
A Category-Theoretic Perspective on
Higher-Order Approximation Fixpoint Theory

Samuele Pollaci1,2[0000−0002−2914−787X], Babis Kostopoulos3[0009−0000−8734−4540],
Marc Denecker2[0000−0002−0422−7339], and Bart Bogaerts1,2[0000−0003−3460−4251]

1 Vrije Universiteit Brussel, Brussels, Belgium
2 Katholieke Universiteit Leuven, Leuven, Belgium
3 Harokopio University of Athens, Athens, Greece

{samuele.pollaci,bart.bogaerts}@vub.be, kostbabis@hua.gr,
marc.denecker@kuleuven.be

Abstract. Approximation Fixpoint Theory (AFT) is an algebraic frame-
work designed to study the semantics of non-monotonic logics. Despite its
success, AFT is not readily applicable to higher-order definitions. To solve
such an issue, we devise a formal mathematical framework employing
concepts drawn from Category Theory. In particular, we make use of the
notion of Cartesian closed category to inductively construct higher-order
approximation spaces while preserving the structures necessary for the
correct application of AFT. We show that this novel theoretical approach
extends standard AFT to a higher-order environment, and generalizes
the AFT setting of [7].

Keywords: Approximation fixpoint theory · Higher-order definitions ·
Category theory.

1 Introduction

Approximation Fixpoint Theory (AFT) [12] is an algebraic framework designed
to study the semantics of non-monotonic logics. It was originally designed for
characterizing the semantics of logic programming, autoepistemic logic, and
default logic, and to resolve longstanding problems on the relation between these
formalisms [13]. Later, it has also been applied to a variety of other domains,
including abstract argumentation [2, 21], active integrity constraints [4], stream
reasoning [1], and integrity constraints for the semantic web [5].

The core ideas of AFT are relatively simple: we are interested in fixpoints
of an operator O on a given lattice ⟨L,≤⟩. For monotonic operators, Tarski’s
theory guarantees the existence of a least fixpoint, which is of interest in many
applications. For non-monotonic operators, the existence of fixpoints is not
guaranteed; and even if fixpoints exist, it is not clear which would be “good”
fixpoints. AFT generalizes Tarki’s theory for monotonic operators by making
use of a so-called approximating operator ; this is an operator A : L2 → L2, that
operates on L2, and that is monotonic with respect to the precision order ≤p

(defined by (x, y) ≤p (u, v) if x ≤ u and v ≤ y)). The intuition is that elements

2 S. Pollaci et al.

of L2 approximate elements of L: (x, y) ∈ L2 approximates z if x ≤ z ≤ y, i.e.,
when x ≤ y, the tuple (x, y) can be thought of as an interval in L. Given such
an approximator, AFT defines several types of fixpoints (supported fixpoints, a
Kripke-Kleene fixpoint, stable fixpoints, a well-founded fixpoint) of interest.

In several fields of non-monotonic reasoning, it is relatively straightforward
to define an approximating operator and it turns out that the different types of
fixpoints then correspond to existing semantics. In this way, AFT clarifies on the
one hand how different semantics in a single domain relate, and on the other
hand what the relation is between different (non-monotonic) logics.

Let us illustrate the application of AFT to standard, first-order, logic program-
ming. In this setting, the lattice L is the lattice of interpretations with the truth
order I ≤ J if P I ⊆ P J for each predicate P . The operator is the immediate
consequence operator TP , as defined in the seminal work of van Emden and
Kowalski [22]. Given a logic program (i.e., a set of rules), this operator has the
property that q holds in TP (I) if and only if there is a rule q ← φ in P such that
φ is true in I. In this setting, pairs (I, J) are seen as four-valued interpretations:
I represents what is true and J what is possible. A fact is then true (resp. false) if
it is true (resp. false) in both I and J , unknown if it is true in J but not true in I
and inconsistent if it is true in I but not in J . The approximating operator ΨP is,
in this case, nothing else than Fitting’s (2002) four-valued immediate consequence
operator, which uses Kleene’s truth tables to evaluate the body of each rule in a
four-valued interpretation. For this approximator, the fixpoints defined by AFT
correspond to the major semantics of logic programming: supported fixpoints are
models of Clark’s completion [8], stable fixpoints correspond to (partial) stable
models [18], the Kripke-Kleene fixpoint to the Kripke-Kleene model [16] and the
well-founded fixpoint is the well-founded model [23].

This paper is motivated by a need to apply AFT to higher-order logic
programming that arose in several contexts [7, 9, 10]. An important issue that
arises in this context is that using pairs of interpretations no longer allows for an
obvious way to evaluate formulas in an approximation. Let us illustrate this with
an example. Consider a logic program in which a first-order predicate p and a
second-order predicate Q are defined. Now assume that in the body of a rule,
the atom Q(p) occurs. A tuple (I, J) of interpretations in this case tells us for
any given set S if Q(S) is true, false, unknown, or inconsistent. However, the
interpretation of p via (I, J) is not a set, but a partially defined set, making it
hard to evaluate expressions of the form Q(p). In other words, an approximation
of the interpretation of Q has to take as argument not only sets, i.e., exact
elements, but also partially defined sets, i.e., approximate elements, like the
interpretation of p in this example. Thus, a richer space of approximations where
approximate objects can be applied to other approximate objects is needed.

