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Abstract. Due to the wide employment of automated reasoning in the
analysis and construction of correct systems, the results reported by au-
tomated reasoning engines must be trustworthy. For Boolean satisfiabil-
ity (SAT) solvers—and more recently SAT-based maximum satisfiability
(MaxSAT) solvers—trustworthiness is obtained by integrating proof log-
ging into solvers, making solvers capable of emitting machine-verifiable
proofs to certify correctness of the reasoning steps performed. In this
work, we enable for the first time proof logging based on the VeriPB
proof format for multi-objective MaxSAT (MO-MaxSAT) optimization
techniques. Although VeriPB does not offer direct support for multi-
objective problems, we detail how preorders in VeriPB can be used to
provide certificates for MO-MaxSAT algorithms computing a represen-
tative solution for each element in the non-dominated set of the search
space under Pareto-optimality, without extending the VeriPB format or
the proof checker. By implementing VeriPB proof logging into a state-
of-the-art multi-objective MaxSAT solver, we show empirically that proof
logging can be made scalable for MO-MaxSAT with reasonable overhead.

Keywords: Multi-objective combinatorial optimization · maximum sat-
isfiability · proof logging

1 Introduction

Automated reasoning is central in enabling the analysis and construction of cor-
rect systems. Practical solvers developed in the realm of automated reasoning,
such as Boolean satisfiability (SAT) solvers [9], facilitate the development of
more complex automated reasoning systems. One successful example of such
generic SAT-based approaches are solvers developed for maximum satisfiabil-
ity (MaxSAT) [3]—the optimization extension of SAT—enabling solving various
NP-hard real-world optimization problems [3]. Further, SAT-based approaches
are being generalized and developed for MaxSAT under multiple objectives, i.e.,
multi-objective MaxSAT [11,13,14,29,35,36,37,49,50], with the aim of extend-
ing the success of MaxSAT to more efficiently solving real-world multi-objective
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optimization problems, from, e.g., staff scheduling [18] through package upgrade-
ability [39] to finding interpretable classifiers [44].

The more SAT and MaxSAT solvers are used in real-world settings, the
more important it is to be able to trust the results solvers provide. While so-
lutions are generally easy to confirm, solvers should be trustworthy also when
they report unsatisfiability or, in the context of optimization, when the solvers
claim that a solution is optimal and hence no better solutions exist. In response
to these concerns, proof logging and checking techniques for SAT solvers have
been developed and widely adopted [28,15,16], among which DRAT [30,31] re-
mains today the de facto standard in the context of SAT solving. However,
DRAT and other SAT proof formats work purely on propositional clauses, which
makes them unsuitable for proof logging MaxSAT solvers. Instead, the VeriPB
format [27,10], which is based on pseudo-Boolean constraints (i.e., 0-1 linear
inequalities) and offers direct support for reasoning about objective values in
single-objective optimization problems, has enabled proof logging for various op-
timization contexts [7,10,17,22,23,24,25,26,27,32,33,52], including MaxSAT solv-
ing [6,7,33,51,52].

In this work, we enable proof logging for various recently-proposed multi-
objective MaxSAT solving techniques. To the best of our knowledge, this is the
first work enabling proof logging in multi-objective optimization.4 Our solution
builds on the VeriPB format. It is critical to note that VeriPB does not offer di-
rect support for multiple objective functions, and is thereby seemingly restricted
to proof logging single-objective optimization algorithms. However, as we will
detail, proof logging for MO-MaxSAT can in fact be enabled without extending
the VeriPB format or the proof checker. In particular, in order to provide cer-
tificates for MO-MaxSAT algorithms developed for computing a representative
solution for each element in the so-called non-dominated set of the search space
under Pareto-optimality [21], we make in a specific way use of preorders sup-
ported by VeriPB. While preorders were first introduced to VeriPB for certi-
fying symmetry and dominance breaking [10], here we show that, in fact, a single
preorder suffices for certifying that an MO-MaxSAT algorithm has computed a
representative solution at each element of the non-dominated set. As representa-
tive MO-MaxSAT techniques, we detail VeriPB-based proof logging for variants
of the P -minimal [43,49], BiOptSat [37], and LowerBound [14] approaches,
as well as the recently-proposed MO-MaxSAT preprocessing/reformulation tech-
nique of core boosting [36] which has been shown to provide considerable run-
time improvements to MO-MaxSAT solvers. By adding VeriPB proof logging
to the implementations of these approaches in the MO-MaxSAT solver Scut-
tle [34,35,36], we show empirically that proof logging can be made scalable for
MO-MaxSAT, with average proof logging overhead ranging from 14% to 29%
depending on the solving approach.

4 Although relatively distant to the present work, there is some work on certificates
in the context of multi-objective queries in Markov decision processes [4].
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2 Preliminaries

We begin with necessary preliminaries related to multi-objective MaxSAT and
VeriPB proofs.

2.1 Clauses and Pseudo-Boolean Constraints

A literal ℓ is a {0, 1}-valued Boolean variable x or its negation x ≡ 1 − x. A
propositional clause C = (ℓ1 ∨ . . . ∨ ℓk) is a disjunction of literals. A formula in
conjunctive normal form (CNF) F = C1 ∧ . . . ∧ Cm is a conjunction of clauses.
We often think of clauses as sets of literals and formulas as sets of clauses.

