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Abstract. We tackle the problem of enumerating set-theoretic solutions
to the Yang-Baxter equation. This equation originates from statistical
and quantum mechanics, but also has applications in knot theory, cryp-
tography, quantum computation and group theory. Non-degenerate, in-
volutive solutions have been enumerated for sets up to size 10 using
constraint programming with partial static symmetry breaking [1]; for
general non-involutive solutions, a similar approach was used to enumer-
ate solutions for sets up to size 8. In this paper, we use and extend the
SAT Modulo Symmetries framework (SMS), to expand the boundaries
for which solutions are known. The SMS framework relies on a minimal-
ity check; we present two solutions to this, one that stays close to the
original one designed for enumerating graphs and a new incremental,
SAT-based approach. With our new method, we can reproduce previ-
ously known results much faster and also report on results for sizes that
have remained out of reach so far.

Keywords: satisfiability· symmetries· Yang-Baxter equation· enu-
meration

1 Introduction

The Yang-Baxter Equation The Yang–Baxter equation (YBE) is a funda-
mental equation in mathematical physics, with origins in the study of statistical
mechanics. Its significance, however, has quickly extended to various areas of
pure mathematics, including representation theory and low-dimensional topol-
ogy. More recently, a discrete version of the equation has become central in
algebra and combinatorics. The set-theoretic solutions to this discrete version
of the equation were first highlighted by Drinfeld [12], who emphasized the im-
portance of discovering new solutions and the inherent difficulty of this task.
He suggested that set-theoretical solutions, in particular, merited further in-
vestigation. The study and construction of such solutions began with a series
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of pioneering papers [16, 14, 23, 30]. These works apply tools from ring theory,
group theory and homological algebra to analyze non-degenerate solutions, as
these solutions naturally have groups acting on them. Moreover, these papers
demonstrated that these solutions offer a particularly rich source of examples,
with numerous applications in algebra [7, 18, 26] and connections with other top-
ics, such as Hopf–Galois structures [8].

Constructing finite solutions of small size is particularly intriguing for several
reasons. Firstly, it presents a highly challenging problem at the intersection of
computational techniques and algebra. Secondly, solutions provide, for example,
concrete colouring invariants of knots [24] and intriguing examples of algebraic
structures to study [9]. Thirdly, examples of solutions allow for experimentation,
which can reveal patterns that provide deeper insights into the structure of com-
binatorial solutions. Lastly, the ubiquity of the Yang–Baxter equation suggests
that the methods used to construct its solutions could be adapted to other con-
texts, even those not directly related to the equation itself. For example, these
ideas can be applied to the problem of constructing L-algebras [27], something
that has direct applications in algebraic logic.

SAT Modulo Symmetries As usual in mathematics, one is not interested in
generating all solutions, but only all non-isomorphic solutions. One prominent
technique for isomorph-free enumeration is SAT Modulo Symmetries (SMS) [21].
Given a formula in conjunctive normal form (CNF) and a possibly empty set of
symmetries, the goal of SMS is to find all satisfying assignments that are lexico-
graphically minimal among their symmetric counterparts (here, symmetries of
the CNF correspond to isomorphisms of the original problem). To do this, SMS
uses a minimality check that takes place during the solving phase. In other words,
given a (possibly) partial assignment, it is verified whether that assignment can
still be extended to a complete, lexicographically minimal assignment.

When the underlying problem is known, the minimality check can take into
account that not all complete assignments are considered, but only the assign-
ments that model the formula. Hence, the minimality check can be optimized
using domain-specific knowledge. This has been used for enumerating graphs [21],
matroids [20] and so-called Kochen-Specker vector systems [19].

Our contributions Inspired by the success of SMS, we now extend it to enu-
merate non-isomorphic solutions to the Yang-Baxter equation. First, we discuss
how to encode the YBE in CNF. The most challenging aspect is then to develop
a domain-specific minimality check, taking into account the specific problem
structure. We can then use this minimality check to learn clauses that are added
during the solving phase to eliminate parts of the search tree that contain no
lexicographically minimal solutions.

We describe and test two implementations of this minimality check. The first
is a backtracking approach that stays close to the original SMS work, also mak-
ing use of clever representations of sets of symmetries. The second one is a new
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approach based on incremental SAT solving where the (non-)minimality prob-
lem itself is encoded as a CNF and a SAT oracle is repeatedly used to search
for symmetries that guarantee that the solution at hand is non-minimal. Both
approaches result in quite significant speed-ups compared to the previous ap-
proach [1]; experiments show that the incremental, SAT-based minimality check
outperforms the backtracking approach. Moreover, with this new approach, we
can report on results for sizes that have remained out of reach so far.

2 Preliminaries

Yang-Baxter Equation and Cycle Sets The Yang-Baxter equation in gen-
eral is concerned with vector spaces and mappings between them. In this pa-
per, we focus on set-theoretic solutions to this equation, as introduced by Drin-
feld [13], and particularly on involutive non-degenerate solutions. These objects
are known to be equivalent to non-degenerate cycle sets [25], which form a much
simpler class of combinatorial objects. We omit the definition of the Yang-Baxter
equation in full generality and immediately define cycle sets; we refer the reader
for example to Akgün, Mereb and Vendramin [1] for more details.

Definition 1. A cycle set (X, ·) is a pair consisting of a non-empty set X and
a binary operation · on X that fulfills the following relations:

1. the map ϕx : X → X : y 7→ x · y is bijective for all x ∈ X and
2. for all x, y, z ∈ X:

(x · y) · (x · z) = (y · x) · (y · z). (the cycloid equation)

It is called non-degenerate if the map X → X : x 7→ x · x is bijective.

The rest of this paper is concerned with computer-aided enumeration of all non-
degenerate cycle sets of a given (finite) size.

Boolean Satisfiability (SAT) A (Boolean) variable takes values in {t, f}; a
literal is a variable x or its negation x. A clause is a disjunction of literals and
a formula (in conjunctive normal form) is a conjunction of clauses. A (partial)
assignment is a consistent set of literals (i.e., a set of literals that does not
contain a literal and its negation). An assignment is complete (for formula F )
if it contains either x or x for each variable x occurring in F . An assignment α
satisfies a formula F if it contains at least one literal from each clause in F . The
SAT problem consists of deciding for a given formula F whether an assignment
exists that satisfies it.

