A structural-model
approach. Part I: Causes. British Journal for the Philosophy of Science 56 (2005),
843–887.

[19] H. Katsuno and A.O. Mendelzon. 1991. Propositional knowledge base revision
and minimal change. Artificial Intelligence 52, 3 (1991).

[20] J.M. Kleinberg. 2003. An impossibility theorem for clustering. In Proceedings

2002 Neural Information Processing Systems Conference, S. Becker, S. Thrun, and
K. Obermayer (Eds.). MIT Press, 446–453.

[21] J.M. Kleinberg, S. Mullainathan, and M. Raghavan. 2017. Inherent trade-offs in
the fair determination of risk scores. In 8th Innovations in Theoretical Computer

Science Conference (Leibniz International Proceedings in Informatics, Vol. 67), Ch.H.
Papadimitriou (Ed.). Schloss Dagstuhl–Leibniz Center for Informatics, 43:1–
43:23.

[22] J.E. Labra Gayo. 2021. Creating knowledge graph subsets using shape expressions.
arXiv:2110.11709.

[23] S. Lee, B. Ludäscher, and B. Glavic. 2019. PUG: A framework and practical
implementation for why and why-not provenance. The VLDB Journal 28 (2019),
47–71.

[24] C. Li, Z. Miao, Q. Zeng, B. Glavic, and S. Roy. 2021. Putting things into context:
Rich explanations for query answers using join graphs. In Proceedings 2021

International Conference on Management of Data. ACM, 1051–1063.
[25] L. Libkin. 2016. SQL’s three-valued logic and certain answers. ACM Transactions

on Database Systems 41, 1 (2016), 1:1–1:28.
[26] B. Ludäscher, M. Weske, et al. 2009. Scientific workflows: Business as usual?. In

Proceedings 7th International Conference on Business Process Management (Lecture

Notes in Computer Science, Vol. 5701), U. Dayal, J. Eder, J. Koehler, and H.A. Reijers
(Eds.). Springer, 31–47.

[27] A. Meliou, W. Gatterbauer, K.M. Moore, and D. Suciu. 2010. The complexity of
causality and responsibility for query answers and non-answers. Proceedings of

the VLDB Endowment 4, 1 (2010), 34–45.
[28] L. Moreau. 2010. The foundations for provenance on the Web. Foundations and

Trends in Web Science 2, 2–3 (2010), 99–241.
[29] J. Pearl. 2009. Causality: Models, Reasoning, and Inference. Cambridge University

Press.
[30] N. Pelov, M. Denecker, and M. Bruynooghe. 2007. Well-founded and stable

semantics of logic programs with aggregates. Theory and Practice of Logic

Programming 7, 3 (2007), 301–353.
[31] G. Priest. 2008. An Introduction to Non-Classical Logic: From If to Is. Cambridge

University Press.
[32] V. Tannen. 2017. Provenance analysis for FOL model checking. ACM SIGLOG

News 4, 1 (2017), 24–36.

A PROOFS

Theorem 5.2

We fill in the details of the proof sketched in the main body of the
paper.

Recall that the quotient of a polynomial 𝑝 by a set 𝑍 of inde-
terminates, denoted by 𝑝/𝑍 , is the polynomial obtained from 𝑝 by
setting the elements in 𝑍 to zero.

Lemma A.1. Let r = (d,A, 𝜈, 𝜑) be a query result. Let B ⊆ A. We

have pol(d, B, 𝜈, 𝜑) = pol(r)/(A − B).

Proof. By induction on the structure of 𝜑 in negation normal
form. When 𝜑 is relation atom 𝛼 , then pol(r) = 𝜈 (𝛼). Clearly, if
𝜈 (𝛼) ∈ B, we have pol(d, B, 𝜈, 𝜑) = 𝜈 (𝛼) = pol(r). Otherwise, if
𝜈 (𝛼) ∉ B, then pol(d, B, 𝜈, 𝜑) = 0 = pol(r)/{𝜈 (𝛼)}. The case when
𝜑 is a negated relation atom ¬𝛼 , is analogous. When 𝜑 is 𝑡1 = 𝑡2
or 𝑡1 ≠ 𝑡2, then pol(r) and pol(d, B, 𝜈, 𝜑) are the same and do not
contain any tokens. When 𝜑 is 𝜑1 ∧ 𝜑2, we have the following:

pol(d, B, 𝜈, 𝜑1 ∧ 𝜑2) = pol(d, B, 𝜈, 𝜑1) · pol(d, B, 𝜈, 𝜑2)
= (pol(d,A, 𝜈, 𝜑1)/B) · (pol(d,A, 𝜈, 𝜑2)/B)
= (pol(d,A, 𝜈, 𝜑1) · pol(d,A, 𝜈, 𝜑2))/B
= pol(r)/B

