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Abstract
Constraint solving techniques provide decision support in many everyday and industrial applica-
tions, ranging from the scheduling of nurses in a hospital to sequencing jobs on machines under
resource constraints. AI practitioners harness the power of highly efficient solvers by building a
model-based representation of these constraint satisfaction problems (CSPs). Advances in con-
straint solving techniques and hardware improvements allow such systems to consider millions
of alternatives in a short period of time. However, this complex reasoning makes it increasingly
difficult to understand why certain decisions are made, i.e., which parts of the problem constraints
were used to obtain the solution.

In this thesis, we study the problem of explaining the inference steps leading to a solution, in
a human interpretable way, agnostic of the ‘inner working’ of the underlying solver used. The
main challenge is to explain the solution by means of a sequence of simple explanation steps. Each
explanation step should aim to be as cognitively easy as possible for a human to understand.

In our first contribution, we formalise the problem of step-wise explaining the maximal conse-
quence of constraint satisfaction problems. We propose algorithms for generating a sequence of
explanation steps. Each explanation step combines constraints with variable assignments (facts),
to infer new information from the solution. We propose the use of a cost function to estimate the
difficulty of an individual explanation step. This cost function captures, for example, the interac-
tion between constraints and facts, or the type of constraints present in the explanation. Our
algorithms for explanation generation exploit a one-to-one correspondence between so-called
non-redundant explanations and Minimal Unsatisfiable Subsets (MUSs) of a derived unsatisfi-
able formula. Since some generated explanations are still difficult to understand, we propose to
decompose a complex explanation into smaller nested explanations using reasoning by contradic-
tion, thus providing the ability to zoom-in on explanations.

Unfortunately, MUS extraction techniques do not guarantee the optimality of an explanation with
respect to such a cost function. Therefore, we address how to generate explanations by introduc-
ing Optimal Constrained Unsatisfiable Subsets (OCUS), that satisfy certain structural constraints
and that are provably optimal (with respect to a given objective function), e.g., ensuring that we
explain one fact of the solution at each step. We introduce a hitting–set-based algorithm that
leverages the strengths of Mixed Integer Programming (MIP) and Boolean Satisfiability (SAT)
for efficient OCUS computation.
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ABSTRACT

So far, we have assumed the existence of a cost function that estimates the difficulty of an ex-
planation. However, we do not currently know what a good function is. Furthermore, at each
step, there are many candidate explanations for a single fact, and we do not currently know how
to characterise what is the most helpful explanation for a user. It may even vary from one user to
another. To address this challenge, we study learning preferences for explanations directly from
users. In our third contribution, we investigate whether we can learn a preference function over a
feature representation of explanations using learning-to-rank techniques, and its integration into
an explanation generation workflow. We showcase on sudoku that we can learn functions that
score well on choosing between two smallest MUSs. Furthermore, by using an iterative learning
setup, we can directly learn a linear scoring function that can be integrated to directly gener-
ate preferred explanations. Finally, we conduct a small-scale user study to evaluate how well
they perform when generating explanations directly versus selecting from a pre-generated set of
explanations.

Overall, our results show that we are able to step-wise explain the maximal consequence of con-
straint satisfaction problems, with a focus on human interpretability, by providing the most helpful
explanation to the user at each step.
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CHAPTER 1

Introduction
In this thesis, we explore methods that help bring explainable agency to constraint solving. We
first sketch the general context of Artificial Intelligence (AI) and how constraint solving fits within
the AI landscape. In Section 1.2, we discuss initiatives related to explainability in AI. Next, in
Section 1.3, we give a brief overview of how explainability has been approached in constraint
solving and the gap that this work aims to fill. Finally, for each chapter, we motivate, starting
from the problem statement, how each contribution helps close the gap to explainable constraint
solving.

1.1 Artificial Intelligence: Machine Learning, Automated
Reasoning, and more

Artificial Intelligence is the field of computer science that aims to augment artificial systems
with intelligence to perform tasks that typically require human intelligence. Due to a number of
success stories, much of the attention in AI has shifted to the field of Machine Learning (ML). In
machine learning, a system is trained to acquire knowledge by automatically extracting patterns
from raw data [79]. Deep Learning [88], a subfield of ML, combines artificial neurons in multi-
layer networks, called deep neural networks (DNN), to simulate the complex decision making of
a human brain [88, 72].

Artificial Intelligence research encompasses more than just the development of data-driven learn-
ing methods (ML). Artificial intelligence also includes:

Natural Language Processing Natural Language Processing (NLP) enables machines to pro-
cess, understand and generate human language, with applications in chatbots, translation
systems and sentiment analysis.

Knowledge Representation and Reasoning (KRR) Knowledge representation involves structur-
ing information in a way that a computer can use to reason. Examples of knowledge rep-
resentation include semantic networks, (first-order) logic theories, frames, ontologies, and
constraint satisfaction problems. In this thesis, we focus on first-order logic (FOL) theo-
ries and on constraint satisfaction problems (CSPs). In Chapter 2, we formally introduce
the background knowledge related to FOL and CSPs, as well as the techniques we used to
reason over this formal representation.
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Constraint Solving Constraint solving involves formulating constraints on the values that can
be assigned to variables in the problem, in order to restrict the solutions allowed by the
problem.

Machine Perception Machine perception, often associated with Computer Vision (CV), enables
AI systems to interpret and understand sensory data such as images or speech.

Robotics The design and programming of machines that can autonomously perform physically
demanding and labour-intensive tasks.

Planning Planning algorithms allow systems to strategise actions given a current state, desired
goals and resources.

A clear distinction between these research fields is fading as many now integrate data-driven
techniques to improve and accelerate their performance. Large Language Models (LLMs), for
example, rely on large neural networks to learn how to process and generate text directly from
vast amounts of data using supervised and semi-supervised learning (ML).

In this thesis, we develop techniques in constraint solving (or constraint reasoning) that can be
used to explain constraint satisfaction problems CSP. These problems can range from simple
logic puzzles such as the Sudoku or a logic grid puzzle, to complex real-world problems such as
scheduling, resource allocation, and optimisation. In the following, we present two examples of
AI systems that showcase the explanation techniques developed in this thesis: (1) the Zebra Tutor
developed in [19] and (2) the Sudoku Assistant [65].

Example 1 (Logic Grid Puzzle). A logic grid puzzle (also known as “Zebra puzzle” or “Einstein
puzzle”) consists of natural language sentences (from here on referred to as “clues”) over a set of
entities occurring in those sentences. The logic grid shown in Figure 1.1 is a puzzle about people
having dinner in a restaurant and ordering different types of pasta. The right side of Figure 1.1
shows the clues that were given in the problem statement, as well as the reasoning techniques
(Transitivity and Bijectivity) that can be used to solve it. The left-hand side corresponds to the
logic grid that needs to be filled in by matching entities of different entity types with each other.
In practice, the set of entities is sometimes left implicit if it can be derived from the clues, but it is
often given in the form of a grid.

Furthermore, in such a puzzle the set of entities is partitioned into equally-sized groups (corre-
sponding to types); in our example, “person” and “sauce” are two such types. In short, the goal
of the puzzle is to find relations between each two types such that

• Each clue is respected;
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• Each entity of one type is matched with exactly one entity of each other type, e.g., each per-
son chose exactly one sauce and each sauce is linked to one person (this type of constraint
will be referred to as bijectivity); and

• The relations are logically linked, e.g., if angie chose arrabiata sauce and arrabiata sauce
was paired with farfalle, then angie must also have eaten farfalle (from now on called
transitivity).

The logic grid puzzle shown is a puzzle about people (angie, elisa, claudia, damon) having dinner
in a restaurant and ordering different types of pasta (rotini, taglioni, farfalle and capellini), with
a unique sauce (arrabiate, marinara, puttanesca, and a last one that was not mentioned in any
of the clues), and unique price. The logic grid already contains 1 (known) fact that has been
derived using clue 8, i.e. farfalle (a type of pasta) has been associated with arrabiata sauce (a
pasta sauce).