Symmetry in SAT Symmetry has a long history in SAT, with various tools
being used to exploit them either before search (e.g., [2, 11, 3]) or during the
search (e.g., [28, 4, 10, 21]). The SAT Modulo Symmetries (SMS) framework [21]
stands out in this list by going a step further than just deciding whether a formula
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is satisfiable; instead, the goal is to enumerate assignments that satisfy it. It was
designed with use cases in mathematics in mind and in particular it was first
used to enumerate graphs that have certain interesting properties. In such use
cases, one is often not interested in all graphs that satisfy these properties, but
only in generating non-isomorphic graphs. The core idea underlying SMS is that
we can (1) encode as a propositional formula what it means to be a graph that
satisfies these interesting properties (or more generally, a suitable mathematical
structure) and (2) force a SAT solver, during the search, to generate canonical
representations of each of the classes of isomorphic solutions. The second point
is achieved by designing a procedure that is aware of the isomorphisms of the
problem at hand, known as the minimality check. This takes the state of the
SAT solver (a partial interpretation) as input and checks whether it can still be
extended to a complete assignment that represents a lexicographically minimal
graph (among all graphs isomorphic to it). If not, it forces the solver to abort the
current branch of the search tree by analyzing why this is no longer possible and
learning a new clause from it that is then added to the solver’s working formula.
In general, this minimality check is incomplete but guaranteed to be complete
when run on complete assignments. This minimality check needs to be designed
for each application, taking into account the (encoding of) the mathematical
problem at hand as well as the structure of the set of isomorphisms. Seress [29]
gives a detailed introduction on group theory, for a lighter intoduction we refer
readers to Gent et al. [17].

3 SAT Modulo Symmetries for the Yang-Baxter Equation

We now explain how we use the SMS framework to enumerate cycle sets of a
given size. To do this we first discuss how to construct a propositional formula
that encodes the properties of cycle sets. Next, we discuss the isomorphisms
of the problem, and how the minimality check is adapted to deal with these
isomorphisms.

3.1 SAT Encoding

A cycle set of size n can be viewed as an n × n matrix taking at each entry a
number between 1 and n and satisfying some structural properties. This matrix
represents the binary operation of the cycle set: at position i, j, the value is
i · j. In our algorithms, we will often take the view of a cycle set being such
an integer-valued matrix, while the actual SAT encoding, obviously, talks about
lower-level variables. The properties our matrix C ∈ Xn×n should satisfy are:

1. for all x, y, z ∈ X with y ̸= z, Cx,y ̸= Cx,z (ϕx is bijective for all x ∈ X),
2. for all x, y, z ∈ X, CCx,y,Cx,z

= CCy,x,Cy,z
(the cycloid equation holds), and

3. for all x, y ∈ X with x ̸= y, Cx,x ̸= Cy,y (the cycle set is non-degenerate).

To encode these properties in CNF, we will make use of the one-hot encoding,
i.e., for each i, j, k ∈ X we introduce a Boolean variable vi,j,k which is true if
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and only if Ci,j = k. We then add clauses stating that for each cell, exactly one
of its indicator variables must hold;

ExactlyOne({vi,j,k | k ∈ X}), (for each i, j ∈ X) (1)

where ExactlyOne refers to a set of clauses that may use auxiliary variables
and that enforce that exactly one of its input variables holds. These clauses are
constructed using either a binary encoding or the commander encoding [22]. We
then encode the properties in clauses over these variables, ensuring that each
number should occur exactly once on each row and the diagonal. Last, we also
ensure that the cycloid equation holds. To do this, for each i, j, k, b ∈ X, we
introduce a new variable yi,j,k,b that is true precisely when CCi,j ,Ci,k

= b and
that is also true precisely when CCj,i,Cj,k

= b. The complete encoding can be
found in Appendix 1.

Fixing the Diagonal The problem defined in the previous section can be
solved as is, however, the search space can be significantly reduced using a trick
introduced by Akgün, Mereb and Vendramin [1]. In short, if the diagonals of
two cycle sets are conjugates, we know that the cycle sets are isomorphic. If
the goal is to only enumerate non-isomorphic cycle sets, we can safely partition
the problem by enumerating the solutions for one diagonal per conjugacy class.
Given a cycle set (X, ·), its diagonal can be expressed as a permutation of the
elements in X = {1, . . . , n}. In other words, the set of possible diagonals is given
by the symmetric group over X, i.e., Sn. It is known that Sn has p(n) conjugacy
classes, where p(n) is the number of integer partitions of n. Hence, the search
space can be drastically reduced by partitioning the problem into p(n) problems
with the diagonal fixed to a representative of its conjugacy class.

Given a fixed diagonal (i.e., values for all matrix cells Ci,i), we fix these
variables in our encoding by only introducing variables vi,j,k whenever if j ̸= i
and k ̸= Ci,i and simplifying the rest of the theory accordingly. Fixing the
diagonal does not only allow us to simplify the encoding, later we will show that
it also allows us to optimize the minimality check.

3.2 Isomorphisms and Symmetries

Two cycle sets (X, ·) and (X, ×) are isomorphic if and only if there exists an
isomorphism π : X → X such that π(x·y) = π(x)×π(y). For the matrices C and
C ′ corresponding to (X, ·) and (X, ×) respectively, this means that C ′ = π(C)
where π(C)i,j = π−1(Cπ(i),π(j)). When enumerating all cycle sets of a fixed size,
we are only interested in enumerating non-isomorphic solutions; we choose to
enumerate cycle sets that are lexicographically minimal (among all isomorphic
solutions). In other words, we are only interested in those cycle sets (X, ·), whose
associated matrices are lexicographically smaller than or equal to those of their
isomorphic variants. Concretely, given a cycle set (X, ·), with associated matrix
C, we need the following to hold:

∀π ∈ I : C ⪯ π(C),
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where ⪯ is the lexicographical ordering given by C ⪯ C ′ if C = C ′ or Cc < C ′
c

for the first4 cell c where C and C ′ differ, and I is the set of isomorphisms of the
problem. However, it is important to note that these isomorphisms may not cor-
respond to symmetries of the propositional formula. Indeed, for our specific use
case, the commander encoding of the ExactlyOne constraint introduces auxil-
iary variables that break some of the symmetries. As a consequence, symmetries
cannot be detected from the CNF encoding but should really be determined by
the problem at hand.

In the general case, all isomorphisms π ∈ Sn with n = |X| need to be
considered. However, when working with a fixed diagonal, not all π ∈ Sn are
isomorphisms of the problem, but only the permutations that fix the diagonal.
Specifically, the isomorphisms of a problem with fixed diagonal T consist of the
set CSn

(T ), i.e., the centralizer of T in the symmetric group. These are exactly
the elements π ∈ Sn for which it holds that π ◦ T = T ◦ π.

3.3 Minimality Check

We now discuss the core of the SAT Modulo Symmetries framework, namely the
minimality check, the goal of which is deciding whether the current assignment
(which can be thought of as a partially constructed matrix) can still be extended
to a lexicographically minimal matrix (among its symmetric images).

Partial Cycle Sets A partial cycle set is a matrix P ∈ (2X)n×n with n = |X|,
where each cell c ∈ X ×X of the matrix represents a non-empty domain Pc ⊆ X
of values that are still possible. Given a (partial) assignment α, we can extract
a partial cycle set P α as follows:

∀c ∈ X × X : P α
c = {x ∈ X | vc,x ̸∈ α},

where if c = ⟨i, j⟩, we denote vi,j,x as vc,x. In other words, the partial cycle set
will contain only values that can still be true according to the assignment.