The case where𝜑 is𝜑1∨𝜑2, is analogous to the previous case, where
the definition of the polynomial uses addition instead of multiplica-
tion. Also the cases when 𝜑 is ∀𝑥 𝜑1, or ∃𝑥 𝜑1, are straightforward
variants of the above calculations. □

Proof of the hitting-set lemma

Proof of Lemma 5.3. Wewill prove the only-if direction by con-
tradiction. Suppose ⟦𝜑⟧(d,B),𝜈super ≠ t. By definition, there exists a total
instance D ⊇ B such that (d,D), 𝜈 ⊭ 𝜑 . Since D = A[¬(A − D)], the
set C := A − D is a supercause for r. Since B ⊆ A ∩ D, it is disjoint
from C. Since C contains a cause, B therefore does not intersect
with all causes, which is a contradiction.

For the if-direction, towards a contradiction, suppose there exists
a cause C for r such that B∩C = ∅, i.e., B ⊆ A−C. Then B ⊆ A[¬C],
whence (d,A[¬C]), 𝜈 ⊨ 𝜑 . This contradicts that C is a cause for
r. □

Proposition 6.2

Let us denote having a monomial in common by ‘mp’ (monomial
preservation). Then mp ⇒ pc is trivial, and pc ⇒ k is given by
Theorem 5.2. We next show k ⇒ mp. From k and Proposition 3.2,
pol(d, B, 𝜈, 𝜑) has a monomial𝑚. By Lemma A.1 this polynomial is
pol(r)/(B − A).
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Proposition 6.3

We prove the two nontrivial implications of the proposition.

Lemma A.2. Let r = (d,A, 𝜈, 𝜑) and r′ = (d, B, 𝜈, 𝜑) be potential
query results with tokens(r) ⊆ B ⊆ A. Then the polynomials for r
and r′ are the same.

Proof. By Lemma A.1, we know pol(r′) = pol(r)/(A − B).
However, because tokens(r) ⊆ B, we know A − B is disjoint from
tokens(r). Therefore pol(r)/(A − B) = pol(r). □

Lemma A.3. Let r = (d,A, 𝜈, 𝜑) and r′ = (d, B, 𝜈, 𝜑) be potential
query results with cf (r) ⊆ B ⊆ A. Then r and r′ have the same

causes.

Proof. For the only if-direction, we observe that B[¬C] ⊆
A[¬C]. So, because ⟦𝜑⟧(d,A[¬C ] ),𝜈super ≠ t, by monotonicity of su-
pervaluation also ⟦𝜑⟧(d,B[¬C ] ),𝜈super ≠ t, whence C is a supercause for
r′. It remains to show that C is a minimal supercause for r′. Let
C
′ ⊊ C. We must show that ⟦𝜑⟧(d,B[¬C

′ ] ),𝜈
super = t. First, we observe

that B − C
′ intersects with all causes for r. Indeed, let 𝐸 be a cause

for r. Since B contains cf (r), we have 𝐸 ⊆ B. Now suppose B − C
′

would be disjoint from 𝐸. This can only happen if 𝐸 ⊆ C
′, whence

𝐸 ⊊ C, which is impossible since C is a cause for r. So, B − C
′ in-

tersects with all causes for r, and by Lemma 5.3, ⟦𝜑⟧(d,B−C
′ ),𝜈

super = t.
Hence, ⟦𝜑⟧(d,B[¬C

′ ] ),𝜈
super = t.

Next, for the if-direction, we are given that ⟦𝜑⟧(d,B[¬C ] ),𝜈super ≠ t.
Hence, by Lemma 5.3 we know B[¬C] is disjoint with at least one
cause C′ for r. By definition, B[¬C] = (B − C) ∪ ¬C, so B − C is
also disjoint from C

′. Furthermore, because cf (r) ⊆ B, also C
′ ⊆ B.