A (normalized) pseudo-Boolean (PB) constraint is a 0-1 linear inequality
C =

∑
iaiℓi ≥ b where ai are positive integers and b a non-negative integer. We

will assume wlog that all PB constraints are in normal form, meaning that the
ℓi are over different variables and all coefficients ai and the bound are positive.
A pseudo-Boolean (PB) formula is a conjunction (or set) of PB constraints. We
identify the propositional clause C = (ℓ1 ∨ . . . ∨ ℓk) with the PB constraint∑k

i=1ℓi ≥ 1. This is convenient as the algorithms and solvers that we develop
proof logging for expect propositional clauses as input, and—as detailed in this
work—produce their proofs in pseudo-Boolean format. If C is the PB constraint∑

i aiℓi ≥ b, we write ¬C for its negation
∑

i aiℓi ≥
∑

i ai − b + 1. If p is
furthermore a variable, we write p ⇔ C for the two constraints expressing that
p implies C and vice versa, i.e., Mp+

∑
i aiℓi ≥ M and bp+

∑
i aiℓi ≥ b where

M =
∑

i ai − b + 1. An objective O is an expression
∑

i aiℓi + L where the ai
and L are integers.

A substitution ω maps each variable in its domain to a truth value (either
0 or 1) or to another literal. We denote by C ↾ω the constraint obtained from
C by replacing each variable x in the domain of ω by ω(x); the notations O↾ω,
F↾ω, and #»x↾ω for a tuple of variables #»x are defined analogously. An assignment
α is a substitution that maps only onto {0, 1}. When convenient, we view an
assignment as the set of literals it sets to 1. An assignment α is complete for a
constraint, formula, or objective if α maps each variable in them to a value, and
partial otherwise. The assignment α satisfies a constraint C if the constraint
C ↾α=

∑
ia

′
iℓ

′
i ≥ b′ obtained after normalization has b′ = 0, and falsifies C if∑

ia
′
i < b′. In other words, α satisfies C if simplifying C by α leads to a trivial

constraint and falsifies C if no extension of α satisfies C. An assignment α is
a solution to a formula F if α satisfies all constraints in F . A constraint C is
implied by F (denoted by F |= C) if all solutions of F also satisfy C.

2.2 Multi-Objective MaxSAT

An instance (F,O) of multi-objective MaxSAT (MO-MaxSAT) consists of a
CNF formula F and a set O = (O1, . . . , Op) of p objectives under minimization.
This definition for MO-MaxSAT captures standard (single-objective, weighted
partial) MaxSAT by setting p = 1; see, e.g., [37]. Given two assignments α and β
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F =(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

∧ (x2 ∨ x3 ∨ x5) ∧ (x3 ∨ x4 ∨ x5)

O1 = 3x2 + 4x3 + 2x4 + 5x5

O2 = 7x1 + 4x2 + 1x3 + 2x4
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Fig. 1. A bi-objective MaxSAT instance and its Pareto-optimal solutions.

that are complete for each Oi, we say that α weakly dominates β (and write
α ⪯P β) if Oi↾α≤ Oi↾β holds for each i = 1, . . . , p. Note that O↾α is an integer
value when α is complete for O. If additionally Ot↾α< Ot↾β for some t, we say
that α dominates β (and write α ≺P β). A solution α to F is Pareto-optimal for
(F,O) if α is not dominated by any other solution to F . The non-dominated set
of (F,O) consists of the tuples of objective values of Pareto-optimal solutions,
i.e., {(O1↾α, . . . , Op↾α) | α is Pareto-optimal for (F,O)}. Note that each element
in the non-dominated set can correspond to several Pareto-optimal solutions.
We focus on the task of computing a representative solution for each element of
the non-dominated set.

Example 1. Consider the bi-objective MaxSAT instance (F, (O1, O2)) in Fig. 1.
Its non-dominated set is {(4, 8), (5, 6), (6, 3)}. Its three Pareto-optimal solutions
are {x1, x2, x3, x4, x5}, {x1, x2, x3, x4, x5}, and {x1, x2, x3, x4, x5}.

2.3 Multi-Objective MaxSAT Solving

We consider the multi-objective MaxSAT problem of finding a representative
solution of each element in the non-dominated set. Various algorithms for this
problem setting have been proposed recently [13,14,37,49,50]. These algorithms
make incremental use of a SAT solver [19,45] while adding constraints to the
working formula, ending with an unsatisfiable working formula once all elements
in the non-dominated set have been discovered.

For many of the existing algorithms for MO-MaxSAT, a crucial building
block is what we call a Pareto-dominance cut, or PD cut for short. A PD cut
is a (set of) constraint(s) that, given a solution α, is falsified exactly by all
solutions that are weakly dominated by α (including α itself). Adding a PD cut
to the working formula therefore excludes solutions weakly dominated by α from
further consideration. Note that for the single-objective case (p = 1), a PD cut
is identical to a solution-improving constraint, admitting only “better” solutions.
This no longer holds when p > 1 since Pareto-dominance is not a total order:
solutions that are incomparable to α will satisfy the PD cut.

For objectives O = (O1, . . . , Op) and solution α, let wi be fresh variables for
each Oi with their semantics defined by

wi ⇔ Oi ≥ Oi↾α . (1)
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The PD cut is the clause (w1 ∨ · · · ∨ wp). For encoding (1), MO-MaxSAT al-
gorithms use a choice of various CNF encodings [5,20,41,42,46]. We will return
in more detail to how PD cuts are employed in the P -minimal [43,49], Lower-
Bound [14], and BiOptSat [37] algorithms in Section 3 when detailing VeriPB
proof logging for each of these algorithms.

2.4 VeriPB

We now overview a simplified version of the VeriPB proof system, only dis-
cussing the rules that are relevant for our current exposition. For instance, while
VeriPB supports single-objective optimization, we will only use the decision ver-
sion of this proof system. We refer the interested reader to earlier work [10,27]
for an exposition of the full proof system.