Given a partial cycle set P and cell c, we say that the entry Pc is defined
if it equals a singleton {x}, and write Pc = x. In all other cases, we say that
Pc is undefined. A complete cycle set C is a partial cycle set with no undefined
values and for which the cycle set constraints discussed in Section 3.1 hold. In
this case, we associate C with an actual cycle set. The set Pn denotes all partial
cycle sets, similarly, the set of all complete cycle sets is denoted Cn. A partial
cycle set P ∈ Pn can be extended to another partial (or complete) cycle set
P ′ ∈ Pn, if for all cells c it holds that P ′

c ⊆ Pc. Given a partial cycle set P ∈ Pn,
we denote the set of complete cycle sets that P can be extended to by X (P ).

Example 1. Given a partial cycle set

P =

 {2} {1} {3}
{2} {1} {3}

{1,2} {1,2} {3}

 , we have that X (P ) =


2 1 3

2 1 3
1 2 3

 ,

2 1 3
2 1 3
2 1 3

 .

4 Given a fixed order of the cells.
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The goal of the minimality check is, given a partial cycle set, to determine
whether it is possible to extend it to a lexicographically minimal complete cycle
set. One way to achieve this would be to loop over all (exponentially many) such
extensions and check for minimality. This would, however, clearly not be feasible.
Instead, inspired by and building on the work of the original SMS paper [21], we
take a different approach, and we will search for a symmetry π (in our case, this
is a permutation of X that respects the fixed diagonal) that guarantees that for
every complete extension C of P ,

π(C) ≺ C.

We will call such a permutation a witness of non-minimality, and the goal of
the minimality check is to find such witnesses.

Let us describe a sufficient condition for finding such witnesses that forms
the basis of our algorithms. Given P ∈ Pn and a permutation π, we can apply π
to P as follows; for each cell c = ⟨i, j⟩, we define the image of c under π as π(c) =
⟨π(i), π(j)⟩. Given a non-empty domain S ⊆ X, we define π(S) = {π(x) | x ∈ S}.
Using this, we define π(P ) as the partial cycle set where π(P )c = π−1(Pπ(c)) for
each cell c. Note that for complete cycle sets, this coincides with the definition of
π(C) given above. We also define a lexicographical order ⊴ over partial cycle sets,
with the specific characteristic that if P ◁ P ′ then for all extensions C ∈ X (P )
and C ′ ∈ X (P ′) it holds that C ≺ C ′. Hence, if the minimality check can find
a permutation π such that π(P ) ◁ P , we have that π(C) ≺ C for all extensions
C ∈ X (P ), i.e., that π is a witness of non-minimality. In order to define ◁, we
note that P ◁ P ′ should guarantee that

– there is a cell c, the value of which in P is guaranteed to be strictly smaller
than that of P ′

c, and,
– for all cells c′ < c, the value of c′ in P is guaranteed to be at most the value

it takes in P ′.

Since we want to compare the value of cells where the value is potentially not
determined yet, we extend the order on values to domains as follows.

Definition 2. Let S and S′ be two non-empty subsets of X, we define

– S ⊴ S′ if and only if max S ≤ min S′ and
– S ◁ S′ if and only if max S < min S′.

Definition 3. Let P and P ′ be two partial cycle sets and let c be a cell. We say
that P is below P ′ up to cell c (and denote this P ⊴c P ′) if for all cells c′ ≤ c
it holds that Pc′ ⊴ P ′

c′ .

Definition 4. We say P is strictly smaller than P ′ (and denote this P ◁ P ′)
if there is a cell c such that

– P ⊴pred(c) P ′, where pred(c) is the cell immediately preceding c in the lexi-
cographic ordering, and

– Pc ◁ P ′
c.
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We say that P is at most P ′ (and denote this P ⊴ P ′) if either P ◁ P ′ or if for
all cells c, Pc ⊴ P ′

c.
These definitions guarantee strong properties of complete extensions of P

and P ′. Proofs of our results can be found in Appendix 2.
Proposition 1. Let P and P ′ be two partial cycle sets. The following properties
hold.
1. If P ◁ P ′, then for all C ∈ X (P ) and C ′ ∈ X (P ′), it holds that C ≺ C ′.
2. If P ⊴ P ′, then for all C ∈ X (P ) and C ′ ∈ X (P ′), it holds that C ⪯ C ′.
3. If P ⊴ P ′ and P ′ ⊴ P , then P = P ′ and both cycle sets are complete.

This now gives rise to a sufficient condition for being a witness of non-minimality
(which allows us to conclude that there are no lexicographically minimal exten-
sions of P ) or that some values of a cell are impossible (which would allow us to
propagate extra information during search).
Theorem 1. Given a partial cycle set P and permutation π, we have that:

– if π(P ) ◁ P , then π is a witness of non-minimality,
– If π(P ) ⊴c P then there is an extension P ′ of P such that

1. P ′ and π(P ′) are fully defined on all c′ ≤ c, and
2. all ⪯-minimal extensions C ∈ X (P ) are also extensions of P ′.

Hence, when given a partial cycle set P , not only permutations π for which
π(P ) ◁ P are useful, but also those for which π(P ) ⊴c P (if P is not complete
yet).

3.4 Clause Learning
In this section, we explain which clauses are constructed after the minimality
check has found a permutation π that can be used to refine or exclude the
current assignment α. Let us first focus on the case where π is a witness of
non-minimality, i.e., we will describe the clause that justifies backtracking.

In principle, we could learn a clause that simply eliminates the current partial
assignment by

∨
ℓ∈α ℓ, i.e., stating that at least one literal needs to be different.

However, we want to learn a clause that captures the essence of why π is a witness
of minimality so that it excludes as many assignments as possible. Explaining
why π is a witness of non-minimality boils down to:

– explaining why π(P )c′ ⊴ Pc′ for each c′ < c, and
– explaining why π(P )c ◁ Pc.

Hence, the clause will state that (at least) one of these conditions has to change.
For π(P )c′ ⊴ Pc′ to change, either π(P )c′ should be able to take a value larger
than min Pc′ or Pc′ should be able to take a value below max π(P )c′ . The expla-
nation for π(P )c ◁ Pc is similar. As such, the clause that we learn is:

∨
x≥min Pc

vπ(c),π(x)∨
∨

x≤max π(P )c

vc,x∨
∨

c′<c

 ∨
x>min Pc′

vπ(c′),π(x) ∨
∨

x<max π(P )c′

vc′,x


(2)
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Propagation For propagation, everything is completely analogous to the case
where we find a witness of non-minimality. The reason is that literal ℓ can be
propagated in α using Theorem 1 if and only if π would be a witness of non-
minimality in α ∪ {ℓ}. There is one important design decision to make here;
often there are multiple literals that can be propagated. We can add a clause for
every such literal, or we can choose one of them and only propagate that. The
propagation of a single literal often causes more propagations at the same row
of the cycle set, resulting in further eliminations of values from the same cell. If
our minimality check detects multiple potential propagations, they will always
be over the same cell. In this case, one could prefer to avoid adding propagation
constraints for things that can already be caught by the unit propagation phase
that follows. So, while adding all clauses is feasible, we have chosen to only
propagate one literal at a time and let the solver continue.