Therefore, C′ must be a subset of C. We will show that C = C
′ and

thus that C is a cause for r, as desired. Towards a contradiction,
suppose C′ ⊊ C. Because C is minimal for r′, ⟦𝜑⟧(d,B[¬C

′ ] ),𝜈
super = t. In

particular A[¬C′] is a completion for B[¬C′], so (d,A[¬C′]), 𝜈 ⊨ 𝜑 .
This is a contradiction, as C′ is a cause for r. □

Proposition 6.4

Lemma A.4. If p is min(pp), then B = tokens(r).

Proof. Assume p is minimal such that it satisfies pp. Then, by
Lemma A.2, tokens(r) ⊆ B. Moreover, (r, tokens(r)) is a provenance
result by Lemma 5.2. Hence, by minimality, B = tokens(r). □

Analogously, we also have such a lemma in terms of causality:

Lemma A.5. If p is min(cp), then B = cf (r).

Proof. Assume p is minimal such that it satisfies cp. Then, by
Lemma A.3, cf (r) ⊆ B. Moreover, (r, cf (r)) is a provenance result
by Theorem 5.4 and upwards closedness of sufficiency. Hence, by
minimality, B = cf (r). □

Proof of Proposition 6.4. We show every implication sepa-
rately:

(1) We have pp ⇒ pc immediately from the definitions, and
pc ⇔ k by Proposition 6.2.

(2) Directly from the definitions of the properties.
(3) Follows immediately from Lemma A.4.

Table 1: Counterexamples

Tag 𝜑 𝐵1 𝐵2 pol (r) Causes for r

(a) 𝑃 ∨𝑄 {𝑃 } {𝑄 } 𝑃 +𝑄 {𝑃,𝑄 }
(b) (𝑃 ∧𝑄 ) ∨ 𝑅 {𝑃, 𝑅} {𝑄,𝑅} 𝑃𝑄 + 𝑅 {𝑃, 𝑅}, {𝑄,𝑅}
(c) (𝑃 ∧𝑄 ∧ ¬𝑅) ∨ 𝑅 {𝑃, 𝑅} {𝑄,𝑅} 𝑅 {𝑃, 𝑅}, {𝑄,𝑅}
(d) (𝑃 ∨ ¬𝑃 ) ∨ (𝑄 ∨ ¬𝑄 ) {𝑃 } {𝑄 } 𝑃 +𝑄 no causes

(4) Assume p minimally satisfies k. By Proposition 6.2, p mini-
mally satisfies pc. Let𝑚 be a monomial from pol(r) such
that tokens(𝑚) ⊆ B. By Theorem 5.2, (r, tokens(𝑚)) is a
provenance result. Hence, by minimality, B = tokens(𝑚),
so p trivially satisfies pr.

(5) Follows immediately from Lemma A.5.
(6) Towards a contradiction, suppose there exists a fact 𝑓 ∈

B such that 𝑓 ∉ cf (r). By Lemma 5.3, we know (r, B −
{𝑓 }) is still a provenance result because B = {𝑓 } intersects
with every cause for r. This is in contradiction with the
minimality of B.

(7) First, assume r has no causes. Then, by Remark 4.3 (r, ∅) is
a provenance result, and voidlessly satisfies cc. Hence, if p
satisfies min(cc), B = ∅ in this case, so p trivially satisfies
cr.
Now assume r has a cause, and assume pminimally satisfies
cc. Then, B contains such a cause C. Towards a contradic-
tion, assume there exists 𝑓 ∈ B − cf (r). By Lemma 5.3,
B − {𝑓 } is still a provenance result, and still contains C
since C ⊆ cf (r). This contradicts the minimality of B.

(8) Immediate from the definition of pr.
(9) The if-direction is immediate from the definition of cr. The

only-if direction follows from (6). □

Theorem 8.3

Clearly, for sets of properties 𝑋 such that Postulates(𝑋 ) is not sat-
isfiable, also Min(𝑋 ),D is not satisfiable. For all other sets 𝑋 , we
need to investigate whether our claim holds. We start by enumer-
ating these satisfiable sets. Figure 2 depicts this process. Table 2
lists the satisfiable sets 𝑋 . When Min(𝑋 ),D is satisfiable, we give
a provenance relation that satisfies it. Otherwise, we give a coun-
terexample.