The above example and considerations suggest that spaces of approximations
of higher-order objects should be defined inductively from lower-order ones,
following the type hierarchy: we start by assigning a base approximation space
to each type at the bottom of the hierarchy, and then, for each composite type
τ1 → τ2, we define its approximation space as a certain class of functions from

A Category-Theoretic Perspective on Higher-Order AFT 3

the approximation space for τ1 to the approximation space for τ2, and so on. This
method was heavily inspired by the approach of Charalambidis et al. [7] to obtain
a generalization of the well-founded semantics for higher-order logic programs
with negation. Notice that there are two major points in the construction above
which are yet not defined: the base approximation spaces, and the class of
functions we consider. The main question of this paper is how to define them in
a generic way that works in all applications of AFT.

We want to apply the same AFT techniques on approximation spaces at any
hierarchy level, i.e., on base approximation spaces and the aforementioned sets
of functions, which should thus have the same algebraic structure. In Category
Theory (CT), the notion of Cartesian closed category captures this behavior. A
category consists of a collection of objects and a collection of morphisms, i.e.,
relations between objects. For example, we can define the category of square
bilattices as the one having square bilattices as objects, and monotone functions
as morphisms. The objects of a Cartesian closed category C satisfy a property
that can be intuitively understood as follows: if A and B are two objects of C,
then the set of morphisms from A to B is also an object of C. Hence, if the
base approximation spaces are objects of a Cartesian closed category, then the
category contains the full hierarchy of spaces we are aiming for. We call such a
Cartesian closed category an approximation category and denote it by Approx.

In the category-theoretic framework, the questions on the nature of the base
approximation spaces and the class of functions reduce to defining the objects
and the morphisms of Approx. Clearly, this depends on the application we want
to use AFT for. Different applications imply different higher-order languages,
with different types, and possibly different versions of AFT (standard AFT [12],
consistent AFT [14], or other extensions [7]). To formalize this, we develop the
notion of an approximation system. Once a language and the semantics of its
types are fixed, we can choose an approximation system that consists, among
other things, of a Cartesian closed category Approx, equipped with a function
App associating the semantics of a type to an approximation space in Approx.
The approximation system also determines which elements of the approximation
spaces are exact, i.e., which elements approximate exactly one element of the
semantics of a type, and, for every type, it provides a projection from the exact
elements to the objects they represent in the corresponding semantics. This is
non-trivial for higher-order approximation spaces, and it is indeed fundamental
to obtain a sensible account for AFT for higher-order definitions.

In short, the main contributions of our paper are as follows:

1. We generalize the work of Charalambidis et al. [7] to a category-theoretic
setting. In doing so, we shed light on the general principles underlying their
constructions for higher-order logic programimng and make their construction
applicable to arbitrary current and future non-monotonic reasoning formalism
captured by AFT.

2. We extend the work of Charalambidis et al. [7] by studying exactness and in
this way also allow using the theory to define exact stable models instead of
focusing purely on the well-founded model.

4 S. Pollaci et al.

In recent work, a stable semantics for higher-order logic programs was defined
building on consistent AFT [3]. In that work, the approach taken to evaluate an
expression of the form Q(p), instead of applying an approximate interpretation
for Q to an approximate interpretation for p, is to apply the approximate
interpretation for Q to all exact interpretations for p that are still possible, and
returning the least precise approximation of all the results. What this means
in effect is that some sort of ultimate construction [15] is used; this has also
been done in other extensions of logic programming [9, 19]. Bogaerts et al. [3]
also discovered a flaw in the work of Charalambidis et al. [7], namely that even
for simple non-recursive programs, the well-founded model might not behave
as expected (leaving all atoms unknown). It is important to mention, though,
that this aberration is caused solely by the treatment of (existentially) quantified
variables and not by the algebraic theory (which is the focus of the current paper).
Finally, it is interesting to mention that another paper [6] joined CT and AFT,
albeit with different perspective and aim: while we treat the whole set of possible
approximation spaces as a category to apply any account of AFT to higher-order
definitions, Charalambidis and Rondogiannis [6] view the approximation spaces
themselves as categories to provide a novel version of standard AFT.

The rest of this paper is structured as follows. In Section 2, we provide an
overview of the fundamental concepts from AFT and CT that we use. Section
3 presents the novel definitions of approximation system, with the category
Approx, and of exact elements of an approximation space. In Section 4, we show
that the approximation spaces from [7] form a Cartesian closed category: the
objects are the chain-complete posets of the form L⊗ U , where, intuitively, L
represents a set of lower bounds and U a set of upper bounds. Our approach is
not just able to reconstruct in a simple way (using the general principles outlined
above) the semantic elements defined ad-hoc by Charalambidis et al. [7], but it
also resolves a question that was left open in that work. Namely, what we get
now is a clear definition for exact higher-order elements, and, in particular, it
allows to determine when a model of a program is two-valued (see Example 2).
We conclude in Section 5.