Optimization The clause that is learned in this way can be optimized further
by taking the problem structure into account in some ways. In particular, we
know that for several sets of variables an ExactlyOne constraint holds (e.g., all
variables vc,· for any cell c, or all variables vi,·,x for a fixed i and x). If for such a
set S of variables (for which we know exactly one will be true in every satisfying
assignment) and for some variable s ∈ S, our clause C contains

∨
s′∈S,s′ ̸=s s′,

then this can be replaced by simply stating s. Indeed, since exactly one of the
variables holds, stating that the last one is false is equivalent to stating that one
of the others is true. Similarly, if the clause already contains s, all literals s′ with
s′ ∈ S can safely be removed from the clause.

For example, assume we are searching for cycle sets of size 4 and have fixed
a diagonal that has P⟨1,1⟩ = 1. Suppose the clause (2) is v1,2,2 ∨ v1,2,3, then this
expresses that the cell ⟨1, 2⟩ should contain a 2 or a 3. Now this is the same as
saying that it cannot contain the value four: v1,2,4. This simple trick can be used
to get shorter clauses with better propagation properties.

4 Implementating the Minimality Check

Given a partial cycle set P ∈ Pn, the goal of the minimality check is to find
an isomorphism π of the problem that guarantees that π(P ) ⊴ (P ) so that
Theorem 1 guarantees that we can either discard this partial cycle set or refine
it. Inspired by the original SMS papers, the minimality check can perform a
backtracking search (over the space of permutations!) with a strong pruning
mechanism. It iteratively refines a so-called partial permutation, until either a
useful permutation (satisfying one of the conditions of Theorem 1) is found, or
until it is certain that no such permutations exist.5

On the other hand, the minimality check can also be viewed as a combina-
torial search problem. More specifically, given the current assumptions, i.e., the
5 We will discuss that it is sometimes useful not to do a complete check here, as long

as completeness is guaranteed on complete assignments.
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current (partial) cycle set, we want to decide whether there exists an isomor-
phism that is a witness of non-minimality. If no such permutation exists, we
know that the current cycle set is lexicographically minimal; otherwise, we can
use the satisfying assignment to extract the witness.

4.1 Backtracking Approach

We first describe the backtracking approach based on the original SMS pa-
per [21]. A partial permutation is a function π : X → 2X \ ∅ that maps every
element of X to a non-empty set of values. Intuitively, the value π(x) represents
the possible images of x under any completion of π. A partial permutation is
called complete if for all x ∈ X, π(x) is a singleton and if π(x) ̸= π(y) for all
y ∈ X where y ̸= x. In this case, we identify π with the actual permutation.
Given two partial permutations π and π′, we say that π′ extends π if and only
if for all x ∈ X it holds that π′(x) ⊆ π(x).

Our algorithm will recursively refine the permutation using the given partial
cycle set until it holds that for all complete extensions π′ of π, π′(P ) ⊴ P
(where the inequality will be guaranteed to be strict if P is complete). To do
this, we recursively assign a value y to π(x), starting with x = 1, and refine
the obtained partial permutation using available (domain-specific) knowledge.
To refine a partial permutation π after making a new assignment, we need to
take the following properties into account:

– the image of P under π should be smaller than or equal to P , and
– the partial permutation π can be extended to an isomorphism of the problem.

As mentioned earlier, the algorithm first assigns a value x1 ∈ π(1) to π′(1).
Because the completion of π′ needs to be well-defined, we refine π′ such that x1
is no longer an option for other elements in X \ {1}. To ensure that π′(P ) ⊴ P ,
we need to enforce that π′(P )⟨1,1⟩ ⊴ P⟨1,1⟩, or equivalently, max π′(P )⟨1,1⟩ ≤
min P⟨1,1⟩. Hence, we can refine π′ such that

max π′(P )⟨1,1⟩ = max π′−1(P⟨π′(1),π′(1)⟩) ≤ min P⟨1,1⟩.

Some care is needed here: even though we know the possible values in the cell
P⟨π′(1),π′(1)⟩, since we are still constructing π′, we do not know exactly what
the values in π′−1(P⟨π′(1),π′(1)⟩) will be. This will on the one hand cause extra
propagation: if x ∈ P⟨π′(1),π′(1)⟩, we will propagate that π−1(x) ̸= y for any
y > min P⟨1,1⟩. But after doing this there might still be multiple options left for
this cell. In that case, we make a further choice on refining π so that for each
x ∈ P⟨π′(1),π′(1)⟩, π−1(x) is fixed (and again, bijectivity is enforced).

Last, we need to ensure that the extended permutation π′ can still be ex-
tended to an isomorphism of the problem. If the diagonal is not fixed, all per-
mutations π ∈ Sn are isomorphisms and hence no extra measures need to be
taken. If however, a diagonal T is fixed, only the permutations π ∈ CSn

(T ) are
isomorphisms of the current problem being solved. Note that a permutation π
fixes the diagonal if it maps each cycle of the diagonal onto a same-length cycle,
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in the same order. As a consequence, as soon as π′(x) is fixed, for each y in
the same cycle as x, π′(y) will be fixed accordingly. For example, consider the
diagonal (231)(564). In case we fix π′(1) = 6, we will need to map π′(3) = 5 and
π′(2) = 4 in order to fix this diagonal.

As soon as this is done, if we obtained π′(P )⟨1,1⟩ ◁ P⟨1,1⟩, we have found a
witness of non-minimality. Otherwise, if π′(P )⟨1,1⟩ ⊴ P⟨1,1⟩ and either π′(P )⟨1,1⟩
or P⟨1,1⟩ is not complete (i.e., still allows multiple values), we can choose to
either learn clauses that eliminate all but one remaining values in the cell, or
continue the search for a witness of non-minimality. When continuing the search,
we repeat the same process for the next cell ⟨1, 2⟩, etcetera. As soon as π is fully
defined, it can be verified without further choices against the remaining cells of P .
Whenever this process gets stuck, we backtrack and make a different assignment
to π(x) for the last assigned x.

For the checks of partial cycle sets, the search can be aborted early, as a
result, the check is postponed and repeated when more information is available.
Specifically, users can limit the number of nodes visited in the search tree (in a
depth-first fashion). Next, users can also limit the number of partial cycle sets
that are checked by setting a frequency at which the minimality check should
be executed. For complete cycle sets, a full search is necessary to guarantee
complete symmetry breaking.

Representing Partial Permutations We give a short description of the inter-
nal representation of partial permutations. The internal representation used in
this tool was inspired by the one used in SMS. We represent partial permutations
as an ordered partition of X, i.e., π = [X1, X2, . . . , Xm], where X1∪. . .∪Xm = X
and X1, X2, . . . , Xm are pairwise disjoint. The ordered partition represents the
partial permutation π where π−1(x1) < π−1(x2) for all x1 ∈ Xi, x2 ∈ Xj with
i < j. In other words, given x1 < x2, π maps x2 to the same set as x1 or to a set
that appears after that set in the ordered partition. Given the ordered partition
π = [{6, 5, 4}, {3}, {2, 1}], we have that π(1) = π(2) = π(3) = {4, 5, 6}, π(4) = 3
and π(5) = π(6) = {1, 2}.