It turns out that we can use just four counterexamples that
have a similar structure. Generally, we can show Min(𝑋 ),D is not
satisfiable by giving a query result r = (d,A, 𝜈, 𝜑) such that for
every subinstance B ⊆ A such that (r, B) satisfies min(𝑋 ) there
exists a vocabulary renaming 𝜌 such that 𝜌 (A) = A, 𝜌 (𝜑) � 𝜑 , but
𝜌 (B) ≠ B. Then, by genericity, both (r, B), (r, 𝜌 (B)) ∈ Π for any Π

satisfying Min(𝑋 ). Thus, determinism is impossible.
In this proof, we will use particular counterexamples r = (∅, {𝑃,

𝑄, 𝑅, 𝑆}, 𝜀, 𝜑) with 𝜑 a propositional formula. In our counterexam-
ples, there will always be exactly two subinstances B such that (r, B)
satisfies min(𝑋 ); we call them B1 and B2. Let 𝜌 be the vocabulary
renaming that swaps predicate names 𝑃 and 𝑄 . We have, for every
one of our counterexamples, 𝜌 (B1) = B2. The counterexamples
are listed in Table 1. The reader should verify, for every row in
Table 2 that mentions a counterexample, that (r, B1) and (r, B2)
indeed satisfy min(𝑋 ).
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Figure 2: Starting with the empty set of properties, we add systematically add properties in the order: pp, k, cp, cc, pr, cr. Every

time we add a property, we take the closure of the set. We leave out the sets 𝑋 that are in violation of Theorem 8.1, i.e., the sets

Postulates(𝑋 ) that are not satisfiable. We also leave out repeated sets. Every path in the tree from root to a node represents a

satisfiable set (taking the union of the nodes on the path).

Table 2: Satisfiability of Min(𝑋 ),D. The Reason column

(when not satisfiable) refers to Table 1.

𝑋 Min(𝑋 ),D Reason

∅ no (a)
pp, k yes Πtok

k no (a)
cp, cc yes Πcf

cc no (b)
pr no (a)
cr no (a)
pp, k, cp, cc yes Π

tokcf

∪
pp, k, cc no (c)
pp, k, pr yes Πtok

k, cc no (b)
k, cp, cc no (d)
k, pr no (a)
cp, cc, cr yes Πcf

cc, cr no (b)
pr, cr no (a)

Table 3: Satisfiability of Min(𝑋 ), Postulates(𝑌 ).

𝑋 𝑌 sat? Reason

∅ k no (b)
cc no (c)
pr yes (a)
cr yes min(∅) ⇒ min(cr)
pr, cr yes (a)

pp, k cc no (d)
pr yes min(pp) ⇒ pr

k pp no (c)
cc no (c)
pr yes min(k) ⇒ pr

cp, cc k no (b)
cr yes min(cp) ⇒ cr

cc k no (b)
cp no (e)
cr yes min(cc) ⇒ cr

pr k no (b)
cr yes min(pr) ⇒ min(∅) ⇒ cr

cr cc no (c)
pr yes (a)

pp, k, cc cp no (f)
k, cc pp no (e)

cp no (e)
k, cp, cc pp no (g)
k, pr pp no (c)
cc, cr cp no (e)

Theorem 8.5

Table 3 lists all combinations of 𝑋 and 𝑌 of interest. The first col-
umn enumerates most sets 𝑋 such that Postulates(𝑋 ) is satisfiable.

This is the same listing as in the Proof of Theorem 8.3, obtained
using the method from Figure 2, but omitting 𝑌 ⊆ 𝑋 . If there is an
unsatisfiable 𝑋–𝑌 combination not present in the table, then it is
not satisfiable because either:

• Postulates(𝑋,𝑌 ) is not satisfiable; or
• there exists a set of basic postulates 𝑍 such that 𝑍 ⊆ 𝑌 , and

Min(𝑋 ), Postulates(𝑍 ) is not satisfiable. (This 𝑋–𝑍 combi-
nation is then present in the table.)

We now discuss the Reason column from Table 3. We start with
the satisfiable sets of postulates:

(a) Let Π be the provenance relation that associates with any
total query result r the minimal sufficient subinstances
B ⊆ tokens(r). By Theorem 5.4, such subinstances exist,
and by Proposition 6.4 satisfymin(pr, cr). Hence,Π satisfies
Min(pr, cr). Furthermore,min(pr, cr) ⇒ min(∅), as well as
min(pr), min(cr), pr, and cr. Thus, our claims with Reason
(a) in Table 3 follow.

