
Exploiting Symmetries in MUS Computation

Ignace Bleukx1, Hélène Verhaeghe1,2, Bart Bogaerts1,3, Tias Guns1

1KU Leuven, Dept. of Computer Science; Leuven.AI, Celestijnenlaan 200A, 3000 Leuven, Belgium
2UCLouvain, ICTEAM, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium

3Vrije Universiteit Brussel, Dept. of Computer Science, Pleinlaan 9, 1050 Brussels, Belgium
ignace.bleukx@kuleuven.be, helene.verhaeghe@uclouvain.be, bart.bogaerts@kuleuven.be, tias.guns@kuleuven.be

Abstract
In eXplainable Constraint Solving (XCS), it is common to
extract a Minimal Unsatisfiable Subset (MUS) from a set of
unsatisfiable constraints. This helps explain to a user why a
constraint specification does not admit a solution. Finding
MUSes can be computationally expensive for highly sym-
metric problems, as many combinations of constraints need
to be considered. In the traditional context of solving satisfac-
tion problems, symmetry has been well studied, and effective
ways to detect and exploit symmetries during the search ex-
ist. However, in the setting of finding MUSes of unsatisfiable
constraint programs, symmetries are understudied. In this pa-
per, we take inspiration from existing symmetry-handling
techniques and adapt well-known MUS-computation meth-
ods to exploit symmetries in the specification, speeding-up
overall computation time. Our results display a significant re-
duction of runtime for our adapted algorithms compared to
the baseline on symmetric problems.

Code — github.com/ML-KULeuven/SymmetryMUS
Extended version — arxiv.org/pdf/2412.13606

1 Introduction
The field of eXplainable Constraint Solving (XCS) is a sub-
field of eXplainable AI (XAI) focused on explaining the so-
lutions, or lack thereof, of constraint (optimization) prob-
lems. Explaining why a set of constraints does not admit a
solution is often done through a Minimal Unsatisfiable Sub-
set (MUS), i.e., an irreducible subset of the constraints ren-
dering the problem unsatisfiable. This subset of constraints
is then easier for a user to analyze than the full problem.
MUSes are also used for debugging constraint models (Leo
and Tack 2017), including minimization of faulty models
when fuzz testing (Paxian and Biere 2023), explaining why
an objective value is optimal (Bleukx et al. 2023) or to
explain why a fact follows from the constraints (Bogaerts,
Gamba, and Guns 2021). MUS computation techniques are
well-studied and well-known in the XAI literature. Fre-
quently used algorithms can be classified into shrinking1

methods (Marques-Silva 2010); divide-and-conquer algo-
rithms like QuickXplain (Junker 2001) and implicit-hitting-
set based methods (Ignatiev et al. 2015).

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1sometimes called destructive or deletion-based

In some cases, it can be useful to not just compute a single
MUS but to enumerate a collection of MUSes or even all of
them, as some MUSes may be easier understood by a user
than others. Many algorithms for computing a set of MUSes
rely on the “seed-and-shrink” paradigm (Bendı́k and Cerná
2020), where variants of the MARCO-algorithm are among
the most popular techniques (Liffiton et al. 2016). MUS-
computation and enumeration techniques have been dis-
cussed extensively (Marques-Silva and Mencı́a 2020; Gupta,
Genc, and O’Sullivan 2021).

A prime concern for MUS computation and enumeration
techniques is efficiency, especially for large problems, as
checking if a valid assignment exists for a set of constraints
can already be NP-hard (Biere et al. 2021). In practice, many
techniques exist to speed up solving, e.g., by exploiting the
problem structure. One of these, which has barely been stud-
ied in the context of MUS computation, is the exploitation
of symmetries in the problem formulation.

Many real-world problems exhibit some kind of (vari-
able and/or value) symmetry. For example, packing items
into equivalent trucks, assigning shifts to equivalent work-
ers or scheduling tasks on equivalent machines. Such sym-
metries can slow down combinatorial solvers, as they might
have to consider all symmetric alternatives to an assignment.
Solvers can exploit symmetries to prune the search space
and/or speed up the search (Gent, Petrie, and Puget 2006;
Sakallah 2021). Symmetry exploitation techniques are ei-
ther static or dynamic. Static techniques involve adding sym-
metry breaking constraints to the specification before start-
ing the solver. Dynamic techniques exploit the symmetries
during search, e.g., by automatically learning symmetric
clauses (Devriendt et al. 2012; Chu et al. 2014; Mears et al.
2014; Devriendt, Bogaerts, and Bruynooghe 2017), by mod-
ifying their branching behaviour (Fahle, Schamberger, and
Sellmann 2001; Sabharwal 2005) or by generating symme-
try breaking constraints during the solvers’ execution (Metin
et al. 2018). Furthermore, several tools exist for automat-
ically detecting symmetries in the constraint specifications
for a variety of input formats (Drescher, Tifrea, and Walsh
2011; Devriendt et al. 2016; Caudenberg and Bogaerts 2022;
Anders, Brenner, and Rattan 2024).

While symmetry-handling has extensively been studied
for methods solving constraint satisfaction or optimization
problems, they have barely been studied in the context



of MUS computation or enumeration. “Classic” symme-
tries are defined on assignments of variables, while MUS-
computation algorithms reason over subsets of constraints.
Still, symmetries over variables can also lead to symmetries
over constraints and, hence, over MUSes.

In this paper, we build on this observation and investigate
how to discover and exploit symmetries for MUS computa-
tion and enumeration. Our contributions are the following:
(i) we formally define symmetries in MUS problems; (ii) we
show how existing symmetry detection tools can be used to
detect constraint symmetries by means of a reformulation
with half-reified constraints (iii) we show how to mod-
ify different types of MUS-computation algorithms to speed
up the search for an MUS; and (iv) we evaluate the poten-
tial runtime improvements of symmetry breaking for MUS
methods in an elaborate experimental evaluation.