Note that extracting a fully defined permutation π′ from an ordered partition
π can be done quite easily. We represent the ordered partition π using two
vectors; a vector of integers V , representing the content of the partitions and a
vector which signals the start of a partition, P . In this case, the vector V already
represents a valid permutation π′ if we define π′(x) = y if and only if V [x] = y.

This representation becomes even more useful when considering fixed di-
agonals. In this case, we only need to consider complete permutations π that
leave the diagonal invariant. Hence, we can use the initial ordered partition to
represent only those permutations.

4.2 Incremental SAT-Based Approach
The minimality check itself can also be viewed as a combinatorial search prob-
lem. In this paper, we have chosen to encode the minimality check using a propo-
sitional formula, whose satisfiability is determined using a second SAT-solver.
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Specifically, we encode what it means for an isomorphism of the problem to be
a witness of non-minimality. In order to reason about a specific (partial) cycle
set, we can use so-called assumptions to fix the truth values for variables repre-
senting the cycle set. As such, we can use the same SAT-solver to reason about
many same-sized cycle sets, while keeping track of previously learned clauses.
In the future, this incremental minimality check can be extended to also detect
whether the current partial cycle set could be refined. This technique is similar
to the co-certificate learning added to SAT Modulo Symmetries [19], however
co-certificate learning is concerned with properties that are orthogonal to the
minimality check. To the best of our knowledge, the minimality check itself has
never been performed using a SAT oracle.

Minimality Check Encoding Before describing how this incremental min-
imality check works, we first give a high-level overview of the used encoding,
a more detailed description can be found in Appendix 3. The problem that
we encode in propositional logic verifies whether there exists a witness of non-
minimality (i.e., a permutation π for which Definition 4 holds) for a given cycle
set (X, ·) represented by matrix M . We start by describing an encoding for the
minimality check of complete cycle sets before adapting it in order to also deal
with partial cycle sets.

First, we introduce Boolean variables that represent the matrix M and vari-
ables that represent its image π(M), also referred to as M ′ here. These matrices
are encoded using the same one-hot encoding described in Section 3.1. The first
cycle set, represented by matrix M , is encoded using the variables wi,j,k (for all
i, j, k ∈ X), where wi,j,k is true if Mi,j = k. Similarly, we encode its image rep-
resented by the matrix M ′, using the variables w′

i,j,k for all i, j, k ∈ X. In order
to represent the permutation π, we introduce the variables pi,j for all i, j ∈ X
where pi,j is true if π(i) = j.

Next, we add clauses to ensure that the permutation is indeed a well-defined
isomorphism of the problem and that M ′ equals π(M). Furthermore, we ensure
that π is a witness of non-minimality (i.e., that M ′ = π(M) < M). To do this,
we add static symmetry breaking constraints inspired by the compact encoding
for lex-leader constraints [11]. First, we introduce an order ≤w′ over the variables
used to encode the matrix M ′. This order should ensure that an assignment is
lexicographically minimal if M ′ = π(M) ≤ M , assuming that f < t. We encode
the static symmetry breaking constraints using the auxiliary variables nc,i which
are true if w′

c′,i′ ⇔ wc′,i′ for all w′
c′,i′ ≤w′ w′

c,i.
Because we are only considering complete cycle sets we can add redundant

ExactlyOne constraints over the matrix variables (similar to those added in the
encoding of the original problem). These constraints ensure that each matrix cell
is assigned exactly one value, and that rows in the matrices contain unique values.
For the original matrix M , this will not have any impact since all variables are
fixed using assumptions, however, in context of the image of M , i.e., M ′, these
constraints will enhance propagation.
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In order to reason about partially defined cycle sets, some minor adaptations
to this encoding are needed. First, the variables representing the matrices get a
slightly different meaning; when w

(′)
c,k is true it no longer holds that M

(′)
c = k, but

instead we have that k ∈ M
(′)
c . As a result, it is no longer correct to include the

redundant ExactlyOne constraints over these variables. Next, to decide whether
π is a witness of non-minimality, we now use the order defined in Definition 4,
and ensure that M ◁ M ′. To do this, we add variables lc,k and gc,k for all cells
c and k ∈ X, which are true respectively if M ′

c < k and Mc > k. These variables
allow us to reason about the maximum and minimum possible values of a matrix
cell. Next, we introduce the variables n′

c,k for all cells c and k ∈ X, which similar
to the nc,k-variables indicate that π can still be a witness of non-minimality at
this point. Similar to the encoding described in Section 3.1, both the partial and
complete encoding can be optimized when a diagonal is fixed.

Note that the partial encoding can also be used to perform the minimality
check for complete cycle sets. However, preliminary experiments showed that
using separate complete and partial minimality checks results in a faster enu-
meration time, hence this is the setup used in our experiments below.

The Incremental Minimality Check During the search, the enumerating
SAT solver will make calls to the minimality check to verify whether the current
(partial) assignment is lexicographically minimal. The incremental minimality
check consists of one (or two, if a separate encoding is used for complete cycle
sets) incremental SAT solvers that repeatedly try to find satisfying assignments
for the given formula. To ensure that the solvers reason about the current cycle
set, we use assumptions to ensure that the w-variables defined in the previous
section get the correct truth values. If the SAT solver can find a satisfying as-
signment, there exists a witness of non-minimality for the assumed cycle set. The
minimality check will extract this permutation from the satisfying assignment
to create a breaking clause that excludes the current assignment (and all of its
extensions). This clause can then in turn be learned by the enumerating SAT
solver. If, on the other hand, the formula is unsatisfiable given the current as-
sumptions, the current solution is minimal. Note that if the current assignment
is complete, this implies that we have found a lexicographically minimal solution
which can be added to the list of non-isomorphic solutions.

Similar to the backtracking approach, one can opt to not run partial min-
imality checks until completion. In this context, one could decide to limit the
number of conflicts or decisions or to only add a selection of the symmetry break-
ing constraints. Once again, the frequency of the minimality check for partial
cycle sets can also be adapted. For complete cycle sets, no such limits can be
imposed, in order to guarantee a fully non-isomorphic enumeration.

5 Experimental Evaluation

Our enumeration tool, YBE-SMS, is implemented on top of the state-of-the-art
SAT-solver CaDiCal [5] (version 1.9.4), extended with a so-called user-propagator
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implemented using the IPASIR-UP-API [15]6. This API allows users to closely
interact with the solver, for example by tracking variable assignments, choosing
variables to branch on and most importantly by adding new clauses to the solver
during the search process, which allows users to implement custom propagators.
In our case, the custom propagator will ensure that current assignments remain
lexicographically minimal by performing the minimality check. If the minimality
check fails, a clause is constructed in order to make the solver backtrack or
propagate. The minimality check can either be performed using the backtracking
approach or by using a second (incremental) instance of the CaDiCal solver.
Each time when the minimality is performed, the current partial assignment is
passed to that second instance by means of assumptions. All experiments were
performed on a machine with an AMD(R) Genoa-X CPU running Rocky Linux
8.9 with Linux kernel 4.18.0.

