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Abstract

Last year, Jeremy Avigad and coauthors published a paper in this
journal entitled “The Impossible Asylum” showing, using automated rea-
soning tools, that the last puzzle of Raymond Smullyan’s article “The
Asylum of Doctor Tarr and Professor Fether” is inconsistent. We here
argue to the contrary: the puzzle is consistent after all. Our solution
was also found using automated reasoning and is small enough to be pre-
sented here. In fact, the smallest asylum satisfying the original puzzle is
only inhabited by four persons.

So how can we explain this discrepancy, where on the one hand we have
a formal proof of inconsistency and other hand a satisfying assignment?
Well, this is due to an ambiguity in the natural language statement of
the original puzzle. We will argue that with a more natural reading of
the original puzzle, its logical representation changes ever-so-slightly and
becomes consistent.

1 The Problem and Solution.

We refer the reader to the work of Jeremy Avigad et al. [1] (from now on referred
to as ABBHN) for a full exposition of the problem and its history and jump
straight to the point. Raymond Smullyan’s original puzzles [2] are about an
investigative journalist visiting several asylums of which each inhabitant is either
a doctor or a patient, and each inhabitant is either sane or insane. (In)sanity has
a very strong interpretation in these puzzles: a sane person believes a statement
if and only if that statement is true; an insane person believes it if and only if
it is false. In this context, his last problem is the following.

“The last asylum that Craig visited he found to be the most bizarre
of all. This asylum was run by two doctors named Doctor Tarr
and Professor Fether. There were also other doctors on the staff.
Now, an inhabitant was called peculiar if he believed that he was
a patient. An inhabitant was called special if all patients believed
he was peculiar and no doctor believed he was peculiar. Inspector
Craig found out that the following condition holds.
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Condition C: Each inhabitant has a best friend in the asylum.
Moreover, given any two inhabitants—A, B—if A believes that B is
special, then A’s best friend believes that B is a patient.

Shortly after this discovery, Inspector Craig had private interviews
with Dr. Tarr and Professor Fether. Here is the interview with Doc-
tor Tarr:

Craig: Tell me, Doctor Tarr, are all the doctors in this asy-
lum sane?

Tarr: Of course they are!
Craig: What about the patients; are they all insane?
Tarr: At least one of them is.

The second answer struck Craig as a surprisingly modest claim! Of
course, if all the patients are insane, then it certainly is true that at
least one is, but why was Dr. Tarr so cautious? Anyway Craig then
had his interview with Professor Fether, which went as follows:

Craig: Dr. Tarr said that at least one patient here is insane.
Surely, that is true, isn’t it?

Professor Fether: Of course it is true! All the patients in
this asylum are insane!

What kind of asylum do you think we are running?
Craig: What about the doctors; are they all sane?
Professor Fether: At least one of them is.
Craig: What about Dr. Tarr; is he sane?
Professor Fether: Of course he is! How dare you ask me

such a question?

At this point, Craig realized the full horror of the situation! What
was it?” — [2]

Before describing how we found it, we present a state of affairs that is con-
sistent with this story. In our solution, there are four inhabitants: Tarr , Fether ,
and Alice are doctors, while Bob is the sole patient. This is not a coincidence:
with our interpretation of condition C, all solutions have exactly one patient.
As already observed by Smullyan [3] (and in Line with Edgar Allan Poe’s short
story “The System of Doctor Tarr and Professor Fether”), all doctors are in-
sane, while all patients (just one in this case) are sane. It follows that everyone
is peculiar. Bob, the sole sane inhabitant of this horrible asylum correctly be-
lieves everyone to be peculiar, and all the (insane) doctors (incorrectly) believe
no-one to be peculiar. As a result, everyone is special. Our proposed solution
is also consistent with the interviews: it can be verified that all of Dr. Tarr and
Professor Fether’s statements are false in this instance. The only thing that
is then left to verify is that condition C is indeed satisfied. To argue this, we
need to know of course who everyone’s best friend is. In the solution we found,
Bob’s best friend is Fether and Bob is the best friend of each of the doctors.
For verifying that conditions C indeed holds for each two inhabitants (A and
B), we consider two cases:
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• If A is a doctor, then A does not believe B to be special (since A is insane
but each inhabitant, and in particular B, is special). So the condition is
vacuously satisfied.

• If A is a patient, then A can only be Bob and A correctly believes B to
be special. In this case, B is one of the doctors. We should verify that
Fether (Bob’s best friend) believes that B is a patient. Since Fether is
insane and B is not a patient, this is indeed the case.

So how can we explain this solution in light of the existing proofs of incon-
sistency of the puzzle [1]? The answer is that we have a different interpretation
of condition C. The puzzle states

“Moreover, given any two inhabitants—A, B— [...]”.

ABBHN translate this into first-order logic as a statement of the form

∀A,B : φ,

where φ expresses the part of condition left out in the quote above. We, on the
other hand, would argue the correct translation is

∀A,B : A ̸= B ⇒ φ.

In other words, the point in which we disagree is whether or not the original
statement implies that A and B are distinct individuals. We believe the word
“two” in the puzzle does imply this. When people, in natural language, speak
about two inhabitants, they typically mean two distinct ones and most people
would agree that Tarr , Tarr does not constitute two inhabitants. It is one
inhabitant, just named twice. If Smullyan would have written “For every in-
dividual A and every individual B”, it would be debatable whether or not he
intended to mean that they are distinct; but the explicit use of the word “two”
in his statement, to us clearly suggests that A and B cannot be the same.

It is common for students who learn logic to assume that different variables
“automatically” refer to different objects. For instance, the formula

∃x, y : P (x) ∧ P (y)

will easily be read as “there are at least two P s”. This is, however, not the
meaning of this first-order logic formula: this formula is satisfied in all structures
in which there is at least one object satisfying P (since x and y can just take
the same value). When modelling natural language statements in logic, this is
something to be wary about.