Because of space constraints, all the proofs, some additional definitions and
propositions are provided in the extended version of this paper [20].

2 Preliminaries

In this section, we provide a concise introduction to the formal concepts we utilize
throughout the paper. First, we outline the core ideas at the foundation of AFT.
Then, we present the notions of CT we need, with the definition of Cartesian
closed category being the key concept.

2.1 Approximation Fixpoint Theory

AFT generalizes Tarki’s theory to non-monotonic operators, with the initial goal
of studying the semantics of non-monotonic logics. As such, AFT heavily relies
on the following notions from order theory.

A Category-Theoretic Perspective on Higher-Order AFT 5

A partially ordered set (poset) P is a set equipped with a partial order, i.e., a
reflexive, antisymmetric, transitive relation. We denote a poset by P = ⟨P,≤P ⟩,
where P is the underlying set, and ≤P the partial order. By abuse of notation,
we sometimes use the calligraphic poset notation P in place of the notation
for its underlying set P , and vice versa. We denote by Pop the poset with the
same underlying set as P but opposite order, i.e., Pop = ⟨P,≥P ⟩. Given a subset
S ⊆ P , a lower bound l of S is the greatest lower bound of S, denoted by

d
S, if

it is greater than any other lower bound of S. Analogously, an upper bound u
of S is the least upper bound of S, denoted by

⊔
S, if it is lower than any other

upper bound of S. A chain complete poset (cpo) is a poset C such that for every
chain S ⊆ C, i.e., a totally ordered subset,

⊔
S exists. A complete join semilattice

is a poset J such that for any subset S ⊆ J ,
⊔

S exists. A complete lattice is
a poset L such that for any subset S ⊆ L, both

d
S and

⊔
S exist. A function

f : P1 → P2 between posets is monotone if for all x, y ∈ P1 such that x ≤P1
y, it

holds that f(x) ≤P2 f(y). We refer to functions O : C → C with domain equal to
the codomain as operators. An element x ∈ C is a fixpoint of O if O(x) = x. By
Tarski’s least fixpoint theorem, every monotone operator O on a cpo has a least
fixpoint, denoted lfp(O). To use a similar principle for operators stemming from
non-monotonic logics, standard AFT [12] considers, for each complete lattice
L, its associated square bilattice ⟨L2,≤p⟩, where ≤p is the precision order on
the Cartesian product L2, i.e., (x1, y1) ≤p (x2, y2) iff x1 ≤L x2 and y2 ≤L y1. A
square bilattice ⟨L2,≤p⟩ can be viewed as an approximation of L: an element
(x, y) ∈ L2 such that x ≤L y “approximates” all the values z ∈ L such that
x ≤L z ≤L y. Such pairs (x, y) with x ≤L y are called consistent. Pairs of the
form (x, x) ∈ L2 are called exact, since they approximate only one element of L.

An approximator A : L2 → L2 is a monotone operator that is symmetric, i.e.,
for all (x, y) ∈ L2 it holds that A1(x, y) = A2(y, x), where A1, A2 : L

2 → L are the
components of A, i.e. A(x, y) = (A1(x, y), A2(x, y)). An approximator A : L2 →
L2 approximates an operator O : L→ L if for all x ∈ L, A(x, x) = (O(x), O(x)).
Since A is by definition monotone, by Tarski’s theorem A has a least fixpoint,
called the Kripke-Kleene fixpoint. Moreover, given an approximator A, there are
three other operators which deserve our attention, together with their fixpoints:
the operator approximated by A, OA : x ∈ L 7→ A1(x, x) ∈ L whose fixpoints
are called supported ; the stable operator SA : x ∈ L 7→ lfp(A1(·, x)) ∈ L with the
stable fixpoints (where A1(·, x) : y ∈ L 7→ A1(y, x) ∈ L); and the well-founded
operator SA : (x, y) ∈ L2 7→ (SA(y), SA(x)) ∈ L2, whose least fixpoint is referred
to as the well-founded fixpoint. If A is the four-valued immediate consequence
operator [17], then the aformentioned four types of fixpoint correspond to the
homonymous semantics of logic programing [11, 12].

2.2 Cartesian Closed Categories

Category Theory (CT) studies mathematical structures and the relations between
them, through the notion of a category. Intuitively, a category C consists of a
collection Ob(C) of objects and a collection Mor(C) of relations, called morphisms,
between objects, satisfying some basic properties: every morphism f has a domain

6 S. Pollaci et al.

s(f) and a codomain t(f), morphisms can be composed, and so on[20]. In this
paper, objects will always be certain ordered sets, and morphisms will be monotone
functions. We say that D is a full subcategory of C, denoted as D ⊆ C, if Ob(D) ⊆
Ob(C), and Mor(D) = {f | f ∈ Mor(C) such that t(f), s(f) ∈ Ob(D)}.

It is easy to see that we can define a category POSet with objects the posets,
and as morphisms the monotone functions between posets. We denote by CPO,
CJSLat, and CLat the full subcategories of POSet with objects the cpo’s, the
complete join semilattices, and the complete lattices, respectively.