5.1 Generating Non-Degenerate Involutive Solutions of Size 10

In the first set of experiments, we compare the new YBE-SMS implementations
against the implementation of Akgün, Mereb and Vendramin [1] (referred to
as AMV22). To do this, we have identified configurations that find a suitable
balance between the frequency of performing this check and the limitations we
impose on it; these details can be found in Appendix 4. In Fig. 1, we see that both
new approaches are significantly faster than AMV22 for all sizes of the problem
up to 10 (which is the highest cardinality solved by AMV22). For example,
enumerating all solutions of size 10 using the AMV approach took more than 8
days. The same enumeration with the backtracking approach took only 12 hours
and with the incremental approach all solutions of size 10 were enumerated
in less than two hours. For the backtracking approach, this speed-up seems to
diminish as the problem grows but for the incremental approach, the opposite
appears to be true. This new incremental approach is approximately 106 times
faster than the AMV22 approach at enumerating all solutions of size 10, the
backtracking approach only reaches a speedup of 16.1 for the enumeration of
size 10 compared to AMV22. As a result, with this new incremental approach,
we were able to enumerate all solutions of size 11 which is a novel result, of
value to people studying the YBE. A more detailed view of the results in Fig. 1
is given in Table 3 which can be found in Appendix 5.

5.2 Comparing the SMS Approaches

Previously, no database containing the solutions for the YBE over a set X with
cardinality |X| = 11 was known. Using the backtracking approach discussed here,
we were able to enumerate all solutions for all diagonals of this problem except
the diagonal that equals the identity. However, with the incremental approach,
we were able to improve on these results, and as such we have constructed a
complete database of solutions over a set X with cardinality |X| = 11.
6 The reproduction artifact is available on https://zenodo.org/records/14604450.
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Fig. 1. Comparing the runtimes of the implementation of AMV22 and our approaches
building on SAT Modulo Symmetries.

In order to understand why the backtracking approach was not able to enu-
merate all solutions, we study the time usage of the minimality check in more
detail. We break down the time usage of the minimality check into four cate-
gories:

– checking partial cycle sets where a clause was added (i.e., a witness or re-
finement was found),

– checking partial cycle sets where no clause was added,
– checking fully defined cycle sets where a clause was added (i.e., a witness

was found) and,
– checking fully defined cycle sets where no clause was added (i.e., the cycle

set is lexicographically minimal).

In Table 1, we observe that as size increases, the backtracking approach spends
a larger amount of time verifying whether lexicographically minimal cycle sets
are indeed minimal. To understand why this is the case, note that in these
cases all possible symmetries of the problem need to be considered. In the very
worst case, when enumerating cycle sets of size n with the diagonal fixed to
the identity, where all rows equal the identity as well; all n! permutations need
to be considered. This explains why the speed-up diminishes as the problem
grows and why we were unable to expand the results beyond size 10. In Table 2,
we observe that the incremental approach does not have these issues and as a
result, it was able to enumerate all solutions for size 11. Note that with this
approach, the identity diagonal is no longer the bottleneck. Instead, for size 11,
we see that enumerating the diagonal (12)(34) took longer than enumerating
the identity diagonal. There are several reasons why this might be the case, one
possible reason is that there are so many solutions to exclude (i.e., ±11 800 000
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Backtracking Approach

Diag. # Sols. Time
(% of total time)

Number of
partial checks

Partial check,
Non-minimal
(% of Time)

Partial check,
No conclusion
(% of Time)

Number of
complete checks

Complete check,
Non-minimal
(% of Time)

Complete check,
Minimal
(% of Time)

Mininimality Check
(% of Time)

8
id 2 041 15.45s. (47.33) 6147 0.78 7.20 2815 5.66 76.25 89.90
(12) 4 988 2.87s. (8.78) 2953 1.65 9.26 5322 1.51 45.39 57.81
(12)(34) 7 030 2.48s. (7.59) 3538 1.76 9.65 7375 0.93 27.82 40.17

9
id 15 534 514.63s. (67.67) 43957 0.09 1.87 18413 2.78 92.41 97.15
(12) 41 732 68.82s. (9.05) 19328 0.35 4.54 43008 1.13 75.90 81.92
(12)(34) 61 438 37.69s. (4.96) 23178 0.58 9.62 62538 0.46 46.78 57.44

10
id 150 957 35 396.79s. (79.02) 371265 0.01 0.28 163126 1.13 98.03 99.45
(12) 474 153 3 998.35s. (8.93) 184837 0.04 1.18 480790 0.58 92.08 93.88
(12)(34) 807 084 1 380.82s. (3.08) 251264 0.12 4.57 814658 0.31 63.98 68.97

11
id 1 876 002
(12) 6 563 873 364 026.91s. 2175972 0.00 0.21 6593100 0.19 96.61 97.02
(12)(34) 11 807 217 102 863.75s. 3131880 0.01 1.27 11839127 0.11 67.30 68.72

Table 1. A breakdown of the time-usage of the backtracking approach for the diagonals
id, (12) and (12)(34) of sizes 8,9,10 and 11. Note that we were unable to enumerate the
identity diagonal for size 11 using this approach.

Incremental Approach

Diag. # Sols. Time
(% of total time)

Number of
partial checks

Partial check,
Non-minimal
(% of Time)

Partial check,
No conclusion
(% of Time)

Number of
complete checks

Complete check,
Non-minimal
(% of Time)

Complete check,
Minimal
(% of Time)

Mininimality Check
(% of Time)

8
id 2 041 14.53s. (29.27) 1097 0.58 2.67 4582 15.05 40.44 58.73
(12) 4 988 4.08s. (8.21) 221 0.27 2.03 6518 11.70 43.23 57.22
(12)(34) 7 030 4.52s. (9.10) 250 0.35 1.54 8596 9.17 43.04 54.09

9
id 15 534 135.86s. (32.25) 7898 0.53 4.01 25164 10.95 42.71 58.19
(12) 41 732 37.68s. (8.95) 1639 0.17 2.17 48124 8.21 41.75 52.31
(12)(34) 61 438 42.00s. (9.97) 1612 0.20 1.84 67463 5.79 40.22 48.05

10
id 150 957 1 073.65s. (15.80) 47416 0.34 5.15 189756 7.92 50.25 63.66
(12) 474 153 605.32s. (8.91) 15056 0.10 2.78 504172 4.03 40.61 47.52
(12)(34) 807 084 817.65s. (12.03) 15174 0.06 1.86 837097 2.39 36.38 40.70

11
id 1 876 002 16 153.55s. (7.14) 435489 0.23 5.10 2041121 4.04 43.28 52.65
(12) 6 563 873 17 578.69s. (7.76) 137194 0.03 1.31 6692410 1.03 26.40 28.77
(12)(34) 11 807 217 39 061.15s. (17.25) 170158 0.01 0.71 11917937 0.33 17.71 18.76

Table 2. A breakdown of the time-usage of the incremental approach for the diagonals
id, (12) and (12)(34) of sizes 8,9,10 and 11.

compared to ±1 000 000 original clauses) that the SAT-solver is severely slowed
down by the solution-excluding constraints. We hope that further experiments
will give us more insights into why this is the case.