Figure 1.1: Zebra Tutor: AI system to solve a logic grid puzzle (also known as a Zebra puzzle)
given the clues in natural language and a list of the entities in the puzzle.[19]

For instance, our running example in Figure 1.1 contains as second clue “The person who chose
arrabiata sauce is either Angie or Elisa” and (among others) the entities “arrabiata sauce”,
“Angie” and “Elisa”.
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Example 2 (Zebra Tutor). The Zebra Tutor is an AI system that illustrates how NLP techniques
and Logic Reasoning can be combined to interpret and solve a logic grid puzzle specified in
natural language (English), and subsequently, step-wise explain it in a human understandable
way. Figure 1.1 shows an example of an explanation using the implicit ‘Bijectivity’ axiom present
in each logic grid puzzle which is used to derive the following: since arrabiata sauce was eaten
with farfalle, it was not eaten with any of the other pasta types. In Chapter 3, we provide the
details of how this is done.

Example 3 (Sudoku). The 9 x 9 Sudoku problem is a logic puzzle that requires filling in a set
of digits from 1 to 9 into a rectangular grid, such that each column, each row and each 3 x
3 block contains exactly one occurrence of each digit. A valid Sudoku should have a unique
solution. Figure 1.2 shows an example of a partially filled Sudoku that must be completed using
the rules (constraints). However, there seems to be a mistake. In Section 1.3.2, we highlight some
approaches to help identify, explain, and resolve this mistake.

Figure 1.2: Partially filled Sudoku puzzle

Example 4 (Sudoku Assistant). The Sudoku Assistant [65] illustrates how computer vision,
machine learning, and constraint reasoning techniques are combined in order to solve a pen-
and-paper Sudoku puzzle from an image captured by a smartphone camera. An overview of the
pipeline is shown in Figure 1.3.

First, the image of the 9x9 Sudoku grid (Figure 1.3a) is split into 81 squares containing either
the empty cell or a digit and a machine learning model is used to predict the probability for each
label, i.e., 1 to 9 or the empty class. Next, a most likely satisfiable Sudoku is extracted by using a
joint inference over the (Sudoku) constraints and the predicted probabilities, correcting potential
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(a) Picture of Sudoku
grid taken by a smart-
phone camera.

(b) Digit recognition,
and prediction of most-
likely satisfiable Sudoku
grid.

(c) Solution of Sudoku. (d) Step-wise explana-
tion (hint) of the next
digit to fill.

Figure 1.3: Sudoku Assistant: AI system combining computer vision, machine learning, and
constraint reasoning techniques to interpret, solve a pen-and-paper Sudoku Puzzle taken by a
smartphone camera. Once solved, the Sudoku Assistant assists the user by showing a hint of
which digit to fill in next.

mistakes during prediction (Figure 1.3b). Once the puzzle has been solved (Figure 1.3c), the
Sudoku Assistant helps the user by showing a hint as to which number to fill in next (Figure 1.3d).

These two examples of AI systems illustrate the complexity of artificial intelligence, and how AI
aims to mimic human-like cognitive abilities.

1.1.1 Constraint Solving

Many real-world applications benefit from constraint solving techniques to support decision mak-
ing. In healthcare, scheduling nurses in a hospital requires finding an allocation of shifts that, for
example, takes into account nurses’ preferences and ensures that each shift is covered by enough
nurses. Job shop scheduling is another example, but in an industrial setting. In job shop schedul-
ing, jobs are scheduled to run on different machines in a factory under resource constraints.

These two complex problems are examples of constraint satisfaction problems (CSPs) where
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constraints express the restrictions or preferences that need to be satisfied in a solution. When
an objective is introduced, such as minimising the number of resources used, the corresponding
class of problems is called Constraint Optimisation Problems (COPs). By building a model-based
representation of these problems, AI practitioners harness the power of highly efficient constraint
solvers.

Healthcare and Industrial applications Consider two examples of real-world applications:

Example 5 (Healthcare). In healthcare, the nurse scheduling problem consists of finding an al-
location of shifts and holidays that satisfies all hospital constraints and nurses’ preferences. 1,2

Figure 1.4: Nurse scheduling problem: shifts (D) and holidays (F) are assigned to nurses based
on nurse’s specific days off (*), and shifts on which they do not want to work (-).

For example, each nurse can work at most 5 consecutive shifts and has their own constraints, e.g.,
specific days off (*), and preferences, e.g. request not to work a specific shift (-). In addition, the
hospital requires a minimum number of nurses to be present on each shift (Cover).

Figure 1.4 shows an example of a shift allocation for 8 nurses. Note that the proposed solution
violates Richard’s preference not to work on Tuesday of week 2, as he still has a shift assigned.

Example 6 (Industrial applications). Senthooran et al. [126] presents three industrial use cases
that benefit from constraint solving: (1) Finding a satisfiable Plant Equipment Layout while en-

1Examples of benchmark instances can be found at http://www.schedulingbenchmarks.org/ including
instances from various sources including industry collaborators and scientific publications.

2A more detailed description of different types of explanations (including their visualisation) for the nurse scheduling
problem is available at https://github.com/CPMpy/XCP-explain/.
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suring the best routes for connecting pipes; (2) Developing a Water Management System that
connects a city’s water supply and transfer lines to meet water demand, network constraints,
and more; (3) Finding the number, location, and size of Hydrogen Production Facilities to meet
demand, flow, storage, and turn-down constraints while minimising the production costs.

Toy problem Finally, throughout the thesis we will use the Sudoku puzzle as a pedagogical
example of a CSP.

In the subsequent section, we present a high-level overview of the model-and-solve workflow
typically employed by AI experts when tackling such complex problems.

Model and Solve

The typical workflow for tackling a new problem using Constraint Programming is divided into 2
key steps: modelling and solving 1.

During the modelling process, a real-world problem is described in a declarative way, typically
as an instance of a constraint satisfaction problem (CSP) or as a Constraint Optimisation Problem
(COP). An instance represents a specific instantiation of the problem consisting of a finite set of
variables, their domains, constraints, and (if applicable) an objective function to be minimised or
maximised. A constraint defines the relations between the variables involved in that constraint,
called the scope of a constraint, and restricts the values that can be assigned to the variables in a
solution.

In the solving process, a solver combines different techniques to explore the search space of
variable-value assignments to find a solution (see Figure 1.5) that satisfies the problem constraints
and, if applicable, optimise an objective.

Formal representation of a CS(O)P During the modelling process, an abstract representation
of the problem, also called a model, is formulated to capture a family of problem instances by
referring to some parameters representing the data, e.g. the number of variables or the domains
of the variables. For the 9 x 9 Sudoku, this corresponds to providing the initial state of the grid.
The model can then be represented in a preferred formalism. There are many formalisms and a
suitable one should be chosen depending on the use-case at hand. To name a few:

• Boolean Satisfiability (SAT) is a paradigm that encodes satisfiability problems as a com-

1A more detailed tutorial is available at: http://www.cril.univ-artois.fr/~lecoutre/teaching
/constraints/ch2Modeling.pdf
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bination of ‘and’-operators called conjunctions (∧),‘or’-operators called disjunctions (∨),
‘not’-operators called a negations (¬), and boolean variables called atoms (x1, x2, x3), that
are assigned either True or False [13]. An example of a logical formula encoded in SAT is:

x1 ∧ (x2 ∨ ¬x3)

For the formula to evaluate to true, x1 must be true and, either x2 must be true or x3 must
be false.

• Satisfiability Modulo Theories (SMT) extends Boolean satisfiability with predicates rep-
resenting mathematical operations on non-binary variables [38]. For example, find an as-
signment of values to the variables x, y ∈N such that the following constraint is satisfied:

x > 2, y < 10, x + 2y = 7

• Logic Programming is a paradigm for expressing logical relations, including the use of
quantifiers, i.e. ‘for all’ ∀ and ‘there exists’ ∃. For example, ‘every sauce must be paired
with a type of pasta’ can be expressed as first-order logic (FOL) theory:

∀ s ∈ sauce : ∃ p ∈ pasta : pairedwith(s, p)

Common logic programming languages include Prolog [31], and ASP [22].