We are interested in inductively building approximation spaces for higher-order
concepts starting from base ones. To be able to perform this construction, we need
the approximation spaces to belong to a Cartesian closed category, i.e., a category
C with a terminal object, products, and exponentials. Let us briefly explain
what these concepts are (for the formal definitions we refer to [20]). An object
T ∈ Ob(C) is terminal if for each A ∈ Ob(C) there exists a unique morphism
f : A → T . For instance, the poset with one element and trivial order is the
terminal object of POSet, CPO, CJSLat, and CLat. Given A1, A2 ∈ Ob(C),
the product of A1 and A2 is an object A1 × A2 ∈ Ob(C) equipped with two
projection morphisms π1 : A1 × A2 → A1 and π2 : A1 × A2 → A2 satisfying a
universal property. In POSet, and analogously for CPO, CJSLat, and CLat,
the product of two objects P1 and P2 is the Cartesian product of P1 and P2

equipped with the product order, i.e., (x1, y1) ≤ (x2, y2) if and only if x1 ≤P1
x2

and y1 ≤P2
y2. The projections π1 and π2 are given by the usual Cartesian

projections. Finally, given A1, A2 ∈ Ob(C), the exponential of A1 and A2 is an
object AA1

2 ∈ Ob(C) equipped with a morphism ev : AA1
2 ×A1 → A2, called the

evaluation, satisfying a universal property. In POSet, and analogously for CPO,
CJSLat, and CLat, the exponential PP1

2 is the set of monotone functions from
P1 to P2 equipped with the pointwise order (induced by ≤P2

), i.e., f1 ≤pt f2 if
and only if for all x ∈ P1, f1(x) ≤P2

f2(x). The evaluation ev is given by the usual
function evaluation, i.e., ev(f, x) = f(x). Clearly, it follows that POSet,CPO,
CJSLat, and CLat are all Cartesian closed.

In the context of AFT, we are often interested in the space of interpretations
over a possibly infinite vocabulary. To include this, we need a category in which
a product over an arbitrary indexed family of objects is again an object of the
category. We say that such a category C has generalized products, i.e., for all
families {Ai}i∈I of objects of C the product Πi∈IAi ∈ Ob(C) exists [20].

Proposition 1. If C ⊆ POSet, then C has generalized products.

Given P1,P2 ∈ Ob(POSet), we denote by (P1 → P2) ∈ Ob(POSet) the
poset of functions from P1 to P2 ordered with the pointwise order. In particular,
notice that (P1 → P2) may contain non-monotone functions.

Proposition 2. Let C be a full subcategory of POSet, X ∈ Ob(POSet), and
Y ∈ Ob(C). Then there exists an isomorphism (X → Y) ∼= Πx∈XY in C.

A Category-Theoretic Perspective on Higher-Order AFT 7

3 The Approximation System

In this section, we introduce the notions of approximation category and of
approximation system, which constitute the core of the theoretical framework for
AFT we developed.

Let L be a higher-order language based on a hierarchy of types H comprising
of base types τ , and two kinds of composite types: product types Πi∈Iτi, and
morphism types τ1 → τ2. For instance, a base type could be the boolean type
o or the type ι of individuals, whereas in the composite types we may find
the type ι → o, which is the type of unary first-order predicates. We denote
by BH the set of base types. For the sake of simplicity, we omit the subscript
of B when it is clear from the context of use. We associate to each type τ of
BH, an object Eτ ∈ Ob(POSet), and we define inductively for all {τi}i∈I ⊆ H,
EΠi∈Iτi = Πi∈IEτi , and for all τ1, τ2 ∈ H, Eτ1→τ2 = (Eτ1 → Eτ2). The object
Eτ is called the semantics of τ . For example, if the semantics of the boolean
type o is chosen to be Eo := {f , t} with the standard truth ordering, then the
semantics for type o→ o is the poset of functions from Eo to Eo.

In many applications of AFT, we are ultimately interested in the space of
interpretations, which associate to each symbol of a vocabulary, an element of
the semantics of the type of such symbol. It follows that an interpretation can
be seen as a tuple of elements of different semantics. In more detail, given a
vocabulary V , we can consider the product type τ = Πs∈V t(s), where t(s) is the
type of the symbol s. Then, the space of interpretations for the vocabulary V
coincides with the semantics Eτ = Πs∈V Et(s).

We have so far defined the semantics of all the base types and the composite
ones constructed from them. Notice that, it is often not necessary to define the
spaces of approximations for all such semantics Eτ , which are infinitely many.
Because of the nature of our formalism, we can easily restrict the set of types we
take into account: we can fix a subset T ⊆ H of types, and focus our attention
onto the set ST defined as follows:

– for all τ ∈ T, Eτ ∈ ST,
– if Eτ1→τ2 ∈ ST, then Eτ2 ∈ ST,
– if EΠi∈Iτi ∈ ST, then Eτi ∈ ST for all i ∈ I.

We will dive deeper into this matter in Section 4 where we present applications
of our framework. We denote by BT the set of base types of H belonging to T.

The notion of approximation system (Definition 1) together with what follows
in this section, provide a general framework in which the techniques of AFT
can be applied on higher-order languages. Before stating the, rather lengthy,
definition of an approximation system, we provide an intuitive understanding of
its components.