Given a PB input formula F , the VeriPB proof system maintains a proof
configuration ⟨C,D,O, #»z ⟩, consisting of two sets of constraints, the core set C and
the derived set D, a pseudo-Boolean formula O( #»u , #»v ) over two tuples of variables
#»u , #»v that do not appear in C, and a tuple of variables #»z . The core set can be
thought of as being equal to F and the derived set as consisting of all constraints
derived in the proof. The order O defines a preorder ⪯ on assignments as follows.
If α and β are assignments, then α ⪯ β iff O( #»z ↾α,

#»z ↾β) is true. The proof system
will guarantee that ⪯ is indeed a preorder, i.e., a reflexive and transitive relation.
The preorder in this configuration was originally introduced in the context of
symmetry and dominance breaking [10]. Here we will use the preorder for a
different purpose and will in fact not use the dominance rule introduced in [10].
The precise role of the preorder in our proofs for MO-MaxSAT will be detailed
in Section 3.

The configuration is initialized by setting C = F , D = ∅, O = ∅ (the empty,
and hence trivially true formula) and #»z = (), the empty tuple. Afterwards, the
configuration is updated using the rules detailed next.

New constraints can be added to D by deriving them from previously derived
constraints in C ∪D using the cutting planes proof system [12] consisting of the
following rules.

Literal Axioms. For any literal ℓ, ℓ ≥ 0 is an axiom and can be derived.
Linear Combination. Any positive integer linear combination of two previ-

ously derived PB constraints can be inferred.
Division. Given the normalized PB constraint

∑
i wiℓi ≥ A and a positive

integer c, the constraint
∑

i⌈wi/c⌉ℓi ≥ ⌈A/c⌉ can be inferred.

Conveniently, VeriPB also allows adding an implied constraint without giving
an actual cutting planes derivation, namely, when the constraint is implied by
reverse unit propagation (RUP), a generalization of the same notion in SAT [28].
RUP states that if applying integer bounds consistency propagation on C ∪D ∪
{¬C} results in a contradiction, then C is implied by C ∪ D and can hence be
derived.

Additionally, VeriPB also allows for deriving non-implied constraints as long
as the constraints are guaranteed to preserve satisfiability. Specifically VeriPB
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has the following generalization of the resolution asymmetric tautology (RAT)
rule in SAT [40].
Redundance-Based Strengthening. The constraint C can be derived and

added to D given a substitution ω and explicit (cutting planes) proofs for

C ∪ D ∪ {¬C} |= (C ∪ D ∪ {C})↾ω ∪ O( #»z ↾ω,
#»z ),

i.e., explicit proofs that the constraint on the right is implied by the premises
C ∪ D ∪ {¬C}.

Intuitively, this rule ensures that ω remaps any solution α of C ∪D that does not
satisfy C to a solution α◦ω of C∪D that (i) satisfies C and (ii) for which α◦ω ⪯ α,
i.e., α ◦ ω is least as good (in terms of the order) as α. A common application
of redundance-based strengthening is reification: deriving two pseudo-Boolean
constraints that encode ℓ ⇔ D for some PB constraint D ∈ C ∪ D and for some
fresh literal ℓ.

In addition to adding constraints, previously derived constraints can also
be deleted in order to reduce the number of constraints that the proof checker
has to work with. However, deletion requires care. Without restrictions, deleting
everything in C could make an unsatisfiable formula satisfiable, which would
clearly be incorrect. Deletion is allowed using the following rules.
Derived Deletion. Any constraint can be removed from D.
Core Deletion. A constraint C can be removed from C if C can be derived

from C \ {C} with the redundance-based strengthening rule.

Solutions found are logged and excluded from further consideration by learning
a constraint using the following rule.
Solution Logging. Given a solution α to C ∪ D, we can derive the constraint∑

ℓ∈α ℓ ≥ 1 that excludes α and add this constraint to C.

Constraints can always be moved from the derived set to the core set using the
transfer rule in order to allow e.g. the application of core deletion.
Transfer Rule. If D′ ⊆ D, we can transfer from configuration ⟨C,D,O, #»z ⟩ to

⟨C ∪ (D \ D′),D′,O, #»z ⟩.
Finally, the order can be changed, provided that the derived set is empty (which
can always be achieved using the transfer rule).

Order Change Rule. Given a proof in VeriPB format that O′ is reflex-
ive (i.e., O′( #»u , #»u ) is trivial) and transitive (i.e., whenever O′( #»u , #»v ) and
O′( #»v , #»w) hold, so does O′( #»u , #»w)), and given a tuple of variables #»z ′ of the
right length, we can transition from ⟨C, ∅,O, #»z ⟩ to ⟨C, ∅,O′, #»z ′⟩.

3 Proof Logging for Multi-Objective MaxSAT

As our main contributions, we will now detail how VeriPB can be used for en-
abling proof logging in the multi-objective setting—despite the fact that VeriPB
does not directly support multiple objectives. Our solution is based on a new
type of use of the preorder O in VeriPB.



Certifying Pareto-Optimality in Multi-Objective Maximum Satisfiability 7

3.1 The General Setup

Preorders were originally introduced in VeriPB to enable proofs for symme-
try breaking [10]. However, the preorder turns out to be applicable for multi-
objective proof logging as well. Since all rules in VeriPB are guaranteed to
preserve solutions that are minimal with respect to the defined preorder, the
preorder generalizes a single objective O: computing a solution optimal wrt O is
equivalent to computing a solution that is smallest in the order OO defined by
the formula that is true iff O↾α≤ O↾β . As a first step towards the multi-objective
setting, we introduce a suitable order for encoding Pareto-dominance. In the
following definition, if #»u and #»v are two tuples of variables of equal length, we
write ω #»u→ #»v for the substitution that maps every ui to vi and all other variables
to themselves.