• Constraint Programming (CP) is a computer science paradigm for solving combinatorial
problems in which users declaratively state constraints on decision variables with a finite
domain [119]. For example, by finding an assignment of values for the variables x, y ∈
[2..5] such that the following constraint is satisfied:

x > 2, y < 10, x + 2y = 7

Model and solve The next step is to encode a mathematical formulation of the CSP in a mod-
elling language such as CPMpy [64], MiniZinc [109], Essence [53], or as first-order logic theories
using IDP [26]. Once encoded, the model is transformed to fit the input format of the underlying
solver being used. Often, preprocessing techniques are applied to the input model to speed up the
solving time when the solver is called to search for a solution, e.g. to detect symmetries in the
formulation or to propagate individual constraints.

The constraint solver is then called to find an assignment of values to the variables that satisfies
the constraints. If a solution is found, the problem is said to be satisfiable. However, if no solution
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can be found, i.e. not all constraints can be satisfied, then the problem is said to be unsatisfiable.
This means that either the problem is inherently infeasible, there has been a (human) error in the
modelling process, an error in the data provided by the instance or in the worst case there is a bug
in the solver or compiler.

Problem

Model

Solve

No solution

unsat

solution

sat

Human-error? Over-constrained?

Figure 1.5: Model and solve pipeline

1.1.2 Solving using Inference and Search

The main strategies used by a constraint solver for reasoning are inference and search.

Search methods explore the space of variable value pairs to find solutions. Backtracking is an
example of a search method that completes a partial solution by successively assigning values to
variables until a constraint is violated. Once a failure is reached, the last variable assignment is
undone, another value is selected from the variable’s domain, and the search continues.

Inference is a reasoning technique used to restrict the values that can be taken by variables. Con-
straint Propagation is an example of inference used to enforce the constraints, individually or in
combination, and propagate their effects through the solution space.

The interleaving of inference and search helps to efficiently explore the space of possible assign-
ments. In this case, inference can ensure that large subspaces containing only non-solutions can
be omitted from the search.
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1.2 Explainable Artificial Intelligence

As AI systems employ more advanced reasoning mechanisms and computational power, it has
become increasingly difficult to understand why certain decisions are made. Explainable AI
(XAI) research aims to address the need for trustworthy AI systems to understand why the system
has made a decision, in order to verify the correctness of the system and to check for biased
or systematically unfair decisions. In the research community, this need is manifested by the
emergence of (interdisciplinary) workshops and conferences on this topic [130, 69] and American
and European incentives to stimulate research in this area [63, 67, 47]. On the legislative side,
there is also increased attention to explainability, such as in the EU’s GDPR 2016/679 [116].

The main focus of XAI research has been on explaining black-box systems such as neural net-
works, where the aim is to provide insights into which part(s) of the input are important in the
learned model. These insights (or local approximations thereof) can justify why certain predic-
tions are made. In this context, a number of techniques have been developed, ranging from local
explanations of predictions at the feature level [118, 97] to visual explanations with saliency
maps [125]. [1, 62, 9] provide an overview of the latest trends and main research directions in
this area.

Model-based systems are typically considered to be more transparent. However, they are also
in need of explanation mechanisms. For example, Vassiliades et al. [132] survey the important
methods that use argumentation [108] to provide explainability in AI, with applications for exam-
ple in medical diagnosis by Obeid et al. [112]. Abstract argumentation frameworks introduce an
abstract formalism to explain argument acceptance [127, 92, 131]. Description logics [5], on the
other hand, aim at explaining logical proofs [4, 85], i.e. ‘why does phi follow from psi?’.

The main focus of this thesis is to provide explainable agency [86] to Constraint Programming
(CP) [119] and Boolean Satisfiability (SAT) [14] systems. Advances in solving techniques and
hardware improvements allow such systems to handle large models with complex objectives and
many constraints. This complexity raises the question of how to generate human interpretable
explanations of the conclusions they make.

In the following we explore how explainability is addressed in constraint reasoning at both the
solving and modelling levels.
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1.3 Explainability in Constraint Solving

Within constraint solving, there is already a rich literature on explanations. An important line of
research there focuses on explanations that are useful to the solver, rather than the user.

1.3.1 Explanations at the Solving Level

In lazy clause generation solvers, explanations of a constraint are studied in the form of an impli-
cation of low-level Boolean literals that encode the result of a propagation step of an individual
constraint [48]. Also, no-goods (learned clauses) in conflict-driven clause learning SAT solvers
can be seen as explanations of failure during search [101]. These are not intended to be human
interpretable, but rather to propagate efficiently, in other words to speed up solving.

1.3.2 Model-based Explanations

At the modelling level, the explicit model-based representation of the problem provides an op-
portunity to explain the inference steps directly in terms of this representation [119]. However,
model-based systems, which are typically considered to be more transparent, are also in need of
explanation mechanisms. The model itself can no longer be called “an explanation”, and model-
based systems also need explanation mechanisms.

In the following, we explore model-based explanations in the context of debugging unsatisfiable
problems, how to restore their feasibility, and finally, inference-based explanations of satisfiabil-
ity.

Explaining Unsatisfiability

In the CP and SAT communities, there has been a strong focus on explaining why over-constrained,
and hence unsatisfiable problems have no solutions [80]. For example, QuickXplain [80] uses
a dichotomous approach that recursively partitions the constraints to find a minimal conflict set.
Many other papers consider the same goal and search for explanations of over-constrainedness [89,
135]. A small conflicting subset of the constraints, often called a minimal unsatisfiable subset
(MUS) or minimal unsatisfiable core [94], is provided as an explanation of why the problem is
unsatisfiable.
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Feasibility Restoration

Feasibility restoration in constraint solving involves finding minimal changes to the model speci-
fication to ‘repair’ an unsatisfiable CSP to achieve feasibility, for example by extracting a minimal
correction subset (MCS). An MCS is a minimal set of constraints that, when removed or relaxed,
transforms an unsatisfiable problem into a satisfiable one [93, 89, 87, 126].

Example 7 (Nurse scheduling (continued)). In Example 5, Robert has a day off and Richard
prefers not to work on Tuesday of week 2. However, Tuesday in week 2 needs to be covered by 7
nurses, meaning that all 3 constraints cannot be satisfied together. This explanation is an example
of a MUS that is extracted from the problem constraints.

Figure 1.6: Explanation of unsatisfiability using a Minimal Unsatisfiable Subset (MUS).

To make our running example satisfiable, we can extract an MCS consisting of the following
constraints:

1. (1) Robert has a day off on Tuesday of week 2;

2. (2) Richard requests not to work the shift on Tuesday of week 2;

3. (3) The shift on Saturday of week 1 must be covered by 5 nurses out of the 8 nurses and;

4. (4) the shift on Sunday of week 1 must be covered by 5 nurses out of the 8 nurses.

Example 8 (Sudoku Puzzle (continued)). Consider the following example of a partially filled
Sudoku that needs to be completed using the rules (constraints). However, there seems to be a
mistake when filling in the 4 on the last line.

12
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Figure 1.7: Partially filled unsatisfiable Sudoku puzzle

A Minimal Unsatisfiable Subset (MUS) can then be extracted to explain why this Sudoku cannot
be solved:

1. 2 cannot be in the first;

2. 2 cannot be in the third column;

3. 4, 6 and 8 are in the middle column of the block.

Therefore 4 cannot be in the second column of the last row.

In this case, either removing the 4 in the second column of the last row of Figure 1.8b or changing
it to the correct digit (2), restores the feasibility of the Sudoku.

Explaining Satisfiability

In decision support systems, explaining satisfiability can enhance the trust and transparency of the
system used in complex decision making problems. Furthermore, stakeholders are more likely
to trust and accept solutions when they can understand and verify why the solutions found are
correct. Despite its importance, explaining the satisfiability of a CSP remains underexplored in
current research.