2 Background
The methods presented in this paper are defined on con-
straints with Boolean variables only, but they can be gener-
alized to richer constraint-solving paradigms such as SMT,
MIP, or CP. In this section, we recall several essential con-
cepts and introduce the notation used throughout this paper.

A literal ℓ is a Boolean variable x or its negation ¬x. We
use ϕ to represent a set of constraints over Boolean variables.
The set of literals in a constraint specification L(ϕ) contains
all variables occurring in ϕ and their negation. When ϕ is
clear from the context, we simply write L. An assignment α
maps Boolean variables in ϕ to either true or false. An as-
signment is total if it assigns every variable in ϕ, and partial
otherwise. Assignments can be represented as a subset of lit-
erals, namely those assigned to true (Audemard and Simon
2018). When a partial assignment µ can be expanded to a
total one while satisfying ϕ, we write µ p≈ ϕ.

Modern SAT-solvers allow the use of assumption vari-
ables (Nadel and Ryvchin 2012; Hickey and Bacchus 2019).
In combination with implication constraints, they can be
used to test whether a subset of constraints is satisfiable. For
each constraint c in ϕ, we introduce a Boolean indicator vari-
able ac and use this variable to construct the half-reification
of c: ac → c (Feydy, Somogyi, and Stuckey 2011). We re-
fer to the set of indicators as A and, abusing notation, we
refer to the constraint specification ϕ where all constraints
are half-reified using variables ac as A → ϕ. Now, any
full assignment of A (which is also a partial assignment
of A → ϕ), can be interpreted as a subset of constraints.
Namely, a constraint c is part of the subset if its indicator
variable ac is set to true. So, when assuming a subset of lit-
erals A to be true, we can test whether a subset of constraints
admits a valid assignment using a SAT-solver. Moreover, if
no such assignment exists, SAT-solvers can return a suffi-
cient set of assumption variables that cause unsatisfiability.
Hence, we assume to have an oracle that takes as input a set
of constraints ϕ and which returns a tuple (is sat, α, U).
Here, is sat is a Boolean flag indicating whether ϕ is sat-
isfiable. When is sat is set to true, α is the assignment
found by the oracle, and U ⊆ ϕ is a sufficient subset of
constraints causing unsatisfiability otherwise.

Constraint specifications can exhibit symmetries. We dis-
tinguish two types of symmetries: syntactic and semantic.
Definition 1 (Syntactic symmetry (Devriendt et al. 2016)).
Let π be a permutation of all literals L in constraints ϕ. A
syntactic symmetry of ϕ, is a permutation π that commutes
with negation (i.e., π(¬l) = ¬π(l)), and that when applied
to the literals in each of the constraints in ϕ, maps ϕ to itself.
Definition 2 (Semantic symmetry (Devriendt et al. 2016)).
Let π be a permutation of all literals L in constraints ϕ. A
semantic symmetry of ϕ is a permutation π that commutes
with negation and that preserves satisfaction to ϕ (i.e., π(α)
satisfies ϕ iff α satisfies ϕ).

Any syntactic symmetry is also a semantic symmetry but
not vice versa (Sakallah 2021). In practice, most symmetry-
detection tools only detect syntactic symmetries (Devriendt
et al. 2016), but all concepts in this paper are valid for se-
mantic symmetries too, unless specified otherwise. There-
fore, we refer to “symmetries” in general in the remainder
of this paper. We write permutations using disjoint cycle no-
tation. E.g., π = (abc)(de) denotes the permutation with:
π(a) = b, π(b) = c, π(c) = a, π(d) = e and π(e) = d

Some structured symmetry groups can be summarized as
a row-interchangeable symmetry (Flener et al. 2002; De-
vriendt, Bogaerts, and Bruynooghe 2014).
Definition 3 (Row-interchangeability). A matrix M =
(xrc) of literals describes a row-interchangeability symme-
try group if for each permutation ρ of its rows, πM

ρ : xrc 7→
xρ(r)c is a symmetry of ϕ.

The last required concept in this paper is that of Minimal
Unsatisfiable Subsets (MUS) (Marques-Silva 2010).
Definition 4 (Minimal Unsatisfiable Subset). A Minimal
Unsatisfiable Subset (MUS ) of a set of constraints ϕ is a
set U ⊆ ϕ that is unsatisfiable and for which any proper
subset U ′ ⊊ U is satisfiable.

Informally, an MUS is a minimal set of constraints that
renders the problem unsatisfiable. Note that there may be
several MUSes for a given unsatisfiable constraint problem.

3 Symmetries for the MUS problem
In this section, we define symmetries of the MUS problem.
Solving the MUS problem requires reasoning over subsets
of constraints, whereas the traditional setting of solving a
satisfaction problem requires reasoning over assignments.
Hence, symmetries for the MUS problem are symmetries of
constraints.

Note that any syntactic symmetry of variables in a set of
constraints induces a symmetry of constraints (Cohen et al.
2006), as illustrated below.
Example 1 (Pigeon hole problem). Consider a pigeon-hole
problem php(p, h) with p pigeons and h holes:∑h

j=1
xij ≥ 1 ∀i ∈ {1, . . . , p} (Pi)∑p

i=1
xij ≤ 1 ∀j ∈ {1, . . . , h} (Hj)

Where xij are Boolean variables indicating whether pi-
geon i is assigned to hole j. We refer to the constraint that



ensures pigeon i is in a hole as Pi and the constraint ensur-
ing at most one pigeon is in hole j is refered to as Hj .

Considering php(4, 2), we identify four MUSes:

{P1, P2, P3, H1, H2}, {P1, P2, P4, H1, H2}
{P1, P3, P4, H1, H2}, {P2, P3, P4, H1, H2}

In the above specification, we notice several syntac-
tic symmetries. E.g., (x11x21)(x12x22)(x13x23)(x14x24)
which in turn induces a symmetry of constraints: (P1P2).