Definition 1. Let O = (O1, . . . , Op) be a tuple of p objectives over variables
#»x = (x1, . . . , xk), and define OO

P ( #»u , #»v ) over fresh variables #»u and #»v as the PB
formula OO

P ( #»u , #»v ) = {O1↾ω #»x → #»u ≤ O1↾ω #»x → #»v , . . . , Op↾ω #»x → #»u ≤ Op↾ω #»x → #»v }.

The following proposition summarizes the properties of OO
P that are important

for our setting.

Proposition 1. Let O = (O1, . . . , Op) be a tuple of objectives and OO
P ( #»u , #»v )

the PB formula from Definition 1. Then the following hold:

– OO
P encodes a preorder, i.e., a reflexive (OO

P ( #»u , #»u ) is trivially satisfied) and
transitive (if OO

P ( #»u , #»v ) and OO
P ( #»v , #»w) also OO

P ( #»u , #»w) holds) relation.
– OO

P ( #»x ↾α,
#»x ↾β) is satisfied if and only if α ⪯P β wrt O, i.e., if α weakly

dominates β.

When the objectives are clear from context, we drop the superscript and use
OP (

#»u , #»v ) for the order that encodes Pareto-dominance over the objectives.
With the transfer and order change rules, the order can be changed arbitrarily

in VeriPB proofs. In our setting, however, we will use OP unchanged throughout
the entire proof. From now on, a VeriPB proof for (F,O) refers to a standard
VeriPB proof for F that (i) as the first derivation step loads the order OP

over the variables #»x in the objectives O, and (ii) at no other point in the proof
changes the order. Our observations on valid VeriPB proofs assume that the
conditions (i) and (ii) are satisfied. The VeriPB proof checker will not verify
these two conditions for us; however, these are merely syntactic restrictions that
can be verified easily (e.g., by checking that no other lines in the proof starts
with load_order).

The following result now guarantees the correctness of the proofs produced
for the different MO-MaxSAT algorithms.

Theorem 1. Let P be a VeriPB proof for (F,O) that derives a contradiction.
Let S be the set of non-dominated solutions logged in P , i.e., logged solutions
that are not dominated by other solutions logged in P . Then S contains a repre-
sentative solution for each element in the non-dominated set of (F,O).
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Let ⟨Ci,Di,Oi,
#»z i⟩ be the proof configuration of P at step i. From the ad-

ditional conditions imposed for multi-objective proofs, we have Oi = OP and
#»z i =

#»x for all i ≥ 1, since OP over the variables #»x in O is loaded in the first
derivation step.

Theorem 1 follows by the following lemmas. Lemma 1 is a restatement of the
properties of VeriPB proofs shown in [10], included here for completeness.

Lemma 1. Let ⟨Ci,Di,OP ,
#»x ⟩ be the ith configuration of P . For every solution

α of Ci, there exists a solution β of Ci ∪ Di for which OP (
#»x↾β ,

#»x↾α).

The next lemma establishes that no rule in VeriPB can “create” new non-
dominated points.

Lemma 2. Consider the ith configuration ⟨Ci,Di,OP ,
#»x ⟩ of P for fixed i ≥ 1.

Any solution of Ci is weakly dominated by a Pareto-optimal solution of (F,O).

Proof. By induction on i. The base case i = 1 follows by Proposition 1 from the
first configuration having C1 = F . Assume that the statement holds for i − 1
and let ⟨Ci−1,Di−1,OP ,

#»x ⟩ be the i−1th configuration. The rules of VeriPB
that can alter the core set are solution logging, core deletion, and the transfer
rule. For the transfer rule, the statement follows immediately by Lemma 1. For
solution logging, the result follows from any solution of Ci being a solution of
Ci−1. Assume thus that Ci = Ci−1 \ {C} and let α be a solution of Ci, that (for
the non-trivial case) does not satisfy C. We show that α is weakly dominated
by a Pareto-optimal solution of (F,O). By the properties of redundance-based
strengthening and core deletion, there is a substitution ω such that β = α ◦ ω
is a solution to Ci−1 for which OP (

#»x↾β ,
#»x↾α). By the induction assumption, β is

weakly dominated by a Pareto-optimal solution γ of (F,O). Since β ⪯P α, α is
weakly dominated by γ. ⊓⊔

Lemma 3 establishes that no rule except for solution logging can remove all
representative solutions for an element in the non-dominated set of (F,O).

Lemma 3. Let ⟨Ci−1,Di−1,OP ,
#»x ⟩ and ⟨Ci,Di,OP ,

#»x ⟩ be the i−1th and ith con-
figurations of P , respectively. Assume that (i) the solutions of Ci−1∪Di−1 include
a representative for the non-dominated point b and (ii) the ith configuration is
obtained by a rule other than solution logging. Then the solutions of Ci ∪ Di

include a representative solution for b.

Proof. Let α be the representative solution to Ci−1 ∪Di−1 for b. We construct a
solution to Ci ∪ Di that is representative for b. For the interesting case, assume
that α is not a solution to Ci ∪ Di. By assumption the ith configuration was
reached by a rule other than solution logging, and hence Di = Di−1 ∪ {C}
for a constraint C added using the redundance-based strengthening rule and a
substitution ω. By redundance-based strengthening β = α ◦ ω is a solution to
Ci ∪Di for which OP (

#»x↾β ,
#»x↾α). Hence by Proposition 1, β weakly dominates α.

As α is representative for the non-dominated point b, β must be representative
for b as well. ⊓⊔
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Using these three lemmas we can now establish Theorem 1 as follows.