6 Conclusions and Future Work

In this paper, we showed how to apply the SAT Modulo Symmetries framework
to the generation of non-degenerate, involutive, set-theoretic solutions to the
Yang-Baxter equation. Our methods outperform the state-of-the-art on large
instances by two orders of magnitude, and we have extended known results to
include non-degenerate cycle sets of size 11.

Databases of solutions up to size 10 have inspired a vast body of research in
math research. For instance, a recent survey [31] contains several mathematical
conjectures that were inspired by mining the database of solutions up to size
10 for interesting properties (see for instance Problems 57 and 61). The list of
solutions for size 11 will be useful for similar purposes and provides a substan-
tial number of decomposable or multipermutation solutions (both of which are
very important in the combinatorial theory of the Yang-Baxter equation). This
increased data gives us the opportunity to better understand how solutions can
be constructed from smaller components.
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One important question that might remain is why one should trust our im-
plementation, except for the fact that up to size 10 our results coincide with
what is known so far. In combinatorial optimization, proof logging, which is the
idea that solvers should not just output a solution (or in this case, a set of solu-
tions), but also a machine-checkable proof that their answer is indeed correct is
gaining popularity. The SAT solver CaDiCaL that underlies SMS supports proof
logging. However, this is a very weak guarantee as it only allows checking that
the SAT solver did not make any mistakes, and does not provide any guarantees
whatsoever on the encoding or on the correctness of the custom propagator. The
most promising approach to achieve proof logging for SMS appears to be using
the VeriPB proof system, which was recently used to certify static symmetry
breaking [6]. However, there are many challenges on the road ahead to achieve
true trustworthy isomorphism-free generation. First of all, the isomorphisms are
symmetries of the original problem, but not necessarily of the encoding used.
Secondly, while VeriPB could be used to certify that symmetry breaking does
not remove all solutions, it cannot be used (unless the set of symmetries it is
allowed to use as a witness is somehow forced to be precisely the set of symme-
tries of the original problem) to certify that at least one representative of each
isomorphic class is preserved. Finally, it cannot certify that the performed sym-
metry breaking was complete, i.e., that no duplicate solutions were enumerated.
Providing true proof logging for isomorphism-free generation appears to be a
major challenge.

In the future, the methods we used can be extended to the construction of
other combinatorial structures similar to those considered here. This includes
racks and quandles, which are used in topology to construct invariants of knots;
arbitrary solutions (e.g., non-involutive or with relaxed degeneracy conditions);
and objects that appear in algebraic logic, especially L-algebras.
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Appendix 1 Encoding the cycle set properties

First, we encode the following properties:

1. for all x, y, z ∈ X with y ̸= z, Cx,y ̸= Cx,z (i.e., the map ϕx is bijective for
all x ∈ X),

2. for all x, y, z ∈ X, CCx,y,Cx,z
= CCy,x,Cy,z

(i.e., the cycloid equation holds)
and

3. for all x, y ∈ X with x ̸= y, Cx,x ̸= Cy,y (i.e., the cycle set is non-degenerate).

Properties 1 and 3 can straightforwardly be encoded using clauses that express
that each number should occur on each row and on the diagonal:

ExactlyOne({vi,j,k | j ∈ X}), (for each i, k ∈ X) (3)
ExactlyOne({vi,i,k | i ∈ X}). (for each k ∈ X) (4)

The cycloid equation, property 2, needs some more care. We achieve this
using the clauses

vi,j,x ∨ vi,k,y ∨ vx,y,b ∨ yi,j,k,b, for all i, j, k, x, y, b ∈ X where i < j (5)
vj,i,x ∨ vj,k,y ∨ vx,y,b ∨ yi,j,k,b, for all i, j, k, x, y, b ∈ X where i < j (6)
ExactlyOne({yi,j,k,b | b ∈ X}). for all i, j, k ∈ X where i < j (7)

The first clause expresses that the variable yi,j,k,b must be true whenever CCi,j ,Ci,k
=

b, the second does the same for the right-hand side of the cycloid equation. The
totalizer used at the end enforces that this variable can only be true for one b,
and as such the two sides of the equation must be the same.

Appendix 2 Proofs

Proposition 2 (Proposition 1, restated). Let P and P ′ be two partial cycle
sets. The following properties hold.

1. If P ◁ P ′, then for all C ∈ X (P ) and C ′ ∈ X (P ′), it holds that C ≺ C ′.
2. If P ⊴ P ′, then for all C ∈ X (P ) and C ′ ∈ X (P ′), it holds that C ⪯ C ′.
3. If P ⊴ P ′ and P ′ ⊴ P , then P = P ′ and both cycle sets are complete.

Proof. Given two partial cycle sets P, P ′ ∈ Pn, for which P ⊴ P ′, we show that
Property 2 holds. If P ⊴ P ′, for all cells c ∈ X × X, where X = {1, . . . , n}, it
holds that Pc ⊴ P ′

c, or equivalently that max Pc ≤ min P ′
c. Hence, for all cells c

of all extended cycle sets C ∈ X (P ) and C ′ ∈ X (P ′), it holds that Cc is smaller
than or equal to C ′

c, or equivalently that C ⪯ C ′.
If P ◁ P ′, there exists a cell c for which Pc ◁ P ′

c and for all cells c′ < c,
Pc′ ⊴ P ′

c′ . Hence, for c′ < c, we have that max Pc′ ≤ min P ′
c′ , and hence that

Cc′ ≤ C ′
c′ . However, max Pc is strictly smaller than min Pc′ , so Cc will be strictly

smaller than C ′
c for all extended cycle sets. As a result, we have that C ≺ C ′,

and we have shown that Property 1 holds.
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Last, we show that Property 3 holds as well. If P ⊴ P ′ and P ′ ⊴ P , then
for all cells c, we have that max Pc ≤ min P ′

c and max P ′
c ≤ min Pc. Using that

minimum values are smaller than or equal to maximum values gives us that

max Pc ≤ min P ′
c ≤ max P ′

c ≤ min Pc.

However, this implies that max Pc ≤ min Pc, but we know that min Pc ≤ max Pc.
So necessarily, max Pc = min Pc, and hence,

max Pc = min Pc = max P ′
c = min P ′

c.

In other words, all cells in P and P ′ are fixed such that P = P ′, which gives us
Property 3.

Theorem 2 (Theorem 1, restated). Given a partial cycle set P and permu-
tation π, we have that:

– if π(P ) ◁ P , then π is a witness of non-minimality,
– If π(P ) ⊴c P then there is an extension P ′ of P such that

1. P ′ and π(P ′) are fully defined on all c′ ≤ c, and
2. all ⪯-minimal extensions C ∈ X (P ) are also extensions of P ′.

Proof. Let P ∈ Pn be a partial cycle set, and π a permutation such that π(P ) ◁
P . Using Property 1 from the previous proposition, we obtain that π(C) ≺ C
for all extended cycle sets C ∈ X (P ). As a result we have shown that π is indeed
a witness of non-minimality.

We show that the second case holds as well. Let P be a partial cycle set
that is not fully defined and π a permutation such that π(P ) ⊴c P . For the
first cell c′ ≤ c, where either, or both Pc′ and π(P )c′ are not fully defined, the
only way to avoid that π(P )c′ ◁ Pc′ (in which case this would be a witness of
non-minimality, following the first point) is assigning π(P )c′ its maximal value
and Pc′ its minimal value. We can repeat this for all cells up to c.