Now, to show that some 𝑋–𝑌 combinations are not satisfiable, we
will provide a query result r that serves as a counterexample in
the following sense: for every subinstance B, if p = (r, B) satisfies
min(𝑋 ), then p does not satisfy 𝑌 . Below, for each reason, we cover
all rows in Table 3 where that reason is invoked.

(b) Let r = (∅, {𝑃}, 𝜀, 𝑃 ∨ ¬𝑃). Only the provenance result p =

(r, ∅) satisfies min(∅). Furthermore tokens(r) = {𝑃}, so p
also satisfies min(pr), and, as there are no causes, p also
satisfies min(cp, cc) and min(cc). However, it is clear that
p does not satisfy k.

(c) Let r = (∅, {𝑃}, 𝜀, 𝑃∨𝑄). There are two minimally sufficient
subinstances: {𝑃} and {𝑄}. In other words (r, {𝑃}) and
(r, {𝑄}) are the only provenance results that satisfymin(𝑋 )
for 𝑋 = ∅. The same holds for the other relevant rows in
Table 3:
– 𝑋 = {k}. Clear.
– 𝑋 = {cr}. The only cause is {𝑃,𝑄}.
– 𝑋 = {k, pr}. Indeed, pol(r) = 𝑃 +𝑄 .

The relevant rows in Table 3 are about𝑌 = {cc} or𝑌 = {pp}.
We can easily verify that neither (r, {𝑃}) nor (r, {𝑄}) satisfy
cc or pp.

(d) Let r = (∅, {𝑃,𝑄}, 𝜀, 𝑃 ∨ (¬𝑃 ∧𝑄)). Recall that pp ⇔ pp, k.
Because pol(r) = 𝑃 , the only provenance result that satis-
fies min(pp) is p = (r, {𝑃}). Since there is only one cause,
namely {𝑃,𝑄}, we see that p does not satisfy cc, as desired.
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(e) Let r = (∅, {𝑃,𝑄, 𝑅}, 𝜀, (𝑃 ∧𝑄) ∨ 𝑅). There are two causes:
{𝑃, 𝑅} and {𝑄, 𝑅}. These two causes are also sufficient subin-
stances. Let p be the provenance result (r, {𝑃, 𝑅}) or (r, {𝑄,
𝑅}). Clearly p satisfies min(cc). As p satisfies cr, it also
satisfies min(cc, cr), and, as p satisfies k, it also satisfies
min(cc, k).
Table 3 requires us to verify that p does neither satisfy
cp nor pp. For cp this is because the subinstance does not
contain cf (A). For pp this is because pol(r) = 𝑃𝑄 + 𝑅.

(f) Let r = (∅, {𝑃,𝑄, 𝑅}, 𝜀, (𝑃 ∧ 𝑄 ∧ ¬𝑅) ∨ 𝑅). There are two
causes: {𝑃, 𝑅} and {𝑄, 𝑅}. These two causes are also suffi-
cient subinstances. Let p be the provenance result (r, {𝑃, 𝑅})
or (r, {𝑄, 𝑅}). Clearly p satisfiesmin(cc), and because pol(r)
is 𝑅, p also satisfies min(pp, k, cc).
As desired by Table 3, it is easy to see p does not satisfy cp
(as the subinstance does not contain all necessary facts).

(g) Let r = (∅, {𝑃,𝑄}, 𝜀, 𝑃 ∨ 𝑄 ∨ ¬𝑄). As there are no causes,
every provenance result (r, B) voidlessly satisfies cp and
cc. There are two provenance results that satisfy min(k):
(r, {𝑃}) and (r, {𝑄}). Because pol(r) = 𝑃 +𝑄 , it is clear that
neither of these provenance results satisfy pp.

Theorem 8.6

Proposition A.6. Let 𝑋,𝑌 be sets of basic properties. The set of

postulates Min(𝑋 ), Postulates(𝑌 ),D is satisfiable when:

(1) 𝑌 ⊆ 𝑋 and Min(𝑋 ),D is satisfiable;

(2) 𝑋 = {pp, k} and 𝑌 = {pr}; or
(3) 𝑋 = {cp, cc} and 𝑌 = {cr};

Otherwise, Min(𝑋 ), Postulates(𝑌 ),D is not satisfiable.