3.1 Computing constraint symmetries
We propose to use existing symmetry-detection tools such as
BREAKID (Devriendt et al. 2016), which traditionally detect
symmetries of variable assignments, and transform the input
to these tools to detect symmetries in constraints. In particu-
lar, we introduce indicator variables ac to construct A → ϕ
as defined in Section 2.

Before introducing symmetries that can be used when
computing MUSes, we generalize the concept of symme-
tries of assignments to symmetries of partial assignments.
Definition 5 (Partial symmetries). Let S ⊆ L(ϕ) be a sub-
set of all literals L(ϕ), closed under negation. A partial S-
symmetry of a specification ϕ is a permutation of S that
commutes with negation and that preserves satisfiability to
ϕ. That is, for any assignment µ of S, µ p≈ ϕ iff π(µ) p≈ ϕ.

Some tools allow us to search for partial symmetries ex-
plicitly, but they can be derived from “classical symmetries”
as in Definitions 1 and 2, as the following holds.
Proposition 1 (Deriving partial symmetries). Let S be a
subset of L(ϕ) closed under negation and π a symmetry of
ϕ. If π(S) = S, then π|S is a partial S-symmetry of ϕ.

We are now ready to fully define the concept of constraint
symmetries as used in this paper.
Definition 6 (Constraint symmetry). A permutation π of the
constraints in ϕ is called a constraint symmetry for ϕ if for
any subset C ⊆ ϕ, π(C) is satisfiable iff C is satisfiable.

The following proposition describes the exact relation be-
tween partial-symmetries and constraint symmetries.
Proposition 2. Let π be a permutation of variables (that is
a permutation of literals that does not cross polarity) A in
A → ϕ, then π directly maps to a permutation of constraints
πϕ. Under this mapping, π is an A-symmetry iff πϕ is a con-
straint symmetry.

Intuitively, a subset of indicators “enables” a set of con-
straints and, when this initial set is (un)satisfiable, so is the
set of constraints that is enabled by their symmetric image.

Hence, by computing partial symmetries of the spec-
ification A → ϕ, we can compute constraint symme-
tries using any existing tool supporting it. We refer to
the above method of finding constraint symmetries as
CONSTRAINTSYMMETRIES(ϕ).

Following Proposition 3, constraint symmetries map
MUSes to MUSes and non-MUSes to non-MUSes.
Proposition 3. Given a constraint symmetry π of ϕ and a
subset U ⊆ ϕ. Then, π(U) is an MUS of ϕ if and only if U
is an MUS of ϕ.

4 Constraint symmetries in MUS algorithms
Once detected, symmetries can be exploited to speed up the
search for valid assignment(s) that satisfy ϕ. Static tech-
niques include adding symmetry breaking constraints to the
constraints specification before solving. Such constraints
can speed-up the search by excluding a part of the search
space. A well-known symmetry breaking constraint is the
Lex-Leader constraint, which excludes, given an order of
the variables, any assignment α if its symmetric counter-
part π(α) is lexicographically below α. Symmetry detection
tools can often generate a set of breaking constraints along
with the generators for each detected symmetry group. Sym-
metry breaking constraints may break the symmetry com-
pletely or only partially (McDonald and Smith 2002).

Dynamic symmetry handling involves modifying the
search algorithm of the solver itself to exploit the symme-
tries in the constraints. For example, by avoiding symmetric
branches in the search tree or by modifying propagation al-
gorithms to exploit symmetries in the problem specifically.
While symmetry handling techniques have been extensively
studied in the context of solving constraint programs, they
do not directly apply to finding MUSes.

In particular, by adding a set of symmetry breaking con-
straints B to constraints ϕ, any MUS of the “broken specifi-
cation” will be a subset of ϕ∪B. This means that ϕ∪B can
contain more MUSes than the original set of constraints, and
new MUSes do not necessarily map to an original MUS.

In this section, we generalize symmetry handling tech-
niques to constraint symmetries for use in MUS-finding al-
gorithms. We explore both static symmetry breaking and
techniques to exploit symmetries dynamically.

4.1 Symmetric transition constraints
One of the simplest classes of algorithms for finding an
MUS are “shrinking” based methods (Marques-Silva 2010;
Wieringa 2014). These methods iteratively drop a constraint
c from ϕ, and call an oracle to check whether the remainder
is (un)satisfiable. If the remaining core is still UNSAT, the
constraint can safely be dropped from the formula. Other-
wise, the constraint is required to ensure the unsatisfiability
of the core and is marked as such (line 6 in Algorithm 1).
When a constraint is marked as required, it is called a tran-
sition constraint (Belov and Marques-Silva 2011).
Definition 7 (Transition constraint). Given an unsatisfiable
set of constraints U containing constraint c. If U \ {c} is
satisfiable, c is called a transition constraint.

Belov, Lynce, and Marques-Silva (2012) propose an op-
timization to this simple approach called clause set refine-
ment. This technique exploits the core found by the solver
after it decides the input is unsatisfiable. In particular, the
core returned by the solver may be smaller than the work-
ing core at that point in the algorithm. Hence, we can use
the solver core U ′ to further shrink the working core. This
technique is shown on line 13 in Algorithm 1.

To exploit symmetries in shrinking-based methods, we
use the set of symmetry generators directly. In particular,
we mark symmetric counterparts of transition constraints.
We illustrate this in Example 2.



Algorithm 1: SYMM-SHRINK(ϕ, recompute?)

1: U ← ϕ; G ← CONSTRAINTSYMMETRIES(ϕ)
2: while there are unmarked constraints in U do
3: c← next unmarked constraint in U
4: (is sat, α, U ′)← SAT(U \ {c})
5: if is sat then
6: mark c as required
7: if recompute? then
8: G ← CONSTRAINTSYMMETRIES(U)
9: for each π ∈ G do

10: if π(U) = U then
11: mark π(c) as required
12: else
13: U ← U ′

14: return U

Example 2. Following on Example 1, take U to be
{P1, P2, P3, H1, H2} and H1 and H2 are the only con-
straints that are marked to be required by previous itera-
tions. If the algorithm selects P1 to be the next constraint to
test, the oracle will report U \ {P1} is satisfiable. Hence,
P1 is a transition constraint. However, as all Pi are inter-
changeable for the MUS problem, this means also P2 and
P3 are required, and they can be marked as such.