For each Eτ ∈ ST, we shall consider a corresponding space App(Eτ), called
an approximation space, whose elements approximate the elements of Eτ . Hence,
we define a Cartesian closed full subcategory of CPO, denoted by Approx,
and a map App : ST → Ob(Approx) encoding such correspondence. The fact
that Approx ⊆ CPO allows us to apply the Knaster-Tarski theorem on the

8 S. Pollaci et al.

approximation spaces, and guarantees the existence of generalized products
(Proposition 1). Notice that, even though we fixed a mapping App between the
set ST and the objects of Approx, there is, so far, no relation between the
elements of Eτ and those of App(Eτ). The approximation space App(Eτ) is meant
to approximate the elements of Eτ . In particular, we want the order ≤App(Eτ) on
App(Eτ), which we call a precision order, to encode the approximating nature
of App(Eτ) for Eτ : intuitively, a ≤App(Eτ) b if a is less precise than b, i.e., if
an element e ∈ Eτ is approximated by b, then e is also approximated by a. In
the context of AFT, of particular interest are the elements of App(Eτ) which
approximate just one element, called the exact elements. Thus, in the definition
of approximation system that we are about to give, for every base type τ ∈ BT,
we fix a set Eτ of exact elements of App(Eτ), and a function p0τ : Eτ → Eτ , which
associates each exact element to the unique element of Eτ it represents.

To obtain a sensible framework, it is fundamental to carefully define the sets
of exact elements and a projection that associates each exact element to the
object it represents. Hence, we impose conditions on the possible choices of the
sets Eτ and the functions p0τ , for τ ∈ BT. Since an exact element of App(Eτ)
approximates a single element of the semantics Eτ , if both a and b are exact and
one is more precise than the other, then they should represent the same element,
i.e. p0τ (a) = p0τ (b) (Item 4b in Definition 1). This requirement also hints at a very
important fact: the definition of approximation system allows for the existence of
multiple exact elements of App(Eτ) representing the same element of Eτ . Because
of this possible multitude of exact representatives, we want to have, for each
element e ∈ Eτ , a natural choice for a representative in the approximation space
App(Eτ). This is why, for each element e ∈ Eτ , we require that the greatest lower
bound of all the exact elements representing e exists, is exact, and represents e
(Item 4c in Definition 1). Lastly, we add one more condition on exact elements
to accommodate several existing versions of AFT. In consistent AFT [14], exact
elements are maximal, while in standard AFT, this is not the case, and there
are elements beyond exact ones. We require that either the exact elements are
maximal, or we can take arbitrary joins in the approximation spaces (Item 3b in
Definition 1). This last condition will later allow for a generalization of both Eτ
and p0τ to any type τ of H, satisfying properties analogous to the ones required
for the base types counterparts (Propositions 3 and 4).

We are now ready to state the definition of an approximation system. We
write f−1(b) for the preimage of an element b ∈ B via a function f : A→ B, i.e.,
f−1(b) = {a | f(a) = b} ⊆ A.

Definition 1. A tuple (Approx,App, {Eτ}τ∈B, {p0τ}τ∈B) is an approximation
system (for ST) if

1. Approx is a Cartesian closed full subcategory of CPO, called the approxi-
mation category. The objects of Approx are called approximation spaces.

2. App : ST → Ob(Approx) is a function such that for all Eτ ∈ ST
(a) if τ = Πi∈Iτi is a product type, then App(Eτ) = Πi∈IApp(Ei),
(b) if τ = τ1 → τ2 and Eτ1 /∈ ST, then App(Eτ1→τ2) = App(Πi∈Eτ1

Eτ2),

A Category-Theoretic Perspective on Higher-Order AFT 9

(c) if τ = τ1 → τ2 and Eτ1 ∈ ST, then App(Eτ1→τ2) = App(Eτ2)
App(Eτ1

).
3. {Eτ}τ∈B is a family of sets such that the following hold:

(a) for each base type τ ∈ B, Eτ ⊆ App(Eτ),
(b) either App(Eτ) ∈ Ob(CJSLat) for all τ ∈ B, or for all τ ∈ B, if a ∈ Eτ

and b ∈ App(Eτ) such that a ≤App(Eτ) b, then also b ∈ Eτ .
4. {p0τ}τ∈B is a family of surjective functions such that for each base type τ ∈ B:

(a) p0τ : Eτ → Eτ ,
(b) for all a, b ∈ Eτ , if a ≤App(Eτ) b, then p0τ (a) = p0τ (b),
(c) for all e ∈ Eτ , there exists

d
((p0τ)

−1(e)) ∈ Eτ and p0τ (
d
(p0τ)

−1(e)) = e.

Observe that, by Proposition 2, it holds that Eτ1→τ2 = (Eτ1 → Eτ2)
∼=

Πi∈Eτ1
Eτ2 = EΠi∈Eτ1

τ2 . However, in Item 2c of the above definition, we have
App(Eτ1→τ2) = App(Eτ2)

App(Eτ1
) ̸∼= Πi∈Eτ1

App(Eτ2) = App(EΠi∈Eτ1
τ2). Hence,

while the map App, in a way, respects the structure given by the type hierarchy
H, it does not commute with isomorphisms of posets. Moreover, it is important
to notice that, while the approximation system depends on the application at
hand, i.e., on the language, the semantics, and so on, the approximation category
depends only on the version of AFT.