Proof. Condition (1) is clear. To show the rest of the claim,
we list all 𝑋–𝑌 pairs such that at least Min(𝑋 ), Postulates(𝑌 ) is
satisfiable in Table 4. Clearly, all other𝑋–𝑌 pairs (except for the ones
that satisfy condition (1)) are not satisfiable. In Table 4, there are two
possible situations for each row. First, the 𝑋–𝑌 pair is equivalent
to a postulate of the form Min(𝑋 ),D (shown by using implications
from Proposition 6.4), and thus we already knew whether it was
satisfiable or not by Theorem 8.3. The second possibility is that
it is unsatisfiable because of the following counterexample. We
will argue that the case where 𝑋 = {∅} and 𝑌 = {pr, cr} is not
satisfiable. By Totality, any provenance relation Π must have a
provenance result for the total query result r = (∅, {𝑃,𝑄}, 𝜀, 𝜑)
with 𝜑 the propositional formula 𝑃 ∨ 𝑄 . There are clearly two
subinstances B such that p = (r, B) is a provenance result: {𝑃} and
{𝑄}. As pol(r) = 𝑃 +𝑄 , p is pr, and as there is exactly one cause
C = {𝑃,𝑄}, p is also cr. If we consider the vocabulary renaming
𝜌 that swaps 𝑃 and 𝑄 , then by genericity both provenance results
must be in Π. Therefore, Π cannot satisfy D. It easily verified that
this counterexample also holds for the other two cases. □

Proposition A.7. Let 𝑋,𝑌 be sets of basic properties. The postu-

lates of the form Min(𝑋 ),Min(𝑌 ) is only satisfiable when 𝑋 and 𝑌

are subsets of {pr, cr}, or when 𝑋 = 𝑌 .

Proof. We start by observing that if Min(𝑋 ),Min(𝑌 ) is satis-
fiable, then both Min(𝑋 ), Postulates(𝑌 ) and Min(𝑌 ), Postulates(𝑋 )
must be satisfiable.

Table 4: Satisfiability of Min(𝑋 ), Postulates(𝑌 ), D.

𝑋 𝑌 sat? Reason

∅ pr no counterexample
cr no min(∅) ⇒ cr and Min(∅),D

is not satisfiable
pr, cr no counterexample

pp, k pr yes min(pp) ⇒ pr
k pr no min(k) ⇒ pr

and Min(k),D is not satisfiable
cp, cc cr yes min(cp) ⇒ cr
cc cr no min(cc) ⇒ cr and Min(cc),D

is not satisfiable
pr cr no min(pr) ⇒ min(cr) and Min(pr),D

is not satisfiable
cr pr no counterexample

Table 5: The pairs of sets of properties 𝑋,𝑌 such that both

Min(𝑋 ), Postulates(𝑌 ) andMin(𝑌 ), Postulates(𝑋 ) are satisfiable,
and the reason why also Min(𝑋 ),Min(𝑌 ) is satisfiable.

𝑋 𝑌 Reason

∅ pr min(pr) ⇒ min(∅) ; equivalent to min(pr)
cr min(cr) ⇔ min(∅) ; equivalent to min(∅)
pr, cr min(pr, cr) ⇒ min(cr) ⇒ min(∅) ; equivalent to min(pr, cr)

pr cr min(pr) ⇒ min(cr) ; equivalent to min(pr)

The relevant 𝑋–𝑌 pairs can be deduced from Theorem 8.5 and
the accompanying Table 3. The pairs where this holds (ignoring the
symmetric cases) are: 𝑋 = ∅ and 𝑌 ⊆ {pr, cr}; and 𝑋 = {pr} and
𝑌 = {cr}. It turns out that for each of these pairs, Min(𝑋 ),Min(𝑌 )
is satisfiable because they are equivalent to a single satisfiable min-
imality postulate. The reasoning can be found in Table 5, we do not
list the symmetric cases (where the 𝑋 and 𝑌 values are swapped)
or the cases where 𝑋 = 𝑌 as these are trivial. The satisfiable cases
are satisfied by provenance relations described in the Proof of The-
orem 8.5, Reason (a). □

Proposition 9.2

For the if-direction, suppose 𝑓 is a Meliou cause, with contingency
𝐵. W.l.o.g. we may assume that B is a minimal contingency. Clearly,
B ∪ {𝑓 } is a supercause. We still need to show that B ∪ {𝑓 } is
a minimal supercause. Take any C ⊊ B ∪ {𝑓 }. We consider two
possibilities. First, if 𝑓 ∈ C, then we know A − C ⊨d 𝜑 by the
minimality of B. Second, if 𝑓 ∉ C, thenC ⊆ B and becauseA−B ⊨d 𝜑 ,
by monotonicity of positive formulas, A − C ⊨d 𝜑 .