To mark such symmetric transition constraints, we are in-
terested in constraint symmetries mapping U to U .

Proposition 4 (Symmetric transition constraint). If π is a
constraint symmetry of unsatisfiable formula U ⊆ ϕ and c
a transition constraint for U , then π(c) is also a transition
constraint for U .

Proof. As U is unsatisfiable and π is a constraint symmetry
of U , π(U) is a also unsatisfiable. Furthermore, as U \ {c}
is satisfiable, π(U \ {c}) = π(U) \ {π(c)} = U \ {π(c)} is
satisfiable and hence π(c) is a transition constraint.

Finding constraint symmetries of U can be done either
by iteration over each permutation in the symmetry groups
in G or by invoking the symmetry-detection tool again on
the sub-problem U (when flag recompute? is true). The ef-
ficiency depends on the overhead of detecting symmetries
and the structure of the global symmetry groups. Indeed, for
large symmetry groups, iteration over each permutation may
be infeasible or inefficient when only a subset of permuta-
tions map U to U . However, some symmetry-detection-tools
can summarize structured symmetry groups using a matrix.
For those matrices, we can easily find all of the symmet-
ric images of a given variable within a given subset. Given
a row-interchangeable symmetry described by matrix M , a
core U and a (indicator) variable a ∈ U . Find the coor-
dinate (i, j) of variable a in M . Now, find the indices of
columns cols where, on row i, variables in U occur – clearly
j ∈ cols . Then, iterate over each each row r in the matrix
and define colsr to be the columns k where xrk ∈ U . When
cols = colsr , then xrj is a symmetric image of a in U .

To further reduce the overhead, we only project to sym-
metric transition constraints using the generators.

Note that our modification exploits symmetries without
“breaking” them. That is, any MUS that may be returned by
SHRINK may also be returned by SYMM-SHRINK.

Our approach shares similarities with model rotation
(Belov and Marques-Silva 2011). Given a satisfiable subset
of constraints to check U \ {c}, model rotation exploits the
assignment α found by the oracle to U \ {c}. In particular, it
searches for a variable assignment in α, such that, when the
assignment is changed, c is satisfied and exactly one other
constraint c′ ∈ U becomes unsatisfied. When such a vari-
able assignment is found, we can be certain c′ is a transition
constraint for the MUS and marked as such.

Clearly, model rotation implicitly captures “simple” sym-
metries and hence resembles our approach. However, in
SYMMSHRINK, the solution to U \ π(c) may contain any
number of changed variable assignments, whereas model ro-
tation only changes a single assignment. Moreover, efficient
model rotation requires the concept of a “flip-graph” which,
to the best of our knowledge, can only be constructed easily
for clausal input. As the algorithms described in this paper
are more broadly applicable, we do not consider shrinking-
based methods using model rotation as the baseline. In the
future, we aim to explore the differences and similarities be-
tween model rotation and our approach further.

4.2 Symmetry breaking in MUS-computation
In this section, we investigate how symmetry breaking can
be used to speed-up MUS computation. That is, instead of
finding any MUS, we search for a lex-minimal MUS.
Example 3 (Lex-minimal MUS). Given the set of MUSes
from Example 1, and the following constraint order:

P1 < P2 < P3 < P4 < H1 < H2

Then {P1, P2, P3, H1, H2} is the only lex-minimal MUS.
Lex-minimal MUSes can be computed using the Quick-

Xplain algorithm. QuickXplain takes as input a partial or-
dering of constraints and computes a preferred MUS based
on that ordering. Hence, when providing an ordering map-
ping to the lex-leadership relation, QuickXplain finds a lex-
minimal MUS. However, such ordering is often not reported
by symmetry detection tools as they internally use the order
to construct a set of breaking constraints, which can be used
for static symmetry breaking. Therefore, we do not consider
the QuickXplain algorithm here and instead focus on meth-
ods that can directly use symmetry breaking constraints re-
turned by the detection tool. In particular, instead of finding
any MUS, we search for an Optimal Constrained Unsatisfi-
able Subset (OCUS) (Gamba, Bogaerts, and Guns 2023).
Definition 8 (OCUS). Given a set of constraints ϕ, a cost
function f : 2ϕ → N and predicate p : 2ϕ → {false, true}.
Then U ⊆ ϕ is an OCUS with respect to f and p if:
• U is unsatisfiable
• p(U) is true
• for all other unsatisfiable subsets U ′ ⊆ ϕ for which
p(U ′) holds, f(U) ≤ f(U ′)

In this paper, we use the concept of an OCUS to find an
MUS with minimal cardinality by using a linear cost func-
tion f with equal weights. Combined with a set of constraint



Algorithm 2: SYMM-OCUS(ϕ, f, dynamic?)

1: H ← ∅; G ← COMPUTESYMMETRIES(ϕ);
B ← GETLEXLEADERCONSTRAINTS(G)

2: while true do
3: S ← SYMM-CONDOPTHITTINGSET(H, f,B)
4: (is sat, α, U)← SAT(S)
5: if ¬is sat then
6: return (S, status)
7: if dynamic? then
8: K ← CORRSUBSETS(S, ϕ,G)
9: else

10: K ← CORRSUBSETS(S, ϕ)
11: H ← H ∪K

symmetry breaking constraints as predicate p, this ensures
the resulting OCUS is a smallest, lex-minimal MUS of ϕ.

The only OCUS computation algorithm we are aware
of (Gamba, Bogaerts, and Guns 2023) is a modification of
the well-known smallest MUS algorithm, which is based on
the hitting-set dualization between MUSes and MCSes (Ig-
natiev et al. 2015).