A solution can be extracted to explain why the problem is satisfiable. However, it does not pro-
vide fine-grained information about which constraint or combination of constraints led to which
variable assignment in the solution.
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(a) Explanation of infeasibility (Minimal
Unsatisfiable Subset).

(b) Restoring feasibility (Minimal Correc-
tion Subset).

Figure 1.8: Examples of techniques for debugging an unsatisfiable Sudoku

Sqalli and Freuder [129] investigate logic grid puzzles and develop a number of problem-specific
inference rules that allow solving (most, but not all) such puzzles without search. These inference
rules are equipped with explanation templates such that each propagation event of an inference
rule also has a templated explanation, and hence an explanation of the solution process is obtained.
In [51], Freuder et al. study the implications of user choices to understand why a given solution
was found, why choices led to a conflict (unsatisfiability), and more importantly why a value was
assigned to a variable. An explanation in this context is defined as an inference step for which a
set of problem features entail the result to be explained. For example, finding out which previous
assignments (facts) form a sufficient basis to entail a new assignment (fact).

Holy Grail Challenge In 2019, the ‘Holy Grail Challenge’ [52] was organised, with the aim of
providing automated processing of logic grid puzzles, ranging from natural language processing,
to solving, and explaining. To address that challenge, one of the contestants [43] proposed an
algorithm that uses 3 types of inference rules in a specific order: first clues, then basic consistency
rules, advanced consistency rules. The specific order proposed in [43] is said to mimic the way
that a human would solve a logic grid puzzle. Each time a new fact is propagated, a natural
language explanation is generated using an inference rule based on the textual description of the
constraints.
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1.4 Research Gap

This thesis is motivated by the problem of explaining the maximal consequence of constraint
satisfaction problems. We aim to provide meaningful and short explanations that are similar to
human reasoning so that the user can understand the rationale behind it. More specifically, we
aim to explain the process of propagation in a constraint solver, independent of the consistency
level of the propagation and without augmenting the solver and propagators with explanation
capabilities.

For problems that can — given a strong enough propagation mechanism — be solved without
search, e.g., problems such as logic grid puzzles with a unique solution, this means explaining the
entire problem-solving process. For problems involving search, this means explaining all variable
assignments entailed by the constraint specification in one search node. This can be particularly
useful if something unwanted is being propagated in a node of a deep search tree that involves
many decisions. The user may need an explanation as to why the propagated information does
not correspond to what the user had in mind. Since most of our work is illustrated on constraint
satisfaction problems with unique solutions. For ease of exposition, we will refer to explaining
the solution of a CSP when we talk about explaining the maximal consequence of a CSP.

It deserves to be stressed that we are not interested in the computational cost of performing an
expensive form of propagation, but in explaining all consequences of a given assignment to the
user in a way that is as understandable as possible. More specifically, we aim to develop an
explanation-producing system that is complete and interpretable. By complete we mean that it
finds a sequence of small reasoning steps that, starting from the given problem specification and a
partial solution, derives all consequences. Gilpin et al. [60] define interpretable explanations as:

‘Descriptions that are simple enough for a person to understand, using a vocabulary
that is meaningful to the user’

Our guiding principle is that of simplicity, where smaller and simpler explanations are better.
Simplicity is approximated by means of a cost function which measures how difficult it would be
for a human to understand the explanation. Figure 1.9b of Example 9 depicts an example of such
an explanation, where as few constraints and already derived facts are used to infer a new fact.

Example 9 (Sudoku Puzzle (continued)). Providing the full solution as in Figure 1.9a, does
not help in understanding how each digit of the solution has been derived. Therefore, our
explanation-producing system can be used to provide an explanation of which digit should be
filled in next.

Figure 1.9b illustrates such an explanation step on the Sudoku puzzle to explain how to derive 2
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using the problem specification, i.e. exactly one occurrence of a digit in every column, block and
row, as well as the partial solution, i.e. the digits filled in the gird.

(a) Solution of Sudoku. (b) ‘Simple’ explanation step.

Figure 1.9: Example of step-wise explaining the solution of a Sudoku using a short and meaning-
ful explanation that is similar to human reasoning.

A complete sequence of such explanations allows for explaining a complete solution step-wise
manner in a way that is (human-)interpretable.

1.5 Research Questions

The main challenge we consider is how to explain the solution to a constraint satisfaction problem
with a focus on human interpretability.

This leads to our main research question:

How to explain the maximal consequence of a constraint satisfaction problem step-
by-step in a human understandable way?

We propose to decompose the main research question into the following research questions:

RQ1 How to decompose the solution to a constraint satisfaction problem into stepwise explana-
tions, where each explanation should be as simple as possible for a human to understand?

RQ2 How can we break down difficult explanation steps into finer explanation steps?
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We propose the use of a cost function to approximate the simplicity of an explanation step. This
leads to our next research question:

RQ3 How to efficiently compute the easiest next explanation step that is guaranteed to be opti-
mal with respect to a given cost function quantifying human interpretability?

It is not clear what a good cost function is for characterising how helpful an explanation step is to
a user. Ideally, such a function should be learned directly from users, especially since preferences
may depend on the person to whom the explanation is given. However, there is no a dataset of
explanation preferences labelled by users. This leads us to the following research questions:

RQ4 How to collect a dataset of user preferences over explanation?

RQ5 How to learn a cost function that characterises which explanation is most helpful to a
user?

RQ6 How to integrate a learned cost function into algorithms for explanation generation?

1.6 Outline and Contributions

In the next chapter (Background), we introduce the formal concepts related to logic and constraint
programming that are required for the remainder of the thesis. In the subsequent chapters, we
present how to explain step-by-step solutions to constraint satisfaction problems with a focus on
human interpretability. Our contributions in this thesis and the research questions they aim to
answer can be summarised as follows, listed by chapter.

1.6.1 Chapter 3: A Framework for Step-wise Explaining How to Solve
Constraint Satisfaction Problems

Chapter 3 aims to answer research questions RQ1 and RQ2 by proposing a framework for step-
wise explaining how to solve constraint satisfaction problems, and the use of MUS-based algo-
rithms for explanations generation.

The contributions to answer research question RQ1 are as follows:

• We formalise the problem of step-wise explaining the propagation of a constraint solver
through a sequence of small inference steps;
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• We propose an algorithm that is agnostic to the propagators and the consistency level used,
and that can provide explanations for inference steps involving arbitrary combinations of
constraints;

• Given a cost function quantifying human interpretability, our method uses an optimistic
estimate of this function to guide the search to low cost explanations. For this, we make
use of Minimal Unsatisfiable Subset extraction;

• We experimentally demonstrate the quality and feasibility of the approach in the domain of
logic grid puzzles.

The contribution to answer research question RQ2 is as follows:

• We introduce nested explanations to provide additional explanations of complex inference
steps using reasoning by contradiction;

Chapter 3 has been published as

Bart Bogaerts, Emilio Gamba, Jens Claes, and Tias Guns. Step-wise explanations of
constraint satisfaction problems. In 24th European Conference on Artificial Intelli-
gence (ECAI), 2020. doi: 10.3233/FAIA200149

Bart Bogaerts, Emilio Gamba, and Tias Guns. A framework for step-wise explaining
how to solve constraint satisfaction problems. Artificial Intelligence, 300:103550,
2021. ISSN 0004-3702. doi: 10.1016/j.artint.2021.103550
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1.6.2 Chapter 4: Efficient Explanation Generation with Unsatisfiable
Subset Optimisation

Chapter 4 proposes the use of unsatisfiable subset optimisation to guarantee the generation of
optimal explanations with respect to a given objective in order to answer research question RQ3.

The contributions to answer research question RQ3 are as follows:

• We develop algorithms that compute (cost-)Optimal Unsatisfiable Subsets (from now on
called OUSs) based on the well-known hitting-set duality, which is also used for computing
cardinality-minimal MUSs [74, 122].