Proof (of Theorem 1). Consider the first configuration ⟨C1,D1,OP ,
#»x ⟩ of P ,

where C1 = F and D1 = ∅. By Proposition 1, there is a one-to-one correspondence
between the Pareto-optimal solutions of (F,O) and the solutions of C1∪D1 that
are minimal wrt OP . Specifically, the solutions of C1∪D1 contain a representative
solution for each element in the non-dominated set of (F,O). Since P derives
a contradiction, there are no solutions to the union of the core and derived
set of the final configuration. Thus the theorem holds if (i) no solutions that
dominate a Pareto-optimal solution of (F,O) are logged in the proof, and (ii) a
representative solution for each element in the non-dominated set is logged in
the proof. (i) follows by Lemma 2 and (ii) by Lemma 3. ⊓⊔

We note that Theorem 1 also holds when an instance (F, (O)) only has a
single objective. In this case α ⪯P β is equivalent to O↾α≤ O↾β . Hence Theo-
rem 1 states that the simplified version of VeriPB using only rules for decision
problems (recall Section 2.4) is sufficient for certifying single-objective MaxSAT
solvers as well. Thereby it can be argued that the (more complicated) optimiza-
tion proof system presented in [10] could be simplified without losing any of its
expressiveness by replacing the explicit linear objective and objective-specific
rules by the linear order-based rules we describe.

3.2 Proof Logging for Pareto Dominance Cuts

A key step in proof logging the different multi-objective algorithms is the deriva-
tion of a constraint called a PD cut given a solution α. In particular, given a
solution α of F , we will derive a constraint that states that we are no longer
interested in solutions worse than or equally good as α in terms of Pareto-
dominance. In single-objective VeriPB, there is a dedicated rule that allows for
deriving a so-called solution-improving constraint. However we will show that
PD cuts can be derived only relying on the redundance-based strengthening and
solution logging rules.

We will make use of some auxiliary variables wi for each objective Oi (re-
call Equation (1)). Firstly, introducing such (reified) constraints can be done
with redundance-based strengthening in a standard way [27]. The introduced
constraints guarantee that iff β is worse than or equal to α in Oi, then vari-
able wi holds in β. Now let ωα be the substitution that maps every variable
to their value in α and each wi to 1. We claim that with the redundance-based
strengthening rule and this witness we can derive the constraint

Cα :=

p∑
i=1

|α| · wi +
∑
ℓ∈α

ℓ ≥ |α|.

Intuitively, this constraint maps each solution weakly dominated by α to α.
In doing so it excludes all solutions the PD cut excludes (the solutions weakly
dominated by α) except for α itself. To see that this constraint can be derived
with redundance-based strengthening, we can verify that all proof obligations
are indeed met.
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Table 1. Example proof for certifying a PD cut.

ID Pseudo-Boolean Constraint Comment Justification

Input constraints and potential previous proof steps
[a] 11wα

1 + 3x2 + 4x3 + 2x4 + 5x5 ≥ 11 wα
1 ⇐ O1 ≥ O1↾α Redundance {wα

1 }
[b] 4wα

1 + 3x2 + 4x3 + 2x4 + 5x5 ≥ 4 wα
1 ⇒ O1 ≥ O1↾α Redundance {wα

1 }
[c] 7wα

2 + 7x1 + 4x2 + 1x3 + 2x4 ≥ 7 wα
2 ⇐ O2 ≥ O2↾α Redundance {wα

2 }
[d] 8wα

2 + 7x1 + 4x2 + 1x3 + 2x4 ≥ 8 wα
2 ⇒ O2 ≥ O2↾α Redundance {wα

2 }
[e] 5wα

1 + 5wα
2 + x1 + x2 + x3 + x4 + x5 ≥ 5 Cα Redundance ωα

[f ] x1 + x2 + x3 + x4 + x5 ≥ 1 Log solution α
[g] wα

1 + wα
2 ≥ 1 PD cut ([e] + [f ])/5

– For each constraint C in C ∪ D that does not mention wi, C↾ωα is trivially
satisfied since α is a solution that satisfies those constraints.

– If C is one of the constraints (1), then clearly C↾ωα
holds too.

– Clearly also Cα↾ωα
holds.

– Lastly, what we need to show is that O( #»x↾ωα ,
#»x ) holds if Cα is not satisfied.

This constraint expresses that α weakly dominates any assignment β that
satisfies all derived constraints so far but not Cα. As such an assignment β
must assign all wi to 1, from (1) we immediately have that Oi↾β≥ Oi↾α, as
desired.

Finally, after deriving Cα, we log the solution α to obtain a solution-excluding
constraint

∑
ℓ∈α ℓ ≥ 1. By adding

∑
ℓ∈α ℓ ≥ 1 to Cα, we arrive at

∑p
i=1 |α| ·wi ≥

1. Hence at least one of the wi must be 0. Dividing the result by |α| yields the
PD cut (w1 ∨ · · · ∨ wp).

Example 2. Recall the instance in Fig. 1. Table 1 shows the steps required in the
VeriPB proof for certifying a PD cut based on solution α = {x1, x2, x3, x4, x5}
with objective values (4, 8). Steps [a], [b], [c], and [d] first introduce the defini-
tions of the wα

1 and wα
2 variables from Equation (1) as normalized reified PB

constraints. These steps are justified by redundance-based strengthening using
the fresh variables wα

1 and wα
2 as witnesses. Next, step [e] introduces Cα. Lastly,

the solution α is logged (in [f ]) and the PD cut derived (in [g]).