We now fix an approximation system S = (Approx,App, {Eτ}τ∈B, {p0τ}τ∈B)
for ST, and extend the notion of exactness to all approximation spaces.

Definition 2. Let Eτ ∈ ST. An element e ∈ App(Eτ) is exact if one of the
following conditions holds:

1. τ ∈ BT and e ∈ Eτ ,
2. τ = Πi∈Iτi and for each i ∈ I, the i-th component πi(e) of e is exact,
3. τ = τ1 → τ2, Eτ1 /∈ ST, and every component of e is exact,
4. τ = τ1 → τ2, Eτ1 ∈ ST, and for all e1 ∈ App(Eτ1) exact, e(e1) ∈ App(Eτ2)

is exact.

For τ ∈ T, we denote by Eτ the subset of App(Eτ) of exact elements of type
τ . Intuitively, the reason for Item 4 in the definition above is that it allows us to
project exact elements of type τ1 → τ2 to functions in Eτ1→τ2 . For each Eτ ∈ ST,
we denote by Eτ the set of exact elements of App(E). The following proposition
shows that the condition 3b of Definition 1 holds for any Eτ ∈ ST.

Proposition 3. Let Eτ ∈ ST. Either for all σ ∈ B it holds that App(Eσ) ∈
Ob(CJSLat), or for all b ∈ App(Eτ) and e ∈ Eτ , if e ≤App(Eτ) b , then b ∈ Eτ .

Now that we have defined the exact elements for any semantics in ST, we
extend the family {p0τ}τ∈B to have a map for each Eτ ∈ ST. We can do this
inductively, by defining a new family of functions {pτ : Eτ → Eτ}Eτ∈ST as follows:

1. if τ ∈ B, then pτ := p0τ ,
2. if τ = Πi∈Iτi, then for all (ei)i∈I ∈ Eτ , pτ ((ei)i∈I) := (pτi(ei))i∈I ,
3. if τ = τ1 → τ2, and Eτ1 /∈ ST, then for all (ei)i∈Eτ1

∈ Eτ , for all x ∈ Eτ1 ,
pτ ((ei)i∈Eτ1

)(x) := pτ2(ex),

10 S. Pollaci et al.

4. if τ = τ1 → τ2, and Eτ1 ∈ ST, then for all f ∈ Eτ , and for all e ∈ Eτ1 ,
pτ (f)(e) := pτ2(f(d)), where d ∈ p−1

τ1 (e), i.e., pτ1(d) = e.

In the following proposition, we prove that for each Eτ ∈ ST, the function
pτ is well-defined, surjective, and satisfies properties analogous to 4b and 4c of
Definition 1.

Proposition 4. Let Eτ ∈ ST, e1, e2 ∈ Eτ , and e ∈ Eτ . Then, pτ is well-defined
and surjective, there exists

d
p−1
τ (e) ∈ Eτ , and pτ (

d
p−1
τ (e)) = e. Moreover, if

e1 ≤App(Eτ) e2, then pτ (e1) = pτ (e2).

In most applications of AFT, for approximation spaces of base types, there
exists a unique exact element representing an object of a semantics. However, for
higher-order approximation spaces, this is not always the case, as we illustrate in
the following example.

Example 1. Let o be the Boolean type, with semantics Eo := ⟨{f , t},≤t⟩, where
≤t is the standard truth order. In standard AFT, we would define the approxi-
mation space for Eo to be the bilattice App(Eo) := ⟨Eo × Eo,≤p⟩, with ≤p the
precision order. Then, the semantics for o→ o is the poset of functions from Eo to
Eo, and the approximation space for it is the exponential, i.e., the set of monotone
functions from App(Eo) to itself, ordered pointwise. Clearly, we can set the exact
elements of App(Eo) to be (f , f) and (t, t), and po to send them to f and t,
respectively. Now consider the following two functions: f, g : App(Eo)→ App(Eo)
defined by f(f , t) = (f , t), g(f , t) = f(f , f) = g(f , f) = f(t, t) = g(t, t) = (t, t),
and f(t, f) = g(t, f) = (t, f). Clearly, both f and g send exacts to exacts,
thus, they are exact. Moreover, even though f ̸= g, it is easy to see that
po→o(f) = po→o(g) = h : Eo → Eo, where h(f) = h(t) = t.

Definition 3. Let Eτ ∈ ST. An element c ∈ App(Eτ) is consistent if there exists
e ∈ Eτ such that c ≤App(Eτ) e.

Notice that a function of the family {pτ : Eτ → Eτ}Eτ∈ST not only determines
which element of the semantics an exact element represents, but it also helps
understanding what a consistent element is approximating: if c ∈ App(Eτ) is
consistent and c ≤App(Eτ) e for some exact e, then c approximates pτ (e). Clearly,
consistent elements may approximate more than one element of a semantics.