• We observe that in the explanation setting, many of the individual calls for MUSs (or OUSs)
can actually be replaced by a single call that searches for an optimal unsatisfiable subset
among subsets satisfying certain structural constraints. We formalise and generalise this
observation by introducing the Optimal Constrained Unsatisfiable Subsets (OCUS) prob-
lem. We then show how O(n2) calls to MUS/OUS can be replaced by O(n) calls to an
OCUS oracle, where n denotes the number of facts to explain.

• We develop techniques for optimising the O(C)US algorithms further, exploiting domain-
specific information coming from the fact that we are in the explanation generation context.
Such optimisations include

1. the development of methods for information re-use between consecutive O(C)US
calls; as well as

2. an explanation-specific version of the OCUS algorithm.

• We extensively evaluate our approaches on a large number of CSP problems.

Chapter 4 has been published as:

Emilio Gamba, Bart Bogaerts, and Tias Guns. Efficiently explaining csps with un-
satisfiable subset optimization. In Proceedings of the 30th International Joint Con-
ference on Artificial Intelligence, IJCAI, pages 1381–1388, 2021. doi: 10.24963/ijc
ai.2021/191

Emilio Gamba, Bart Bogaerts, and Tias Guns. Efficiently explaining csps with unsat-
isfibale subset optimization. Journal of Artificial Intelligence Research, 78:709–746,
2023. doi: 10.1613/jair.1.14260
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1.6.3 Chapter 5: User-preferred Explanations

Chapter 5 proposes the integration of machine learning methods into our explanation algorithms
to generate user-preferred explanations to answer RQ4, RQ5 and RQ6.

The contribution to answer RQ5 and RQ6 are as follows:

• We identify domain-agnostic as well as domain-specific features for MUSs by counting
over different subsets of constraints how many are present in the MUS.

• We compare feature choices and use different point-wise and pair-wise learning-to-rank
methods, showing that in the Sudoku domain, domain-specific features are essential to
accurately discriminate between MUSs, and multiple learning techniques can do this well.

• We demonstrate that we can not only learn how to discriminate between two smallest
MUSs, but that a few iterations of iterative learning with linear predictors allows learn-
ing a scoring function that can be directly used to generate good MUSs.

This chapter is currently under submission at a conference.

Finally, we conclude the thesis with a summary of the results, and discuss future directions for
explanations in constraint programming, as well as some recommendations for AI practitioners
in generating stepwise explanations.
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CHAPTER 2

Constraint Satisfaction Problems:
Background and Notation
This chapter is largely based on the preliminaries of the following journal papers:

Bart Bogaerts, Emilio Gamba, and Tias Guns. A framework for step-wise explaining
how to solve constraint satisfaction problems. Artificial Intelligence, 300:103550,
2021. ISSN 0004-3702. doi: 10.1016/j.artint.2021.103550

Emilio Gamba, Bart Bogaerts, and Tias Guns. Efficiently explaining csps with unsat-
isfibale subset optimization. Journal of Artificial Intelligence Research, 78:709–746,
2023. doi: 10.1613/jair.1.14260

In this chapter, we introduce the terminology and concepts related to our explanation techniques.

2.1 Constraint Satisfaction Problems

Constraint Satisfaction Problems (CSP) are a class of combinatorial problems that involve a set
of variables, each with a domain of possible values, and a set of constraints that restrict the values
that can be assigned to the variables.

Definition 1 (CSP Rossi et al. [119]). A constraint satisfaction problem (CSP) instance is a triple
⟨X ,D, C⟩ with

• X a set of variables;

• D a set of domains Dx of allowed values for each variable x of X .

• C a set of constraints, over a subset of the variables.

A constraint c is typically described by a formula (e.g., x + y ≥ 1), and restricts the values that
can be assigned to the variables. The scope scope(c) of a constraint c corresponds to the variables
appearing in a constraint, e.g. scope(x + y ≥ 1) = {x, y}.
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A (partial) assignment is a (partial) mapping of variables to values from their domain. An as-
signment satisfies (or falsifies) a constraint if the constraint evaluates to true (or false). Slightly
abusing notation, if I is a partial assignment, we will identify it with the set of equalities (also
called facts). A solution is a satisfying assignment of values to all variables in the problem.

Example 10 (Sudoku). Recall the rules for the Sudoku puzzle introduced in Example 3. The
9 × 9 Sudoku problem can be modelled as a CSP with an 9 × 9 array of variables cells, each
over domain {1..9}. Each cell in the grid at column i and row j is associated with a variable
cells[i, j]. The variables cells are subject to the following constraints:

alldifRi = alldifferent(cells[i, j] | j ∈ 1..9) (for each i ∈ 1..9):

• all digits in one row i must be different.

alldifCj = alldifferent(cells[i, j] | i ∈ 1..9) (for each j ∈ 1..9)

• all digits in the same column j must be different.

alldifBi,j = alldifferent(cells[i...i + 2, j...j + 2]) for all i, j ∈ {1, 4, 7}:

• all digits in the same block must be different.

A partial assignment here corresponds to a partially filled Sudoku grid.

2.2 Propositional Logic and Boolean Satisfiability

Let Σ be a set of propositional symbols, also called atoms; this set is implicit in the rest of the
thesis. A literal is an atom p or its negation ¬p. A clause is a disjunction (∨) of literals, i.e.
c1 = x1 ∨ ¬x2. A formula F in conjunctive normal form (CNF) is a conjunction (∧) of clauses.
Slightly abusing notation, a clause is also viewed as a set of literals, and a formula is viewed as a
set of clauses.

A (partial) interpretation I is a consistent (not containing both p and ¬p) set of literals. Satisfac-
tion of a formula Fby an interpretation is defined as usual [14]: an interpretation I satisfies Fif I

contains at least one literal from each clause in F . A model of Fis an interpretation that satisfies
F; F is said to be unsatisfiable if it has no models.

A literal l is a consequence of a formula Fif l holds in all F’s models. The maximal consequence
of a formula F, denotes a consequence that holds in all models. If I is a set of literals, we write I
for the set of negated literals {¬ℓ | ℓ ∈ I}.
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Example 11. Let C1 be the CNF formula over atoms x1, x2, x3 with the following four clauses:

c1 := ¬x1 ∨ ¬x2 ∨ x3 c2 := ¬x1 ∨ x2 ∨ x3 c3 := x1 c4 := ¬x2 ∨ ¬x3

An example of an interpretation is {¬x2, x3}. The maximal consequence of formula C is {x1,¬x2, x3}.

Definition 2. A Minimal Unsatisfiable Subset (MUS) of Fis an unsatisfiable subset S of F for
which every strict subset of S is satisfiable. MUSs(F) denotes the set of MUSs of F.

Definition 3. A set S ⊆ F is a Maximal Satisfiable Subset (MSS) of F if S is satisfiable and for
all S′ with S ⊊ S′ ⊆ F , S′ is unsatisfiable.

Definition 4. A set S ⊆ F is a correction subset of Fif F \ S is satisfiable. Such a subset S

is a minimal correction subset (MCS) of Fif no strict subset of S is also a correction subset.
MCSs(F) denotes the set of minimal correction subsets of F.

Each MCS of Fis the complement of an MSS of Fand vice versa.

(a) Unsatisfiable
model.

(b) Minimal Unsatis-
fiable Subset (MUS).

(c) Minimum Correc-
tion Subset (MCS)
and Maximal Satisfi-
able Subset (MSS).

(d) Hitting-set dual-
ity between MCSs
and MUSs.

Figure 2.1: Visualisation of concepts related to (un)satisfiability.

2.2.1 First-order Logic

First-order Logic (FOL) is an extension of Propositional Logic augmented with the following
elements:

Symbolic terms A symbolic term is either a variables (x, y, . . . ), a name (damon, arrabiata_sauce)
or an arbitrary term.