3.3 Proof Logging Multi-Objective MaxSAT Algorithms

To enforce bounds on the values of the different objectives, multi-objective
MaxSAT algorithms make use of CNF encodings of (reified) pseudo-Boolean
constraints. For certifying the correctness of MO-MaxSAT algorithms, the cor-
rectness of these encodings needs to be certified as well. All algorithms covered in
this paper make use of the incremental (generalized) totalizer encoding [5,41,46].
The totalizer encoding can be visualized as a tree where each node has a set of
output literals that “count” how many of the literals at the leaves of its subtree
are 1. In earlier work [52] it has been shown how the clauses of the totalizer
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encoding can be derived in the VeriPB proof system from the constraints de-
scribing the semantics of the output and internal variables. For certifying the
generalized totalizer encoding, the semantics of the output variables are slightly
different. Each output variable ob of a node is defined by the two constraints
ob ⇔

∑n
i=1 aiℓi ≥ b over the n literals at the leaves of the subtree. In contrast

to the unweighted case, ai can be larger than 1 here and values of b that are not
subsetsums of {ai | i = 1, . . . , n} are omitted. Deriving the clauses of the gen-
eralized totalizer encoding now follows the cutting planes procedure described
in [52].

Many implementations of MaxSAT algorithms employing the totalizer en-
coding only derive clauses for enforcing the ob ⇐

∑n
i=1 aiℓi ≥ b constraint, since

these are enough for enforcing upper bounds on the objective values by setting
ob to 0. As observed in [37], for the generalized totalizer it is additionally nec-
essary to enforce all output variables in the range [b,max{ai | i = 1, . . . , n}) to
0 in order to enforce

∑n
i=1 aiℓi < b. With this modification, also for the gener-

alized totalizer encoding, deriving only one “direction” of clauses is enough from
the perspective of the solver. In the proof, however, we will make use of both
directions of the definition of these output variables; this means that a solu-
tion found by the SAT solver is not necessarily a solution to the constraints in
the proof. When using a solution found by the SAT solver as a witness for the
redundance-based strengthening rule for deriving a PD cut (recall Section 3.2),
we therefore need to adjust the assignment to satisfy the stricter semantics of
the proof first. This is done during proof generation by traversing through all
nodes of the (generalized) totalizer encodings and manually assigning the output
variables to values following the strict semantics described above. This adjusted
assignment is still guaranteed to satisfy all clauses in the SAT solver.

Next, we detail three state-of-the-art MO-MaxSAT algorithms and how to
generate proofs for them.

P -minimal [43,49]. Starting from any solution α, the P -minimal algorithm in-
troduces a PD cut excluding all solutions that are weakly dominated by α. A
SAT solver is then queried while temporarily enforcing the next-found solution
to dominate α. Both steps are achieved using the generalized totalizer encoding.
If no solution dominating the latest one can be found, the previous solution is
guaranteed to be Pareto-optimal. In this case P -minimal drops the temporary
constraints and starts over. If the working formula is unsatisfiable at this point,
P -minimal terminates. An example of a search path of P -minimal in objective
space is illustrated on the left-hand side of Fig. 2. The blue circles and red dots
represent the solutions found by the SAT solver, with the red dots representing
Pareto-optimal solutions. In such an execution, P -minimal introduces a PD cut
for each of these solutions.

For proof logging P -minimal we certify the generalized totalizer objective
encodings and the added PD cuts in the VeriPB proof (as already described).
This allows a contradiction to be derived in the proof iff a PD cut was added for
each element in the non-dominated set. The temporary constraints that enforce
domination are not required in the proof since they are merely heuristics guiding
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Fig. 2. Illustrations of the search path of MO-MaxSAT algorithms in objective space.

the SAT solver to certain regions temporarily and are not needed for reaching
the final contradiction.

LowerBound [14]. The LowerBound algorithm restricts the search space by
temporarily enforcing upper bounds of the form Oi ≤ bi on each objective and
then executes P -minimal within these bounds. Once P -minimal terminates, the
bounds bi are loosened and the process is repeated. LowerBound terminates
once the bounds include the entire search space. In this last case, P -minimal
is executed without the temporary bound constraints and will terminate with
an unsatisfiable working instance. For proof logging LowerBound it therefore
suffices to proof log the invocations of P -minimal as a subroutine. The search
path for one invocation of P -minimal within a set of bounds is illustrated in
green in Fig. 2 (middle).

BiOptSat [37]. The BiOptSat algorithm is specific to problems with two
objectives (O1, O2). The algorithm enumerates non-dominated points under the
guarantee that the values for one objective are monotonically increasing, while
the values of the other objective are decreasing. BiOptSat first employs the
subroutine MinInc to minimize O1 without any additional constraints, returning
the solution α. Next, the subroutine MinDec uses solution-improving search to
minimize O2 under the condition that O1 = O1↾α. Let the final solution found
by MinDec be β, which is guaranteed to be Pareto-optimal. BiOptSat then
repeats this process after introducing the constraint O2 ≤ O2↾β −1. An example
of a search path of BiOptSat is illustrated in Fig. 2 (right). Since MinInc finds
the global minimum of O1 for the current working formula, assume for now
that we have a proof logging procedure for MinInc that results in the constraint
CMinInc := O1 ≥ O1↾α being added to the proof. For any solution found during
the execution of MinDec, we introduce a PD cut, which in turn is strengthened
to the unit clause (w2) by combining it with CMinInc. This strengthened PD
cut is semantically equivalent to the constraint added during solution-improving
search in MinDec and at the end before BiOptSat starts over.

Example 3. Recall again the instance in Fig. 1. Assume that we have executed
MinInc and MinDec once already and that MinDec has yielded the Pareto-optimal
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Table 2. Example proof for a strengthened PD cut in BiOptSat.