Definition 9 (Minimal Correction Subset). Given a set of
constraints ϕ, a Minimal Correction Subset (MCS ) is a sub-
set C ⊆ ϕ for which ϕ \ C is satisfiable and for which any
proper subset C ′ ⊊ C it holds that ϕ \ C ′ is unsatisfiable.

Informally, an MCS is a minimal set of constraints which,
when relaxed, render the problem satisfiable.

Proposition 5 (Hitting set dualization (Ignatiev et al. 2015)).
Given a set of constraints ϕ, let MUSes(ϕ) and MCSes(ϕ)
be the set of all MUSes and MCSes of ϕ, respectively. Then,
the following holds

1. A subset U of ϕ is an MUS if and only if U is a minimal
hitting set of MCSes(ϕ); and

2. A subset C of ϕ is an MCS if and only if C is a minimal
hitting set of MUSes(ϕ).

The Implicit-Hitting-Set (IHS) algorithm to find an
OCUS keeps a set H of correction subsets (initially empty).
In each iteration, an optimal and constrained hitting set of
H is computed, and the satisfiability of this set is checked
using an oracle. If the hitting set is satisfiable, one or more
correction subsets are generated from it using Algorithm 3
and are added to the sets to hit H .

This process is repeated until the optimal hitting set is
UNSAT, and therefore, is an MUS. The pseudo-code for this
algorithm is shown in Algorithm 2 (the dynamic? parame-
ter will be explained later).

To illustrate how breaking symmetries in IHS-algorithms
may be useful, consider the following example.

Example 4 (Lex-minimal hitting set). Consider again
php(4, 2). After computing constraint symmetries, we can
construct the following symmetry breaking constraints:
{P1∨¬P2, P2∨¬P3, P3∨¬P4, H1∨¬H2} which enforce a
preference for lower-indice pigeon constraints and hole con-
straints. Imagine during the run of the algorithm, the sets to
hit (i.e., the correction subsets enumerated by previous iter-
ations) are {H2} and {P3, P4}

Algorithm 3: CORRSUBSETS(S, ϕ,G)
1: K ← ∅; S′ ← S; (is sat, α, U)← SAT(S′)
2: while is sat do
3: C ← {c | c ∈ ϕ, c is unsatisfied by α}
4: for π ∈ G do
5: S′ ← S′ ∪ π(C)
6: K ← K ∪ {π(C)}
7: (is sat, α, U)← SAT(S′)
8: return K

Then, a minimal hitting set is {H2, P3}, which is satis-
fiable and thus clearly not an MUS. However, the smallest
set that satisfies the breaking constraints, and that hits {H2}
and {P3, P4} is {P1, P2, P3, H1, H2}. This subset is UNSAT
and, indeed, an MUS, and hence the algorithm terminates.

4.3 Enumeration of symmetric MCSes
Implicit Hitting Set algorithms for computing MUSes are
based on the hitting set dualization as stated in Proposition 5.
They construct the set of minimal correction subsets lazily,
by iteratively calling a hitting set solver and computing one
or more correction subsets from the given hitting set. In gen-
eral, the more correction subsets can be added in each itera-
tion of the algorithm, the fewer iterations are required to find
an MUS. Indeed, as shown by Ignatiev et al. (2015), enu-
meration of disjoint MCSes using for example Algorithm 3,
significantly improves the algorithm’s runtime.

Our contribution in this section also adds more MCSes
in a single iteration of the algorithm. We propose to use the
symmetry-groups detected directly by enumerating symmet-
ric images of correction subsets (line 8 of Algorithm 2 when
the dynamic? flag is enabled).

We illustrate our idea in the following example:
Example 5. Take again the running example of php(4, 2).
Imagine the sets to hit at some point in the algorithm are:

{H1}, {P1, P2}

Then, a minimal hitting set is {H1, P1}, and from this subset,
we can compute a minimal correction subset, for example,
{P2, P3}. As all pigeon constraints are interchangeable, we
can find the symmetric versions of the above MCS:

{P1, P2}, {P1, P3}, {P1, P4}, {P2, P4}, {P3, P4}

By adding all of these correction subsets to the sets to hit,
the hitting set computed in the next iteration of the algo-
rithm is guaranteed to include at least 3 out of the 4 pigeon
constraints, as required in any MUS for this problem.

Note that the number of symmetric MCSes may be ex-
ponential. Therefore, enumerating all of the MCSes can ac-
tually slow down the algorithm instead. Either because just
enumerating them is hard, or because the hitting set solver
is slowed down significantly by the surplus in sets to hit. In
the experimental section, we evaluate several settings of the
algorithm to investigate good values for the upper bound on
the number of symmetric MCSes to add in each iteration.

In the implementation of the algorithm, we avoid re-
generating MCSes by keeping track of the global set H .



Algorithm 4: LEX-MARCO(ϕ)

1: M ← ∅; G ← COMPUTESYMMETRIES(ϕ);
B ← GETBREAKINGCONSTRAINTS(G)

2: while M is satisfiable do
3: S ← SYMM-GETUNEXPLORED(M,B)
4: (is sat, α, U)← SAT(S)
5: if is sat then
6: C ← GROW(S, ϕ)
7: Block down C
8: else
9: U ′ ← SHRINK(U)

10: Block up U ′

11: return U

The enumeration of extra MCSes and the addition of sym-
metry breaking constraints (Section 4.2) are complementary.
That is, for some hitting sets, the lex-leader constraints do
not yield a larger hitting set (e.g., such as the one in Ex-
ample 5). However, as discussed above, the enumeration of
MCSes also comes at a cost, so it might be better for some
problems to use the lex-leader constraints in the hitting-set
solver instead. The combination and comparison of both
techniques are presented in the experimental section.