Appendix 3 Encoding the minimality check

First, we describe the clauses used to ensure that the permutation π is indeed
well-defined and an isomorphism of the given cycle set. In order to ensure that
π is well-defined, we add the following clauses:

ExactlyOne({pi,j | j ∈ X}), (for each i ∈ X) (8)
ExactlyOne({pi,j | i ∈ X}). (for each j ∈ X). (9)

Next, we ensure that π is indeed an isomorphism of the problem. Similar to
the propagation step during the backtracking approach, no extra measures need
to be taken if the diagonal equals the identity. In all other cases, we need to
ensure that π fixes the diagonal T , or in other words that π ∈ CS|X|(T ). The
permutation π fixes the diagonal if it maps each cycle of the diagonal onto a
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same-length cycle, in the same order. Hence, if π(i) = j, the encoding ensures
that all values k in the same cycle as i are fixed accordingly. Using n(k) to denote
the successor of k in its cycle and Cn to denote the set containing all elements
in cycles of length n, we add the following clauses to ensure that the entire cycle
is fixed if π(i) = j; for all n ∈ X and all i, j ∈ Cn:

¬pi,j ∨ pn(i),n(j). (10)

To ensure that M ′ is the image of M under the given permutation π, we add
a set of clauses relating the two matrices and the permutation. We define the
following clauses that ensure M ′ equals π(M); for all i, i′, j, j′, k, k′ ∈ X:

¬pi,i′ ∨ ¬pj,j′ ∨ ¬pk,k′ ∨ ¬wi′,j′,k′ ∨ w′
i,j,k, (11)

¬pi,i′ ∨ ¬pj,j′ ∨ ¬pk,k′ ∨ wi′,j′,k′ ∨ ¬w′
i,j,k (12)

This encoding can be simplified using the available domain-specific knowledge.
The permutation π is an isomorphism of the problem if it fixes the diagonal,
hence, the image of i ∈ X under π should equal an element j ∈ X that belongs
to a cycle with the same length. As a result, πi,j is false if i and j belong to
cycles with different lengths, so this variable is no longer introduced and clauses
containing it can be simplified (or simply removed).

To ensure that M ′ < M , we use the order ≤w′ and auxiliary variables nc,i de-
fined in Section 4.2 to add static symmetry breaking constraints. We use (c, k)++
to denote the tuple (c′, k′), where w′

c,k immediately precedes w′
c′,k′ in the order

≤w′ , and add the following clauses for all cells c and for each k ∈ X (except for
the last inequality):

nc,k ⇒ w(c,k)++ ∨ ¬w′
(c,k)++

(13)
nc,k ∧ w′

(c,k)++
⇒ n(c,k)++ (14)

nc,k ∧ ¬w(c,k)++ ⇒ n(c,k)++ . (15)

The first clause forces M ′ to be smaller than or equal to M , the last two clauses
ensure that nc,k is only true if all preceding w(′)-variables have the same truth
value. In order to ensure that M ′ is strictly smaller than M , we ensure that the
last inequality is strict:

ncl,2 ⇒ wcl,1 ∨ ¬w′
cl,1 (16)

¬ncl,2 ∨ ¬w′
cl,1 (17)

¬ncl,2 ∨ wcl,1, (18)

where cl is the last cell.
In order to reason about partial cycle sets, a different order is used. We

no longer verify whether M ′ < M , but whether M ′ ◁ M , or in other words,
whether there exists a cell c such that max M ′

c < min Mc and M ′
c′ = Mc′ for

all previous cells c′. As a result, the symmetry breaking constraints need to be
adapted to reason about the maximum and minimum values of the cycle sets.
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First, we encode the l- and g-variables by adding the following clauses to the
formula for all i, j, k ∈ X:

gi,j,k ⇔
∧

l∈X,l≤k

¬wi,j,k (19)

li,j,k ⇔
∧

l∈X,l≥k

¬w′
i,j,k. (20)

Next, we add the following clauses for all cells c and values k ∈ X:

n′
c,k ⇒ gc,k−1 ∨ lc,k (21)

n′
c,k ∧ ¬w(c,k)++ ⇒ n′

(c,k)++
(22)

n′
c,k ∧ ¬l(c,k)++ ⇒ n′

(c,k)++
. (23)

In order to ensure that M ′ ◁ M , we again ensure that the last inequality is
strict:

n′
cl,2 ⇒ gcl,1 ∨ lcl,2 (24)

¬n′
cl,2 ∨ wcl,1 (25)

¬n′
cl,2 ∨ lcl,1, (26)

where cl is the last cell.

Appendix 4 Configurations

We have used preliminary experiments enumerating sizes 8, 9 and 10 in order
to identify good overall parameters for both YBE-SMS approaches. For the back-
tracking approach, this eventually resulted in a situation where almost all the
time is spent in unavoidable minimality checks (of complete, minimal solutions),
and hence further parameter tweaking cannot result in significant speedups. For
the incremental approach, the minimality check is no longer dominating the cost,
so further optimization of these parameters (or other ideas for speeding up the
search of the main solver) could be beneficial. Both approaches use the following
optimizations discussed throughout the paper:

– they partition the problem by fixing the diagonals,
– they optimize the encoding(s) by using the information gained by fixing a

diagonal,
– they encode ExactlyOne constraints using a binary encoding.

Next, we identified parameters that find a suitable balance between the frequency
of and the limitations we impose on the minimality check:

– Backtracking approach:
• Frequency: 1

50
• Limit: 200 visited nodes in the search tree

– Incremental approach:
• Frequency: 1

100
• Limit: 10 conflicts
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Appendix 5 Experiments

In Table 3 we give a more detailed breakdown of the results presented in Fig. 1.
Here, we compare the new YBE-SMS implementations against the implementation
of Akgün, Mereb and Vendramin [1] (referred to as AMV22).

AMV22 Backtracking Approach Incr. SAT Approach
Size # Sols Iso Check (s.) Total (s.) MinCheck (s.) Total (s.) Speedup MinCheck (s.) Total (s.) Speedup
2 2 0.0 2.8 0.0 0.0 0.0 0.0
3 5 0.0 2.7 0.0 0.0 0.0 0.0
4 23 0.0 5.2 0.0 0.0 0.0 0.0
5 88 0.0 9.5 0.0 0.0 0.0 0.0
6 595 0.2 32.2 0.1 0.2 161.0 0.3 0.7 46.0
7 3 456 1.1 89.8 0.7 1.8 49.9 1.9 4.4 20.4
8 34 530 43.1 419.3 19.3 32.6 12.9 24.6 49.7 8.4
9 321 931 2 542.3 7 797.7 621.6 760.5 10.2 185.6 421.2 18.51
10 4 895 272 237 307.1 720 883.0 41 594.1 44 792.5 16.1 2 706.3 6796.8 108.1
11 77 182 093 50 767.2 226 395.6

Table 3. Comparing the runtimes of the implementation of AMV22 and our approaches
building on SAT Modulo Symmetries.