ID Pseudo-Boolean Constraint Comment Justification

Input constraint and potential previous proof steps
[lb] 3x2 + 4x3 + 2x4 + 5x5 ≥ 4 Derived during MinInc
[a] 11wα

1 + 3x2 + 4x3 + 2x4 + 5x5 ≥ 11 wα
1 ⇐ O1 ≥ O1↾α Redundance {wα

1 }
Other PD cut certification steps from Table 1

[g] wα
1 + wα

2 ≥ 1 PD cut See Table 1
[h] wα

2 ≥ 1 (([lb] + [a])/11) + [g]

α = {x1, x2, x3, x4, x5}. Table 2 details the proof steps taken to certify the
constraint O2 < O2↾α added as the last step in BiOptSat. First, assume that
[lb] is CMinInc derived in the proof during MinInc. Next, we certify the PD cut for
α in the proof as detailed in Table 1. Finally, by summing up the lower-bounding
constraint from MinInc, the definition of wα

1 and the PD cut, we obtain wα
2 ≥ 1

which is semantically equivalent to the constraint added by BiOptSat.

It remains to show that we can proof log MinInc to derive CMinInc. The details
depend on the implementation of MinInc for which several variants have been
proposed [37]. For the SAT-UNSAT variant, where MinInc is implemented as
solution-improving search, CMinInc is implicitly derived by the SAT solver during
the final unsatisfiable query. Proof logging for the core-guided variants of MinInc
can be implemented as already described for the single-objective setting in [7];
in short, CMinInc can be derived from the final reformulated objective.

3.4 Proof Logging Core Boosting

Core boosting [36] is a recently-proposed preprocessing/reformulation technique
for MO-MaxSAT, consisting of applying the single-objective core-guided opti-
mization algorithm OLL [2,47] wrt each objective individually, before executing
an MO-MaxSAT algorithm on the reformulated objectives obtained from OLL.
With this, core boosting shrinks the search space that needs to be considered by
the MO-MaxSAT algorithm by deriving lower bounds for each objective. Core
boosting also alters the structure of the CNF objective encodings since the total-
izer structures built by OLL during core boosting can be reused in the objective
encodings built by the MO-MaxSAT algorithm.

We give a brief overview of the single-objective core-guided OLL MaxSAT
algorithm to the extent relevant for understanding how proof logging for core
boosting works. Given an objective O, OLL invokes a SAT solver with the as-
sumptions that none of the literals in O incurs cost. If these assumptions are not
satisfiable, the SAT solver returns an implied clause C—referred to as an unsat-
isfiable core—over the objective literals. OLL now introduces counting variables
oi ⇐

∑
ℓ∈C ℓ ≥ i for i = 2, . . . , |C| (encoded by the totalizer encoding) and

reformulates the objective by adding cC · (
∑

ℓ∈C −ℓ+
∑|C|

i=2 oi + 1) to it, where
cC is the minimum objective coefficient of any literals in C. Iteratively applying
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d1, d2 b2
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Fig. 3. An objective encoding structure built by core boosting. The dashed box shows
the alternative structure that would be built without reusing a3, a4 as an internal node.

this process guarantees that the reformulated objective is always equal to the
original objective and OLL terminates once there is a solution that does not
incur cost on any of the literals in the reformulated objective.

Example 4. Let O = x1+x2+x3+2x4 be one of the objectives that core boosting
is performed on. Assume the first core extracted is C1 = (x1 ∨ x2 ∨ x3 ∨ x4).
OLL reformulates C1 by adding counting variables ai ⇐ x1 + x2 + x3 + x4 ≥ i
for i = 2, 3, 4. Assume the next core extracted is C2 = (x4 ∨ a2), which is
reformulated by adding the counting variable b2 ⇐ x4 + a2 ≥ 2. The final
reformulated objective is O′ = a3 + a4 + b2 + 2.

Proof logging for OLL is described in [7], yielding a constraint of form O ≥ O′

associating the reformulated objective O′ with the original objective O. After
OLL has been executed, core boosting builds a CNF encoding for each refor-
mulated objective. However, if the reformulated objective contains a sequence
of literals that are outputs for the same totalizer, they should be reused as an
internal node of the final encoding employed by the MO-MaxSAT algorithm
rather than individual leaves. This avoids introducing new auxiliary variables
that would end up being equivalent to the variables introduced by OLL.

Example 5. Fig. 3 (left and middle-left, respectively) shows the two totalizer
encodings built by OLL, where □ denotes the output variable with value 1 that
is omitted by OLL. Fig. 3 (middle-right) shows the encoding of the reformulated
objective built by core boosting after executing OLL, where a3, a4 is reused as
an internal node. The dashed box shows the encoding that would be built when
treating a3 and a4 individually. Since a3 and a4 are already totalizer outputs,
d1 and d2 in this structure are equivalent to a3 and a4 and therefore redundant.

Going beyond previous work, certifying the encoding of the reformulated
objective built during core boosting requires special care. In particular, due to
the process of reusing partial sequences of totalizer output variables as internal
nodes, using the semantics of the totalizer outputs built by OLL does not allow
us to derive the clauses required for the encoding. Instead, for a sequence of
variables or, . . . , or+n reused as an internal node in the encoding, we introduce
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ordering constraints

Ca
v :=

v∑
i=r

[oi ≥ 0] +

r+n∑
i=v+1

[oi + ov ≥ 1] =

[
Mov +

r+n∑
i=r

oi ≥ M

]
,

where M = r + n− v + 1, and

Cb
v :=

r+n∑
i=v+1

[oi ≥ 0] +

v−1∑
i=r

[ov + oi ≥ 1] =

[
(v − r)ov +

r+n∑
i=r

oi ≥ (v − r)

]
,

for each v = r, . . . , r + n. These constraints sum up axioms and ordering con-
straints, which can be derived from the semantic definitions of the totalizer
output variables, and are therefore derivable in the proof. Furthermore, Ca

v , C
b
v

are identical to ov ⇔
∑r+n

i=r oi ≥ (v − r). When deriving the clauses involving
the reused output variable sequence, we therefore use Ca

v and Cb
v instead of the

semantic definitions of the variables, which allows for deriving the clauses of the
encoding.