This common mistake, however, is not what happened in the work of ABBHN,
who are experienced practitioners of logical methods. In their paper, not only
in the logical parts, but also in their human-readable proofs (extracted from
the automatically generated proofs), they repeatedly make use of the fact that
condition C can be instantiated with A and B referring to the same person.
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The only reasonable explanation for this discrepancy is thus that we disagree
on the meaning of “two inhabitants—A,B—”.

So which of the two1 readings of this natural language sentence is correct?
Unfortunately, that is something that only the late Raymond Smullyan could
have told us. While we are of the opinion that the natural reading of the En-
glish text is that “two Xs” means “two distinct Xs”, it deserves to be mentioned
that2 there is good evidence that Smullyan actually had ABBHN’s interperta-
tion in mind. First of all, in his solution, Smullyan applies condition C to
A and their best friend B without explicitly stating that A is not their own
best friend, which provides some support for ABBHN’s reading. Secondly, the
2023 endnotes of this very journal [4] mention that Dr. Pieter Audenaert has
contacted the journal after reading ABBHN’s article with the information that
Raymond Smullyan knew at least since 2001 that the puzzle was inconsistent
(citing personal communications).

2 How We Found the Solution.

To find this solution, we modelled the puzzle in the IDP language [5]. This
language is a rich extension of typed first-order logic, supporting features such
as inductive definitions [6] and aggregates [7], but none of these features were
really necessary for modelling this puzzle. Our representation closely follows
the first-order representation of ABBHN, it also makes use of the trick to model
“A believes φ” as

Sane(A)⇔ φ,

using the very strong definition of (in)sanity assumed in the puzzle. Indeed,
this formula is true if A is sane and φ holds or if A is insane and φ does not
hold. The minor points in which it differs are

• We make use of explicit predicate symbols Insane and Patient for reasons
of clarity. This possibility was also mentioned by ABBHN.

• For all definitions in the puzzle, we make use of definitions in the IDP
language. For instance, peculiarity is defined by

{∀x : Peculiar(x)← (Sane(x)⇔ Patient(x))} .

This definition should be read as “Peculiar is defined as follows: x is pecu-
liar if x is sane if and only if x is a patient” or, using the trick mentioned
above, “Peculiar is defined as follows: x is peculiar if x believes they are a
patient”. In other words, the definitional arrow← corresponds to the “if”
that is often found in mathematical definitions, and not to the “if” often
found in assertions, which then translates to material implication ⇐.

1The two distinct readings, to avoid all potential confusion.
2As pointed out during the reviewing process of this paper.
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In the specific case of a definition with only a single case and without
recursion (as is the case here), this definition can be replaced by a logical
equivalence ⇔, in this case

∀x : Peculiar(x)⇔ (Sane(x)⇔ Patient(x)),

but in general, IDP also supports, next to standard first-order sentences,
inductive definitions. For instance, the definition{

∀x y : T (x, y)← E(x, y).
∀x y : T (x, y)← ∃z : E(x, z) ∧ T (z, y)

}
expresses that T is the transitive closure of E, which cannot be expressed
in standard first-order logic. We believe it is clarifying from the modelling
perspective to make definitions explicit.

• We have not included the constraint ∃x : Sane(x) in the specification of
the puzzle since it does not appear explicitly in the original puzzle [2]. It
is, however, included explicitly in a modified version that appeared later
in a puzzle book [8].

The IDP system is a knowledge base system [9], meaning it can, on a sin-
gle (logical) theory (or “knowledge base”) execute multiple forms of inference,
including automated theorem proving [10], model expansion [11], and methods
for temporal reasoning [12]. For solving and analyzing the puzzle at hand, we
used two types of inference.

Firstly, we made use of IDP’s theorem proving capabilities in order to con-
firm some claims made by Smullyan himself when discussing the solution to his
original problem [3]. We also used this to confirm that ABBHN’s assumption
that there is at least one sane person (condition 6) is indeed entailed. However,
it deserves to be mentioned here that this is non-trivial and is in fact not en-
tailed from the pre-interview knowledge alone. Finally, we used this capability
to confirm ABBHN’s claim of inconsistency in case the stronger condition C is
imposed. None of these results are new. In fact, the technology that is used
under the hood is the same as what ABBHN built on: for theorem proving,
IDP translates its input into the TPTP format [13] and then calls an out of the
box theorem prover that supports this input format (the default solver used is
spass [14], but this can be configured). We included these checks here as a san-
ity check and to illustrate the flexibility the knowledge base system paradigm
offers.

Secondly, we made use of IDP’s model expansion inference [11]. This infer-
ence method takes as input a logical theory and a structure with a finite domain
interpreting some, but not necessarily all of the symbols. The output is a struc-
ture that expands the input and that satisfies the input theory. In our case, we
presented it with a structure with an increasing domain size. For a domain size
of four, the system was able to produce a model, namely the solution discussed
above. Internally, to execute model expansion, IDP translates its input into (an
extension of) propositional logic and then calls an (extended) SAT solver [15].
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Our solution can be run and modified at http://dtai.cs.kuleuven.be/

krr/idp-ide/?src=1070d22152ca7f9d4990dda70f84e72c or downloaded from
Zenodo [16].

3 Conclusion

This paper once more highlights the importance of formal specifications by iden-
tifying an ambiguity in natural language. The ambiguity here even arises in the
very controlled setting of logical puzzles, where usually not a lot of room for in-
terpretation exists. Additionally, the paper also points out that the conclusions
reached by automated reasoning tools are only as good as the formal specifica-
tions they start from. Neither of these observations is novel, or surprising, but
they are nonetheless good to keep in mind.
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