Predicates A predicate(term1 , term2 , ...termn) of arity n describes the property of n symbolic
terms. For example, predicate chose(p, s) means that object p chose sauce s. For our run-
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ning logic grid puzzle, chose(damon, arrabiata_sauce) means that damon chose arrabiata
sauce.

functions A function(term1 , term2 , ...termn) of arity n combines n symbolic terms to form
another symbolic term. For example, PriceOf(x) corresponds to the price of an object x,
PriceOf (arrabiata_sauce) corresponds to the price of arrabiata sauce.

Quantifiers ∀ and ∃ allow us to quantify and reason about many objects at once.

The syntax of FOL should adhere to the following definitions:

Definition 5. An arity n function combined with n symbolic terms is a symbolic term. An arity n
predicate combined with n symbolic terms is a well-formed formula.

Definition 6. If there are no quantifiers in Φ(x) then x is a free variable in Φ. If for that formula
Φ we write ∀xΦ(x) or ∃xΦ(x), we say that x is now bound in Φ. A variable that is bound is not
free. A well-formed formula with no free variables is a sentence.

Definition 7. If Φ and Ψ are well-formed formulas, then the following logical operators applied
to Φ and Ψ are also well-formed formulas (And if Φ and Ψ are sentences, then the following are
also sentences):

Operator Description

¬Φ Φ is false
Φ ∨Ψ Φ or Ψ must hold
Φ ∧Ψ Φ and Ψ must hold
Φ⇒ Ψ Φ implies Ψ
Φ ≡ Ψ Φ and Ψ are equivalent
Φ⇔ Ψ Φ implies Ψ
∃x : ϕ(x) ϕ(x) must hold for at least one x
∀x : ϕ(x) ϕ(x) must hold for all x

Table 2.1: Syntax of First-order Logic (FOL)

2.3 Satisfiability and Unsatifisfiability

In the following, we introduce key properties related to unsatisfiable subsets on which we build
our algorithms.
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Definition 8. Given a collection of sets H , a hitting set of H is a set h such that h ∩ C , ∅ for
every C ∈ H . A hitting set is minimal if no strict subset of it is also a hitting set.

The next proposition is the well-known hitting set duality [94, 117] between MCSs and MUSs that
forms the basis of our algorithms, as well as algorithms to compute MSSs [34] and cardinality-
minimal MUSs [74].

Proposition 1. A set S ⊆ F is an MCS of F if and only if it is a minimal hitting set of MUSs(F).
A set S ⊆ F is a MUS of F if and only if it is a minimal hitting set of MCSs(F).

Consider the following examples to illustrate the concepts related to unsatisfiability introduced in
the previous definitions:

Example 12. Let C2 be the unsatisfiable CNF formula over atoms x1, x2, x3 with the following
clauses:

c1 := ¬x1 ∨ ¬x2 ∨ x3 c2 := ¬x1 ∨ x2 ∨ x3 c3 := ¬x2 ∨ ¬x3 c4 := x1

c5 := ¬x1 ∨ x2 c6 := ¬x1 ∨ ¬x3

In Example 12, the subset of clauses {c1, c2, c4, c6} is an example of a Minimal Unsatisfiable Sub-
set (MUS) and {c1}, {c4}, {c2, c5}, {c5, c6}, {c3, c6} are examples of minimal correction subsets
(MCSs). We observe that MUS {c1, c2, c4, c6} hits at least one clause of each MCS.
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CHAPTER 3

A Framework for Step-wise Explain-
ing How to Solve Constraint Satis-
faction Problems

In constraint satisfaction, a solution can be extracted to explain why a constraint satisfac-
tion problem (CSP) is satisfiable. However, it does not provide fine-grained information
about which combination of constraints led to which variable assignment of the solution.
The aim of this chapter is to step-wise explain the maximal consequence of a CSP as a
sequence of simple inference steps, each explanation should aim to be as cognitively easy
as possible for a human to understand.

This chapter is largely based on the following scientific publications:

Bart Bogaerts, Emilio Gamba, Jens Claes, and Tias Guns. Step-wise explanations of
constraint satisfaction problems. In 24th European Conference on Artificial Intelli-
gence (ECAI), 2020. doi: 10.3233/FAIA200149

Bart Bogaerts, Emilio Gamba, and Tias Guns. A framework for step-wise explaining
how to solve constraint satisfaction problems. Artificial Intelligence, 300:103550,
2021. ISSN 0004-3702. doi: 10.1016/j.artint.2021.103550

3.1 Introduction

In this chapter, we aim to explain all logical consequences of constraint satisfaction problem. To
do so, we aim to develop a complete and interpretable explanation-producing system with sim-
plicity as guiding principle, where smaller and simpler explanations are better. The main chal-
lenge is to find a sequence of simple explanations where each explanation should be as cognitively
easy as possible for a human to verify and understand.
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An open issue when presenting a sequence of explanations is the level of abstraction used. On
top of this idea of explaining propagations by means of as simple as possible explanations steps,
there are two ways to change the level of abstraction.

The first direction is that one could group multiple single steps into one larger step that can then
be expanded on the fly. The second direction is to provide a more detailed explanation of harder
steps which can not be broken into simpler steps with the standard mechanism. While the first
direction can be useful when explanations get very long, from a theoretical perspective, it is
less interesting. Note that implementing this for real-world problems, might require significant
engineering effort to do this in a way that preserves meaningful explanations.

The second direction on the other hand is interesting for several reasons. First, we noticed that
some generated steps are still too complicated to be understood easily and thus really require being
explained in more detail. Secondly, breaking them up in smaller steps is an interesting challenge.
Indeed, since we start from the idea that steps should be as simple as possible, it should not
be possible to break them up further. To still break them up further, we took inspiration from
methods people use when solving puzzles, and mathematicians use when proving theorems. That
is, for explaining a single step in more detail we work using reasoning by contradiction: starting
from the negation of a consequence, we explain how a contradiction is obtained. In essence, we
assume the negation of the derived fact, and can then reuse the principle of explanation steps to
construct a sequence that leads to an inconsistency. This novel approach allows us to provide a
mechanism for zooming in on the most difficult explanation step.

This chapter and more specifically the use case of logic grid puzzles, is motivated by the ‘Holy
Grail Challenge’1 which had as objective to provide automated processing of logic grid puzzles,
ranging from natural language processing, to solving, and explaining. While our integrated sys-
tem, ZEBRATUTOR, has the capability of solving a logic grid puzzle starting from the natural
language clues (see Section 3.8), the focus in this chapter is on the explanation-producing part of
the system.

Contributions Summarised, our main contributions are the following:

• We formalise the problem of step-wise explaining the propagation of a constraint solver
through a sequence of small inference steps;

• We propose an algorithm that is agnostic to the propagators and the consistency level used,
and that can provide explanations for inference steps involving arbitrary combinations of
constraints;

1https://freuder.wordpress.com/pthg-19-the-third-workshop-on-progress-towards
-the-holy-grail/
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• Given a cost function quantifying human interpretability, our method uses an optimistic
estimate of this function to guide the search to low cost explanations, thereby making use
of Minimal Unsatisfiable Subset extraction;

• We introduce nested explanations to provide additional explanations of complex inference
steps using reasoning by contradiction;

• We experimentally demonstrate the quality and feasibility of the approach in the domain of
logic grid puzzles as pedagogical examples of constraint satisfaction problems.

This chapter is structured as follows. In Section 3.2, we discuss related work. Section 3.3, ex-
plains the rules of logic grid puzzles and presents background information. Sections 3.4 and
3.5, formalise the theory of the explanation-production problem on two abstraction levels, while
Section 3.6 describes the algorithms needed to solve the explanation-production problem. In Sec-
tion 3.7, we motivate our design decisions using observations from the ZEBRATUTOR use case.
Section 3.8 describes the entire information pipeline of the ZEBRATUTOR integrated system. In
Section 3.9, we experimentally study the feasibility of our approach. Finally, we conclude the
chapter in Section 3.10.

3.2 Related work

This research fits within the general topic of Explainable Agency [86], whereby in order for
people to trust autonomous agents, the latter must be able to explain their decisions and the
reasoning that produced their choices.