After core boosting, the output variables of the objective encoding are now
defined with respect to the reformulated objective rather than the original one.
As a final step, after certifying a PD cut with respect to the original objectives,
we therefore use the objective reformulation constraints derived while executing
OLL to certify the PD cut with respect to the reformulated objectives.

Example 6. All required clauses for the encoding shown in Fig. 3 (middle-right)
can be derived from the semantic definitions ci ⇔ a3 + a4 + b2 ≥ i for i = 1, 2, 3
while treating the individual variable b2 as a leaf and using Ca and Cb as “pseudo
semantics” for the node a3, a4. Note that the semantics for ci are with respect
to the variable part of the reformulated objective.

4 Experiments

We extended all algorithms implemented in the Scuttle [34,35,36] MO-MaxSAT
solver—namely, P -minimal [43,49], LowerBound [14], and (the SAT-UNSAT
variant of) BiOptSat [37], each with and without core boosting—with the just-
described VeriPB proof logging. We used CaDiCaL 2.0.0 [8] as the SAT solver
within Scuttle and the VeriPB 2.2.2 proof checker [1] for checking the pro-
duced proofs.5 The proof logging Scuttle implementation is available in open
source [34,38]. We evaluate the implementation on the same set of benchmark
instances used in the original work proposing core boosting [36]. This set of
benchmarks consists of 300 instances from 6 domains with the number of ob-
jectives ranging from 2 to 5. The experiments were run on 2.50-GHz Intel Xeon
Gold 6248 machines with 381-GB RAM in RHEL under a 32-GB memory limit
and 1 hour time limit for Scuttle.
5 Both VeriPB and CaDiCaL contain bug-fixes obtained directly from their respective

authors based on our reporting while preparing our experiments.
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Table 3. Average proof logging overheads and average proof checking overheads.

with core boosting without core boosting
Algorithm solving w/proof log

solving
proof checking

solving w/proof log
solving w/proof log

solving
proof checking

solving w/proof log

P -minimal 1.233 47.52 1.176 47.89
BiOptSat 1.247 29.70 1.140 18.70
LowerBound 1.220 21.81 1.294 21.78

The per-instance Scuttle runtimes for each benchmark domain with and with-
out proof logging are shown in Fig. 4 for all three MO-MaxSAT algorithms in
Scuttle, both with and without core boosting. We observe that the runtime over-
head of proof logging is in all cases quite tolerable, with average runtime increase
ranging from 14% to 29% depending on the algorithm; see Table 3 for details.
There are at most 3 instances (for P -minimal without core boosting) that were
only solved without proof logging within the given 1-h time limit. While this
work is not focussed on improving proof checking but rather realizing for the
first time proof logging in a multi-objective setting, Table 3 also includes the
proof checking overhead, i.e., (proof checking time)/(Scuttle runtime with proof
logging), resulting from checking the Scuttle proofs with the VeriPB checker.
With a time limit of 10 hours enforced for the VeriPB checker, we observed
that checking takes on average 1–1.5 orders of magnitude more time than solving
the instances with proof logging enabled. It should be noted that similar obser-
vations have been made, e.g., in the realm of VeriPB-based certified MaxSAT
preprocessing [33]. Indeed, these observations motivate seeking improvements to
the current runtime performance of the VeriPB checker. We observed that in
cases, in particular for P -minimal (see the appendix for more details), the proof
checking overhead appears to somewhat correlate with the number of PD cuts
produced during search.

5 Conclusions

We realized for the first time proof logging for multi-objective MaxSAT solving.
Circumventing the fact that VeriPB does not offer direct support for multiple
objectives, we detailed how preorders in VeriPB can be used to provide cer-
tificates for MO-MaxSAT algorithms that compute a representative solution for
each element of the non-dominated set (with respect to the Pareto order). We
achieved this without changes to the VeriPB format or the proof checker. In-
tegrating VeriPB proof logging into a state-of-the-art multi-objective MaxSAT
solver, we empirically showed that proof logging can be made scalable for MO-
MaxSAT. While we in this work detailed how VeriPB can be employed for
proof logging SAT-based multi-objective approaches, the same concepts are ap-
plicable to enabling proof logging for similar algorithmic ideas instantiated for
other contexts, e.g., in the context of pseudo-Boolean optimization. Developing
proof logging methods that capture the computation of all Pareto-optimal solu-
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Fig. 4. Proof logging runtime overheads.

tions, i.e., every solution at each element in the non-dominated set, potentially
by extending VeriPB, also remains part of future work.
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A Additional Empirical Data on Proof Checking

Fig. 5 shows a comparison between the per-instance solving runtimes with proof
logging and the runtime of the VeriPB proof checker on the produced proofs.
The color scale represents the range of the number of PD cuts introduced during
solving. We observe that for P -minimal and BiOptSat without core boosting,
a high number of PD cuts leads to a higher proof checking overhead, but for the
other algorithms there is no such clear connection.
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Fig. 5. Runtime comparison between solving with proof logging and proof checking
wrt to the number of PD cuts.
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