4.4 Symmetries for MUS-enumeration
The previous sections describe modifications to algo-

rithms for computing one MUS. In some applications, users
may be interested in a collection of MUSes instead. To this
end, Liffiton et al. (2016) proposed the MARCO algorithm
(Algorithm 4).

Similar to the IHS algorithm presented before, the
MARCO algorithm is based on the hitting set dualization of
MUSes and MCSes (Proposition 5) and explores the power-
set of all constraints in an efficient way. In particular, instead
of calculating a minimal hitting set to the set of correction
subsets, MARCO computes any hitting set (line 3 in Algo-
rithm 4), which is called the seed. Next, a SAT oracle is in-
voked to check whether the computed seed is satisfiable. If
this is the case, the seed is used to calculate a correction sub-
set, which is then added to the hitting-set solver. When the
seed is unsatisfiable, it is shrunk further down to an MUS,
and the hitting-set-solver is instructed to exclude any super-
set of the found MUS as next seeds.

When many symmetries are present in the constraint spec-
ification, the problem may contain many MUSes that are
similar from a user perspective (Leo et al. 2024). To reduce
the cognitive load on a user, we propose to use symmetry
breaking constraints in the map-solver to specify a prefer-
ence on the seed to compute from the map. This modification
will only generate seeds that adhere to the lex-leadership
relation defined by the symmetry breaking constraints, and
hence the number of MUSes enumerated by the algorithm is
reduced. When the full set of MUSes is required for the ap-
plication at hand, it can be reconstructed in post-processing
based on Proposition 3. This is similar to how symmetries
are used when counting solutions to a satisfaction problem
(Wang et al. 2020).

Note that any method may be used to grow and shrink the

seed in the MARCO algorithm. Therefore, any symmetry-
related optimizations to either shrinking or growing-
algorithms may directly benefit the performance of MARCO
as well. E.g., for shrinking, one can use SYMM-SHRINK (Al-
gorithm 1) and for growing similar symmetry-inspired tech-
niques can be devised.

5 Experiments
In this section, we evaluate our proposed modifications to
algorithms for MUS-computation and enumeration on a set
of benchmark instances. We aim to answer the following ex-
perimental questions:

EQ1 To what extent is making MUS-computation
symmetry-aware beneficial in terms of runtime?

EQ2 How can symmetries be used for MUS enumeration?

EQ3 How do MUS-computation algorithms benefit from
the detection of row-interchangeability symmetries?

We run all methods presented in this paper on unsatisfi-
able constraint problems encoded as pseudo-Boolean prob-
lems. Our benchmark consists of 272 instances with 146
pigeon-hole problems, 66 n+k-queens problems, and 60 bin-
packing problems.

We implemented all MUS-finding algorithms on top of
the CPMpy constraint modeling library (Guns 2019), ver-
sion 0.9.20 in Python 3.10.14. Pseudo-Boolean solver Exact
v1.2.1 (Devriendt 2023; Elffers and Nordström 2018) is used
as SAT-oracle and Gurobi v11.0.2 as hitting-set-solver. Sym-
metries are computed using a custom branch of BREAKID2

(Devriendt et al. 2016). All methods were run on a single
core of an Intel(R) Xeon(R) Silver 4214 CPU with 128GB of
memory on Ubuntu 20.04. We used a time-out of 1h which
includes symmetry-detection by BREAKID and unrolling to
symmetric MUSes in LEX-MARCO.

5.1 MUS computation
Figure 1 shows the runtime of all methods for computing
MUSes discussed in this paper. We first focus on Figure 1a,
which compares the runtime of shrink-based methods. We
compare the default algorithm (Shrink), the version remov-
ing symmetric transition constraints (Symm-Shrink), and its
version when recomputing symmetries in each iteration of
the algorithm (Symm-ShrinkR). For both symmetry-aware
algorithms, we also compare the runtime when instructing
BreakID to detect no row-interchangeability symmetries.

We can clearly see the removal of symmetric transition
constraints is beneficial for the runtime of the algorithm as
Symm-Shrink solves all instances between 5 and 10 times
faster compared to the default. Still, the detection of row-
interchangeability symmetries is essential for a successful
implementation of this approach. For most instances in our
benchmarks, recomputing symmetries in each iteration of
the algorithm proves to be less efficient, even compared to
the default algorithm (EQ3).

2on commit 4e9b15fd



(a) Runtime for shrink-based methods (b) Runtime for IHS-based methods (c) MCS enumeration for IHS-based methods

Figure 1: Runtime for MUS-computation methods, measured across all 272 instances with a time-limit of 1h.

Next, we compare the runtime of each version of the IHS
algorithms for computing OCUSes. We compare the de-
fault algorithm (OCUS), the addition of symmetry break-
ing constraints (Lex), the enumeration of symmetric MC-
Ses (Enum(u)), and lastly, the combination (Lex+Enum(u)).
Here, u is the upperbound on the number of MCSes added in
each iteration. From Figure 1b, we see that any version of the
algorithm performs better compared to OCUS, and the most
efficient version uses a combination of symmetry breaking
constraints and the enumeration of symmetric MCSes. In-
deed, compared to the OCUS, Lex+Enum finds an MUS for
almost double the number of instances.

Comparing the different versions of Enum, we notice an
increase in runtime for easier instances when adding more
MCSes. This can clearly be seen from Figure 1b and from
the top of Figure 1c. Still, Enum can solve more instances
as the number of MCSes increases, but there clearly is a
limit to where this method can be pushed. When combin-
ing symmetry-breaking and MCS-enumeration, more MC-
Ses do not yield in more instances solved, and the perfor-
mance slightly degrades instead. This can be seen from the
bottom of Figure 1c. This is due to the overhead in the hitting
set solver when dealing with both the lex-leader constraints
and the surplus in sets to hit. Hence, for Lex+Enum, it is
better to keep the number of extra MCSes low.

Overall, we can conclude that making MUS-computation
techniques aware of symmetries in the unsatisfiable problem
has a positive impact on their runtime (EQ1).