Explanations of constraint satisfaction problems (CSPs) have been studied most in the context of
over-constrained problems, and hence unsatisfiable problems have no solutions [80]. As intro-
duced in Section 2.3, a small conflicting subset of the constraints, often called a minimal unsat-
isfiable subset (MUS) or minimal unsatisfiable core [94], is provided as an explanation of why
the problem is unsatisfiable. Despite the fact that we do not (specifically) aim to explain over-
constrained problems, our algorithms will internally also make use of MUS extraction methods.

While explainability of constraint optimisation has received little attention so far, in the related
field of planning, there is the emerging subfield of eXplainable AI planning (XAIP) [49], which
is concerned with building planning systems that can explain their own behaviour. This includes
answering queries such as ‘why did the system (not) make a certain decision?’, ‘why is this the
best decision?’, etc. In contrast to explainable machine learning research [62], in explainable
planning one can make use of the explicit model-based representation over which the reasoning
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happens. Likewise, we will make use of the constraint specification available to constraint solvers,
more specifically typed first-order logic [133].

In contrast, our proposed method works for any type of constraint and any combination of con-
straints, and automatically infers a minimal set of facts and constraints that explain an inference
step, without using any problem-specific knowledge. This powerful combination of constraints is
able to automatically detect interesting consistency patterns that needed to be hand-coded in the
Freuder’s seminal work, and also in the solutions submitted by other contestants in the challenge
[43].

Example 13. Figure 3.1 shows an example of an explanation that our approach automatically
generated for a given logic grid state. The facts highlighted by a blue and grey background are
considered known and were previously derived by propagating the clues, so-called bijectivity and
transitivity constraints individually.

Figure 3.1: Demonstration of explanation visualization for explaining why damon has not paid
16$ for his pasta. If taglioni and capellini do not cost 16$, then either farfalle and rotini must cost
16. If damon has not selected farfalle or rotini, then he must not have paid 16$.

The explanation shown in Figure 3.1 is non-trivial, it combines both bijectivity and transitivity
constraints, which was hard-coded as the special-purpose ‘path consistency’ pattern in earlier
logic-grid specific work [129].

There is a rich literature on automated and interactive theorem proving, recently focusing on
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providing proofs that are understandable for humans [57] and, e.g., on teaching humans – using
interaction with theorem provers – how to craft mathematical proofs [134]. Our work fits into this
line of research since our generated explanations can also be seen as proofs, but in the setting of
finite-domain constraint solving.

In the context of interactive explanations, Caine and Cohen [23] introduce a mixed-initiative In-
telligent Tutoring System (MITS). In that framework, the system maintains a model of the knowl-
edge of the user (who is solving a sudoku), estimating how well certain strategies are understood.
The tutor, based on its model of the student, decides whether the benefits outweigh the costs of
interaction with the student (i.e. proposing a move or explaining a step) when the student lacks
knowledge. The student also has the ability to ask for further guidance; in other words, the two
involved parties can take the initiative to engage in interaction. In comparison, in our approach,
we do not aim to model the user, but rather assume a cost-function is specified that quantifies
difficulties of derivations. At each point in time, we then suggest the simplest next derivation.

3.3 Background

Our running example is a puzzle about people having dinner in a restaurant and ordering different
types of pasta, which is the hardest logic grid puzzle we encountered; it was sent to us by someone
who got stuck solving it and wondered whether it was correct in the first place. The entire puzzle
can be seen in Figure 3.1; the full explanation sequence generated for it can be found online at
http://bartbog.github.io/zebra/pasta.

In practice, we choose to present the constraints in natural language, which is an obvious choice
for logic grid puzzles as they are given in the form of natural language clues. We represent the
previously and newly derived facts visually, as can be seen in the grid in Figure 1.1.

In the following section, we introduce typed first-order logic, which we use as the language
to express our constraint programs in. Here, it is important to stress that our definitions and
algorithms work for any language with model-theoretic semantics, including typical constraint
programming languages [119].

In Section 3.8, we explain how we obtain a vocabulary and first-order theory in a mostly auto-
mated way from the clues using Natural Language Processing. The result is a vocabulary with
types corresponding to the groups of entities in the clues, and the names and types of the binary
relations to find (e.g chose(person, sauce), paired(sauce, pasta), eaten(person, pasta)); as well as
constraints (first-order sentences) corresponding to the clues, and the bijectivity and transitivity
constraints.
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3.3.1 Typed First-order Logic

Our constraint solving method is based on typed first-order logic. We refer to Section 2.2.1 for
the syntax and semantics of first-order logic.Part of the input is a logical vocabulary consisting
of a set of types, (typed) constant symbols, and (typed) relation symbols with associated type
signature (i.e., each relation symbol is typed T1 × · · · × Tn with n types Ti).1 For our running
example, constant symbol Angie of type person is linked using relation chose(. . . , . . . ) with
signature person × sauce to constant symbol arrabiata sauce of type sauce.

Definition 9. A first-order theory is a set of sentences (well-formed variable-free first-order for-
mulas [42] in which each quantified variable has an associated type), also referred to as con-
straints.

Since we work in a fixed and finite domain, the vocabulary, the interpretation of the types (the
domains) and the constants are fixed. This justifies the following definitions:

Definition 10. A (partial) interpretation is a finite set of literals, i.e., expressions of the form P (d)
or ¬P (d) where P is a relation symbol typed T1 × · · · × Tn and d is a tuple of domain elements
where each di is of type Ti.

Definition 11. A partial interpretation is consistent if it does not contain both an atom and its
negation, it is called a full interpretation if it either contains P (d) or ¬P (d) for each well-typed
atom P (d).

For instance, in the partial interpretation I1,

I1 = {chose(angie, arrabiata), ¬chose(elisa, arrabiata)}

it is known that angie had arrabiata sauce while elisa did not. This partial interpretation does
not specify whether or not elisa ate farfalle.

I |= C defines a satisfaction relation between first-order theories C and full interpretations I as .
If I |= C, we say that I is a model (or solution) of C.

Definition 12. A partial interpretation I1 is more precise than partial interpretation I2 (notation
I1 ≥p I2) if I1 ⊇ I2.

Informally, one partial interpretation is more precise than another if it contains more information.
For example, the partial interpretation I2 = {chose(angie, arrabiata, ¬chose(elisa, arrabiata),
¬chose(damon, arrabiata)} is more precise than I1 (I2 ≥p I1).

1We here omit function symbols since they are not used in this thesis.
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For practical purposes, since variable-free literals are also sentences, we will freely use a partial
interpretation as (a part of) a theory in solver calls or in statements of the form I ∧ C |= J ,
meaning that everything in J is a consequence of I and C, or stated differently, that J is less
precise than any model M of C satisfying M ≥p I .

In the context of first-order logic, the task of finite-domain constraint solving is better known as
model expansion [106]: given a logical theory C (corresponding to the constraint specification)
and a partial interpretation I with a finite domain (corresponding to the initial domain of the
variables), find a model M more precise than I (a partial solution that satisfies C).

Definition 13. If P is a logic grid puzzle, we will use CP to denote a first-order theory consisting
of:

• One logical sentence for each clue in P .

• A logical representation of all possible bijection constraints.

• A logical representation of all possible transitivity constraints.

For instance, for our running example, some sentences in CP can represented as the following
typed FOL sentences:

Typed First-order Logic Sentence Description

¬chose(claudia, puttanesca) (Clue 4) Claudia did not choose puttanesca sauce.

∀ s ∈ sauce : ∃ p ∈ pasta : pairedwith(s, p) (Bijectivity) There exists a pasta for every sauce.

∀ s ∈ sauce : ∀ p1 ∈ pasta,∀ p2 ∈ pasta : (Bijectivity) Every sauce can only be paired with one
type of pasta.pairedwith(s, p1) ∧ pairedwith(s, p2)⇒ p1 = p2.

∀ s ∈ sauce : ∀ p ∈ person,∀ c ∈ price : (Transitivity) If a person pairs sauce s with pasta p,
and pays price c, then sauce s costs (is priced at) c.chose(s, p) ∧ payed(p, c)⇒ priced(s, c).