4 An Approximation System for Extended Consistent
AFT

In this section, we present the application of our framework for the extension of
consistent AFT developed by Charalambidis et al. [7]. They considered a new
class of approximation spaces, of the form L⊗U := {(x, y) | x ∈ L, y ∈ U, x ≤ y},
comprising the consistent elements of the cartesian product between a set L
of lower bounds and a set U of upper bounds (Appendix D in [20]). We can
define a new category LUcons as the full subcategory of POSet with objects
the approximation spaces just introduced.

A Category-Theoretic Perspective on Higher-Order AFT 11

Theorem 1. LUcons is a Cartesian closed full subcategory of CPO.

By Theorem 1, the category LUcons can be taken as approximation category
when using the extension of AFT of [7]. Let us now present the approximation
system for the language HOL and the semantics used in [7]. HOL is based
on a type hierarchy H with base types o, the boolean type, and ι, the type of
individuals. The composite types are morphism types obtained from o and ι. In
particular, the types are divided into functional types σ := ι | ι→ σ, predicate
types π := o | ρ → π, and parameter types ρ := ι | π. The semantics of the
base types are defined as usual: Eo := {t, f} with the truth order f ≤t t, and
Eι = D with the trivial order (d1 ≤ d2 iff d1 = d2), where D is some fixed
domain for individuals. The semantics for composite types are defined following
the Cartesian closed structure of POSet.

The ultimate goal of this application is studying the approximation space of
Herbrand interpretations, which fix the value assigned to symbols of functional
types. Thus, we only need the approximation spaces for the semantics Eπ, for
all predicate types π: we can take ST to be the smallest subset of Ob(POSet)
containing Eπ for all π, and closed under generalized product.

Now the definition of a suitable approximation system is very straightforward:
we just have to define the approximation space App(Eo), the set of exact elements
Eo, and the projection po. All the other elements are defined inductively following
the Cartesian closed structure of LUcons. We define: App(Eo) := Eo ⊗ Eo =
⟨{(t, t), (f , t), (f , f)},≤p⟩; Eo = {(t, t), (f , f)}; and po(t, t) := t and po(f , f) := f .
Finally, given a vocabulary V for HOL containing symbols of predicate type,
the approximation space of Herbrand interpretations is App

(
Πs∈V Et(s)

)
=

Πs∈V App(Et(s)) ∈ Ob(Approx), where t(s) is the type of the symbol s.
This greatly simplifies the construction of [7]. In particular, notice that the

pairs of monotonte-antimonotone and antimonotone-monotone functions they
defined are precisely the elements of the exponential objects of LUcons. Moreover,
Charalambidis et al. [7] lacked a notion of exactness, making it impossible to
determine whether a model is actually two-valued; they discussed this question in
their future work section. In our framework, this open question is now resolved,
in Definition 2; let us illustrate on their example accompanying the discussion.

Example 2. Let P be a program with the single rule p(R) ← R, where p is of
type o→ o and R is a parameter variable of type o. The space of interpretations
for p is simply App(Eo→o) = App(Eo)

App(Eo), as defined above. By the semantics
of [7], the meaning of this program is given by the interpretation (I, J), where
I(p)(t, t) = J(p)(t, t) = J(p)(f , t) = t, and I(p)(f , f) = J(p)(f , f) = I(p)(f , t) =
f . Since I ̸= J , (I, J) is not exact according to the classical definition of AFT [12],
even though we would expect to find a 2-valued model, i.e., the one assigning
to p the identity function over {f , t}. Nevertheless, according to our definition,
(I, J) is indeed exact: it sends exacts of Eo to exacts of Eo. Furthermore, by the
approximation system we defined in this section, it holds that (I, J) represents
po→o(I, J) = I ∈ Eo→o = (Eo → Eo), where I(t) = t and I(f) = f , as desired.

12 S. Pollaci et al.

5 Conclusion

We introduced a novel theoretical framework that provides a mathematical foun-
dation for using the machinery of AFT on higher-order objects. In particular, we
defined approximation categories and approximation systems: they employ the
notion of Cartesian closedness to inductively construct a hierarchy of approxima-
tion spaces for each semantics of the types of a given (higher-order) language.
This approach solves the issue of applying approximate objects onto approximate
objects and ensures that the approximation spaces have the same mathematical
structure at any order of the hierarchy, enabling the application of the same AFT
techniques at all levels. Moreover, we defined exact elements of a higher-order
approximation space, together with a projection function. This is a non-trivial
definition and it is fundamental to obtain a sensible AFT framework, i.e., a
framework in which we can determine when an object, and in particular a model,
is two-valued, and retrieve the elements that are being approximated.

Despite seeming complicated at first, the chosen approach, not only provides
a solid, formal mathematical foundation to work with but also allows to reduce
proof complexity. The inductive nature and generality of the definition of an
approximation system make it extremely easy to adapt the framework to different
languages, types, and semantics, as we only have to modify the base elements
of the induction. Such generality enables extending different existing versions of
AFT while capturing their common underlying characteristics, as we have shown
for the extension of consistent AFT of Charalambidis et al. [7].