5.2 MUS enumeration
We use the MARCO algorithm and Lex-MARCO with post-
processing to unroll the set of lex-minimal MUSes to the
full set. Both algorithms used the non-symmetric version
of SHRINK for shrinking and the BLS procedure from
Marques-Silva et al. (2013) for growing. Figure 2 shows the
number of MUSes enumerated within 1h. From the left-hand
side, it is clear the number of MUSes computed from the
lex-minimal seeds is reduced for most of the instances com-
pared to running vanilla MARCO. Instances found above the
diagonal timed out for MARCO and the number of MUSes
enumerated so far was smaller than the number of MUSes
computed from the lex-minimal seeds by Lex-MARCO.

Figure 2: Number of MUSes enumerated within 1h

On the right-hand side of Figure 2, we show that the total
number of MUSes after unrolling is higher compared to us-
ing the baseline MARCO algorithm. Indeed, Lex-MARCO
completely enumerates the set of MUSes for 197 instances
compared to MARCO completing 112. When both algo-
rithms reach the timeout, MARCO may compute more
MUSes as Lex-MARCO cannot start, or cannot complete
unrolling within the given time-budget.

Overall, we can conclude that exploiting constraint sym-
metries can aid MUS enumeration by reducing the number
of returned MUSes before unrolling and speeding up MUS
enumeration when the full set is to be enumerated (EQ2).

6 Conclusion and outlook
In this paper, we propose various modifications to algo-
rithms for finding MUSes inspired by symmetry break-
ing in SAT-and PB-solving. We demonstrated how to use
off-the-shelf symmetry-detection tools to find symmetries
in constraint specifications and how to use those symme-
tries in MUS computation techniques. Our results show that
the presence of symmetry can indeed slow down MUS-
finding algorithms, and symmetry handling methods are es-
sential for finding MUSes quickly. This paper opens the door
for future symmetry-inspired enhancements for computing
MUSes, and as a next step, we plan to implement our meth-
ods into an existing state-of-the-art MUS finder. This allows
us to evaluate our methods on competition benchmarks and
compare them to other techniques, such as model rotation.



Acknowledgements
This work was partially supported by Fonds Wetenschap-
pelijk Onderzoek – Vlaanderen (project G070521N), by
the European Union (ERC, CertiFOX, 101122653 & ERC,
CHAT-Opt, 01002802 & Europe Research and Innovation
program TUPLES, 101070149). Views and opinions ex-
pressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or the Euro-
pean Research Council. Neither the European Union nor the
granting authority can be held responsible for them.

References
Anders, M.; Brenner, S.; and Rattan, G. 2024. satsuma:
Structure-Based Symmetry Breaking in SAT. In 27th Inter-
national Conference on Theory and Applications of Satisfi-
ability Testing, SAT 2024, August 21-24, 2024, Pune, India,
4:1–4:23.
Audemard, G.; and Simon, L. 2018. On the Glucose
SAT Solver. Int. J. Artif. Intell. Tools, 27(1): 1840001:1–
1840001:25.
Belov, A.; Lynce, I.; and Marques-Silva, J. 2012. Towards
efficient MUS extraction. AI Commun., 25(2): 97–116.
Belov, A.; and Marques-Silva, J. 2011. Accelerating MUS
extraction with recursive model rotation. In FMCAD, 37–40.
FMCAD Inc.
Bendı́k, J.; and Cerná, I. 2020. Replication-Guided Enu-
meration of Minimal Unsatisfiable Subsets. In CP, vol-
ume 12333 of Lecture Notes in Computer Science, 37–54.
Springer.
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2021. Handbook of Satisfiability - Second Edition, volume
336 of Frontiers in Artificial Intelligence and Applications.
IOS Press. ISBN 978-1-64368-160-3.
Bleukx, I.; Devriendt, J.; Gamba, E.; Bogaerts, B.; and Guns,
T. 2023. Simplifying Step-Wise Explanation Sequences. In
CP, volume 280 of LIPIcs, 11:1–11:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.
Bogaerts, B.; Gamba, E.; and Guns, T. 2021. A framework
for step-wise explaining how to solve constraint satisfaction
problems. Artif. Intell., 300: 103550.
Caudenberg, D. V.; and Bogaerts, B. 2022. Symmetry and
Dominance Breaking for Pseudo-Boolean Optimization. In
BNAIC/BENELEARN, volume 1805 of Communications in
Computer and Information Science, 149–166. Springer.
Chu, G.; de la Banda, M. G.; Mears, C.; and Stuckey, P. J.
2014. Symmetries, almost symmetries, and lazy clause gen-
eration. Constraints An Int. J., 19(4): 434–462.
Cohen, D. A.; Jeavons, P.; Jefferson, C.; Petrie, K. E.; and
Smith, B. M. 2006. Symmetry Definitions for Constraint
Satisfaction Problems. Constraints An Int. J., 11(2-3): 115–
137.
Devriendt, J. 2023. Exact Solver.
Devriendt, J.; Bogaerts, B.; and Bruynooghe, M. 2014.
BreakIDGlucose: On the importance of row symmetry in
SAT. In Proceedings 4th International Workshop on the
Cross-Fertilization Between CSP and SAT, 1–17.