For the only-if direction, suppose C is a cause for r and 𝑓 ∈ C.
We show that 𝑓 is a Meliou cause with contingency B := C − {𝑓 }.
Clearly, A − B ⊨d 𝜑 as C is a minimal supercause. Furthermore,
A − B − {𝑓 } ⊭d 𝜑 as A − B − {𝑓 } = A − C and C is a supercause.

Proposition 9.3

Let C be a cause for r. We show C ⊆ tokens(r) by verifying that
C ∩ tokens(r) is a supercause. Let r = (d,A, 𝜈, 𝜑), let r′ = (d,A −
(C ∩ tokens(r)), 𝜈, 𝜑), and let r′′ = (d,A − C, 𝜈, 𝜑). Then

pol(r′) = pol(r)/(C ∩ tokens(r))
= pol(r)/C
= pol(r)/𝐴 − (𝐴 − C)
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Table 6: Satisfiability of the postulates Min(𝑋 ),D for the

positive-existential setting. The Reason column (when not

satisfiable) refers to Table 1.

𝑋 Min(𝑋 ),D Reason

∅ no (a)
pp, cp, cc yes Πtok

cp, cc yes Πcf

cc no (b)
cr, pr no (a)
pr no (a)
pp, cp, cc, pr yes Πtok

cp, cc, cr, pr yes Πcf

cp, cc, pr yes Πcf

cc, cr, pr no (b)
cc, pr no (b)

∅

pp, cp, cc

pr

cp, cc

cr, pr pr

cc

cr, pr pr

cr, pr pr

Figure 3: Similar to Figure 2 but now including the impli-

cations resulting from Proposition 9.3 and considering the

unsatisfiability from Proposition 9.4

= pol(r′′)
= 0,

where the first equality holds by Lemma A.1, the second since
dividing by non-tokens has no effect, the third since C ⊆ 𝐴, the
fourth again by Lemma A.1, and the last since C is a cause. Thus
pol(r′) = 0, so by Proposition 3.2, (d,A − (C ∩ tokens(r))), 𝜈 ⊭ 𝜑 ,
i.e., C ∩ tokens(r) is a supercause as desired.

Theorem 9.4

To show {PP,CR} is not satisfiable consider any provenance relation
Π and the query result r = (∅, {𝑃,𝑄}, 𝜀, 𝜑) with 𝜑 the formula
𝑃∨(𝑃∧𝑄). Because of Totality, we know theremust be a provenance
result (r1, B) ∈ Π. There is one cause C := {𝑃} for r, so cf (r) = {𝑃}.
However, the polynomial for r is pol(r) = 𝑃 + 𝑃𝑄 . For Π to satisfy
PP, 𝐵 must contain 𝑄 , but for Π to satisfy CR, 𝐵 cannot contain 𝑄 .

The remaining sets of postulates are satisfiable. We consider the
two maximal sets of postulates that are not supersets of {PP,CR}.
Excluding CR, we get the set {PP,CP,CC, PR}, which is satisfied
by Πtok . Excluding PP, we get the set {CP,CC,CR, PR}, which is
satisfied by Πcf .

Theorem 9.5

Clearly, for sets of properties 𝑋 such that Postulates(𝑋 ) is not sat-
isfiable, also Min(𝑋 ),D is not satisfiable. For all other sets 𝑋 , we
need to investigate whether our claim holds. Similar to the proof
of Theorem 8.3, we start by enumerating these satisfiable sets. Fig-
ure 3 depicts this process. Table 6 lists the satisfiable sets 𝑋 . When
Min(𝑋 ),D is satisfiable, we give a provenance relation that satisfies
it. Otherwise, we give a counterexample.

The counterexamples are the same as in the proof of Theorem 8.3.
Here, we only refer to counterexamples that do not use negation.
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