Acknowledgments. This study was funded by Fonds Wetenschappelijk Onderzoek –
Vlaanderen (project G0B2221N, and grant V426524N), and by the European Union
– NextGenerationEU under the National Recovery and Resilience Plan “Greece 2.0”
(H.F.R.I. “Basic research Financing (Horizontal support of all Sciences)”, project 16116).

Bibliography

[1] Antic, C.: Fixed point semantics for stream reasoning. Artif. Intell. 288,
103370 (2020)

[2] Bogaerts, B.: Weighted abstract dialectical frameworks through the lens of
approximation fixpoint theory. In: AAAI, pp. 2686–2693, AAAI Press (2019)

[3] Bogaerts, B., Charalambidis, A., Chatziagapis, G., Kostopoulos, B., Pollaci,
S., Rondogiannis, P.: The stable model semantics for higher-order logic
programming. ICLP 2024 (2024), (to appear)

[4] Bogaerts, B., Cruz-Filipe, L.: Fixpoint semantics for active integrity con-
straints. Artif. Intell. 255, 43–70 (2018)

[5] Bogaerts, B., Jakubowski, M.: Fixpoint semantics for recursive SHACL. In:
ICLP Technical Communications, EPTCS, vol. 345, pp. 41–47 (2021)

[6] Charalambidis, A., Rondogiannis, P.: Categorical approximation fixpoint
theory. In: Logics in Artificial Intelligence - 18th European Conference, JELIA
2023, Dresden, Germany, September 20-22, 2023, Proceedings, Lecture Notes
in Computer Science, vol. 14281, pp. 515–530, Springer (2023)

A Category-Theoretic Perspective on Higher-Order AFT 13

[7] Charalambidis, A., Rondogiannis, P., Symeonidou, I.: Approximation fixpoint
theory and the well-founded semantics of higher-order logic programs. Theory
Pract. Log. Program. 18(3-4), 421–437 (2018)

[8] Clark, K.L.: Negation as failure. In: Logic and Data Bases, pp. 293–322,
Advances in Data Base Theory, Plemum Press, New York (1977)

[9] Dasseville, I., van der Hallen, M., Bogaerts, B., Janssens, G., Denecker, M.: A
compositional typed higher-order logic with definitions. In: ICLP (Technical
Communications), OASIcs, vol. 52, pp. 14:1–14:13, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2016)

[10] Dasseville, I., van der Hallen, M., Janssens, G., Denecker, M.: Semantics of
templates in a compositional framework for building logics. Theory Pract.
Log. Program. 15(4-5), 681–695 (2015)

[11] Denecker, M., Bruynooghe, M., Vennekens, J.: Approximation fixpoint theory
and the semantics of logic and answers set programs. In: Correct Reasoning,
LNCS, vol. 7265, pp. 178–194, Springer (2012)

[12] Denecker, M., Marek, V., Truszczyński, M.: Approximations, stable operators,
well-founded fixpoints and applications in nonmonotonic reasoning. In: Logic-
Based Artificial Intelligence, vol. 597, pp. 127–144, Springer US (2000)

[13] Denecker, M., Marek, V., Truszczyński, M.: Reiter’s default logic is a logic
of autoepistemic reasoning and a good one, too. In: Brewka, G., Marek,
V., Truszczyński, M. (eds.) Nonmonotonic Reasoning – Essays Celebrating
Its 30th Anniversary, pp. 111–144, College Publications (2011), URL http:
//arxiv.org/abs/1108.3278

[14] Denecker, M., Marek, V.W., Truszczynski, M.: Uniform semantic treatment
of default and autoepistemic logics. Artif. Intell. 143(1), 79–122 (2003)

[15] Denecker, M., Marek, V.W., Truszczynski, M.: Ultimate approximation
and its application in nonmonotonic knowledge representation systems. Inf.
Comput. 192(1), 84–121 (2004)

[16] Fitting, M.: A kripke-kleene semantics for logic programs. J. Log. Program.
2(4), 295–312 (1985)

[17] Fitting, M.: Fixpoint semantics for logic programming a survey. Theor.
Comput. Sci. 278(1-2), 25–51 (2002)

[18] Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
In: ICLP/SLP, pp. 1070–1080, MIT Press (1988)

[19] Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics
of logic programs with aggregates. Theory Pract. Log. Program. 7(3), 301–
353 (2007)

[20] Pollaci, S., Kostopoulos, B., Denecker, M., Bogaerts, B.: A category-theoretic
perspective on higher-order approximation fixpoint theory (extended version)
(2024), URL https://arxiv.org/abs/2408.11712

[21] Strass, H.: Approximating operators and semantics for abstract dialectical
frameworks. Artif. Intell. 205, 39–70 (2013)

[22] van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a
programming language. J. ACM 23(4), 733–742 (1976)

[23] Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for
general logic programs. J. ACM 38(3), 620–650 (1991)

http://arxiv.org/abs/1108.3278
http://arxiv.org/abs/1108.3278
https://arxiv.org/abs/2408.11712

	A Category-Theoretic Perspective on Higher-Order Approximation Fixpoint Theory