Devriendt, J.; Bogaerts, B.; and Bruynooghe, M. 2017. Sym-
metric Explanation Learning: Effective Dynamic Symmetry
Handling for SAT. In SAT, volume 10491 of Lecture Notes
in Computer Science, 83–100. Springer.
Devriendt, J.; Bogaerts, B.; Bruynooghe, M.; and Denecker,
M. 2016. Improved Static Symmetry Breaking for SAT. In
SAT, volume 9710 of Lecture Notes in Computer Science,
104–122. Springer.
Devriendt, J.; Bogaerts, B.; Cat, B. D.; Denecker, M.; and
Mears, C. 2012. Symmetry Propagation: Improved Dynamic
Symmetry Breaking in SAT. In ICTAI, 49–56. IEEE Com-
puter Society.
Drescher, C.; Tifrea, O.; and Walsh, T. 2011. Symmetry-
breaking answer set solving. AI Commun., 24(2): 177–194.
Elffers, J.; and Nordström, J. 2018. Divide and Conquer:
Towards Faster Pseudo-Boolean Solving. In IJCAI, 1291–
1299. ijcai.org.
Fahle, T.; Schamberger, S.; and Sellmann, M. 2001. Sym-
metry Breaking. In CP, volume 2239 of Lecture Notes in
Computer Science, 93–107. Springer.
Feydy, T.; Somogyi, Z.; and Stuckey, P. J. 2011. Half Reifi-
cation and Flattening. In CP, volume 6876 of Lecture Notes
in Computer Science, 286–301. Springer.
Flener, P.; Frisch, A. M.; Hnich, B.; Kiziltan, Z.; Miguel, I.;
Pearson, J.; and Walsh, T. 2002. Breaking Row and Col-
umn Symmetries in Matrix Models. In CP, volume 2470 of
Lecture Notes in Computer Science, 462–476. Springer.
Gamba, E.; Bogaerts, B.; and Guns, T. 2023. Efficiently
Explaining CSPs with Unsatisfiable Subset Optimization. J.
Artif. Intell. Res., 78: 709–746.
Gent, I. P.; Petrie, K. E.; and Puget, J. 2006. Symmetry
in Constraint Programming. In Handbook of Constraint
Programming, volume 2 of Foundations of Artificial Intel-
ligence, 329–376. Elsevier.
Guns, T. 2019. Increasing modeling language convenience
with a universal n-dimensional array, CPpy as python-
embedded example. In Proceedings of the 18th workshop
on Constraint Modelling and Reformulation at CP (Modref
2019), volume 19.
Gupta, S. D.; Genc, B.; and O’Sullivan, B. 2021. Explana-
tion in Constraint Satisfaction: A Survey. In IJCAI, 4400–
4407. ijcai.org.
Hickey, R.; and Bacchus, F. 2019. Speeding Up
Assumption-Based SAT. In SAT, volume 11628 of Lecture
Notes in Computer Science, 164–182. Springer.
Ignatiev, A.; Previti, A.; Liffiton, M. H.; and Marques-Silva,
J. 2015. Smallest MUS Extraction with Minimal Hitting
Set Dualization. In CP, volume 9255 of Lecture Notes in
Computer Science, 173–182. Springer.
Junker, U. 2001. Quickxplain: Conflict detection for arbi-
trary constraint propagation algorithms. In IJCAI’01 Work-
shop on Modelling and Solving problems with constraints,
volume 4. Citeseer.
Leo, K.; Gange, G.; de la Banda, M. G.; and Wallace, M.
2024. Automatic Core-Guided Reformulation via Constraint



Explanation and Condition Learning. In AAAI, 8065–8072.
AAAI Press.
Leo, K.; and Tack, G. 2017. Debugging Unsatisfiable Con-
straint Models. In CPAIOR, volume 10335 of Lecture Notes
in Computer Science, 77–93. Springer.
Liffiton, M. H.; Previti, A.; Malik, A.; and Marques-Silva, J.
2016. Fast, flexible MUS enumeration. Constraints An Int.
J., 21(2): 223–250.
Marques-Silva, J. 2010. Minimal Unsatisfiability: Models,
Algorithms and Applications (Invited Paper). In ISMVL, 9–
14. IEEE Computer Society.
Marques-Silva, J.; Heras, F.; Janota, M.; Previti, A.; and
Belov, A. 2013. On Computing Minimal Correction Sub-
sets. In IJCAI, 615–622. IJCAI/AAAI.
Marques-Silva, J.; and Mencı́a, C. 2020. Reasoning About
Inconsistent Formulas. In IJCAI, 4899–4906. ijcai.org.
McDonald, I.; and Smith, B. M. 2002. Partial Symmetry
Breaking. In CP, volume 2470 of Lecture Notes in Computer
Science, 431–445. Springer.
Mears, C.; de la Banda, M. G.; Demoen, B.; and Wallace,
M. 2014. Lightweight dynamic symmetry breaking. Con-
straints An Int. J., 19(3): 195–242.
Metin, H.; Baarir, S.; Colange, M.; and Kordon, F. 2018.
CDCLSym: Introducing Effective Symmetry Breaking in
SAT Solving. In TACAS (1), volume 10805 of Lecture Notes
in Computer Science, 99–114. Springer.
Nadel, A.; and Ryvchin, V. 2012. Efficient SAT Solving
under Assumptions. In SAT, volume 7317 of Lecture Notes
in Computer Science, 242–255. Springer.
Paxian, T.; and Biere, A. 2023. Uncovering and Classifying
Bugs in MaxSAT Solvers through Fuzzing and Delta De-
bugging. In POS@SAT, volume 3545 of CEUR Workshop
Proceedings, 59–71. CEUR-WS.org.
Sabharwal, A. 2005. SymChaff: A Structure-Aware Satisfi-
ability Solver. In AAAI, 467–474. AAAI Press / The MIT
Press.
Sakallah, K. A. 2021. Symmetry and Satisfiability. In Hand-
book of Satisfiability, volume 336 of Frontiers in Artificial
Intelligence and Applications, 509–570. IOS Press.
Wang, W.; Usman, M.; Almaawi, A.; Wang, K.; Meel, K. S.;
and Khurshid, S. 2020. A Study of Symmetry Break-
ing Predicates and Model Counting. In TACAS (1), vol-
ume 12078 of Lecture Notes in Computer Science, 115–134.
Springer.
Wieringa, S. 2014. Incremental satisfiability solving and its
applications. Ph.D. thesis, Aalto University School of Sci-
ence, Department of Computer Science and Engineering.