3.4 Problem definition

The overarching goal of this chapter is to generate a sequence of small reasoning steps, each
with an interpretable explanation. We first introduce the concept of an explanation of a single
reasoning step, after which we introduce a cost function as a proxy for the interpretability of a
reasoning step, and the cost of a sequence of such steps.
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3.4.1 Explanation of reasoning steps

We assume that a theory C and an initial partial interpretation I0 are given and fixed.

Definition 14. We define the maximal consequence of a theory C and partial interpretation I

(denoted max(I, C)) as the most precise partial interpretation J such that I ∧ C |= J .

Phrased differently, max(I, C) is the intersection of all models of C that are more precise than
I; this is also known as the set of cautious consequences of T and I , and corresponds to ensuring
global consistency in constraint solving. Algorithms for computing cautious consequences with-
out explicitly enumerating all models exist, such as for instance the ones implemented in clasp
[58] or IDP [26] (in the latter system the task of computing all cautious consequences is called
optimal-propagate since it performs the strongest propagation possible).

Weaker levels of propagation consistency can be used as well, leading to a potentially smaller
maximal consequence interpretation maxotherConsistency(I, C). The rest of this chapter assumes
we want to construct a sequence that starts at I0 and ends at max(I0, C) for some consistency
algorithm, i.e., that can explain all computable consequences of C and I0.

Definition 15. A sequence of incremental partial interpretations of a theory C with an initial
partial interpretation I0 is a sequence

⟨I0, I1, . . . , In = max(I0, C)⟩

where ∀ i > 0, Ii−1 ≤p Ii (i.e., the sequence is precision-increasing).

The goal of our work is not just to obtain a sequence of incremental partial interpretations, but
also for each incremental step ⟨Ii−1, Ii⟩ we want an explanation (Ei,Si) that justifies the newly
derived information N=Ii \ Ii−1. When visualised, such as in Figure 1.1, it will show the user
precisely which information and constraints were used to derive a new piece of information.

Definition 16. Let Ii−1 and Ii be partial interpretations such that Ii−1 ∧ C |= Ii. We say that
(Ei,Si,Ni) explains the derivation of Ii from Ii−1 if the following hold:

• Ni = Ii \ Ii−1 (i.e., Ni consists of all newly defined facts),

• Ei ⊆ Ii−1 (i.e., the explaining facts are a subset of what was previously derived),

• Si ⊆ C (i.e., a subset of the constraints is used), and

• Si ∪ Ei |= Ni (i.e., all newly derived information indeed follows from this explanation).
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The problem of simply checking whether (Ei,Si,Ni) explains the derivation of Ii from Ii−1 is
in co-NP since this problem can be performed by verifying that Si ∧ ¬Ni has no models more
precise than Ei. It is hence an instance of the negation of a first-order model expansion problem
[84].

Part of our goal of finding easy to interpret explanations is to avoid redundancy. That is, we want
a non-redundant explanation (Ei,Si,Ni) where none of the facts in Ei or constraints in Si can be
removed while still explaining the derivation of Ii from Ii−1; in other word: the explanation must
be subset-minimal.

Definition 17. We call (Ei,Si,Ni) a non-redundant explanation of the derivation of Ii from Ii−1
if it explains this derivation and whenever E ′ ⊆ Ei;S ′ ⊆ Si while (E ′,S ′,N ′) also explains this
derivation, it must be that Ei = E ′,Si = S ′.

Definition 18. A non-redundant explanation sequence is a sequence

⟨(I0, (∅, ∅, ∅)), (I1, (E1,S1,N1)), . . . , (In, (En,Sn,Nn))⟩

such that (Ii)i≤n is a sequence of incremental partial interpretations and each (Ei,Si,Ni), with
Ei ⊆ Ii−1 and Si ⊆ C, explains the derivation of Ii from Ii−1.

3.4.2 Interpretability of reasoning steps

While subset minimality ensures that an explanation is non-redundant, it does not quantify how
interpretable an explanation is. This quantification is problem-specific and is often subjective.
In this chapter, we will assume the existence of a cost function f(Ei,Si,Ni) that quantifies the
interpretability of a single explanation in line with the goal of ‘simple enough for a person to
understand’ and Occam’s Razor.

3.4.3 Interpretability of a sequence of reasoning steps

In its most general form, we would like to optimise the understandability of the entire sequence
of explanations. While quantifying the interpretability of a single step can be hard, doing so for a
sequence of explanations is even harder. For example, is it related to the most difficult step or the
average difficulty, and how important is the ordering within the sequence? As a starting point, we
here consider the total cost to be an aggregation of the costs of the individual explanations, e.g.
the average or maximum cost.

Definition 19. Given a theory C and an initial partial interpretation I0, the explanation-production
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problem consists of finding a non-redundant explanation sequence

⟨(I0, (∅, ∅, ∅)), (I1, (E1,S1,N1)), . . . , (In, (En,Sn,Nn))⟩

such that a predefined aggregate over the sequence (f(Ei,Si,Ni))i≤n is minimised.

Example aggregation operators are max() and average(), which each have their peculiarities: the
max() aggregation operator will minimise the cost of the most complicated reasoning step, but
does not capture whether there is one such step used, or multiple. Likewise, the average() aggre-
gation operator will favor many simple steps, including splitting up trivial steps into many small
components if the constraint abstraction allows this. Even for a fixed aggregation operator, the
problem of holistically optimising a sequence of explanation steps is much harder than optimising
the cost of a single reasoning step, since there are exponentially more sequences.

3.5 Nested Explanations

If each explanation in the sequence is non-redundant, this means the steps cannot be further
broken up in smaller sub-steps. Yet, in our earlier work we noticed that some explanations were
still quite hard to understand, mainly since a clue had to be combined with implicit constraints
and a couple of previously derived facts. All these things together implied a consequence, and
they had to be taken into account at once. Such steps turned out to be too complicated to be
understood easily and thus require being explained in more detail.

An example of a more difficult step is depicted at the top of Figure 3.2. It uses a disjunctive clue
(‘The person who ordered Rotini is either the person who paid $8 more than Damon or the person
who paid $8 less than Damon’), in combination with three previously derived facts to derive that
Farfalle does not cost $8. This derivation is non-trivial when only looking at the highlighted
clue. It turns out that the derivation can be explained in a step-wise manner using only implicit
constraints with the help of reasoning by contradiction:

• If Farfalle did cost $8, then (since Damon did not eat Farfalle), Damon did not pay $8;

• If Farfalle costs $8, then it does not cost $16;

• Since Farfalle does not cost $16 and neither does Capellini or Tagliolini, Rotini must cost
$16;

• However, the fact that Rotini costs $16, while Damon did not pay $8 is in contradiction
with the clue in question;
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• Hence, Farfalle can not cost $8.

We hence wish to provide a further, nested explanation of such difficult reasoning steps. We
believe that an explanation using contradiction is a good tool for this for two reasons: (i) it is often
used by people when solving puzzles, as well as by mathematicians when proving theorems; and
(ii) adding the negation of a derived fact such as ‘Farfalle does not cost $8’, allows us to generate
a new sequence of non-redundant explanations up to inconsistency, hence reusing the techniques
from the previous section. This novel approach allows us to provide a mechanism for zooming in
into the more difficult explanation steps of the explanation sequence.

3.5.1 Nested explanation of a reasoning step

We propose the following principles for what constitutes a meaningful and simple nested expla-
nation, given a non-trivial explanation (E ,S,N ):

• a nested explanation starts from the explaining facts E , augmented with the counterfactual
assumption of a newly derived fact n ∈ N ;

• at each step, it only uses clues from S;

• each step is easier to understand (has a strictly lower cost) than the parent explanation which
has cost f(E ,S,N );

• from the counterfactual assumption, a contradiction is derived.

Note that if an explanation step derives multiple new facts, e.g. |N | > 1, then we can compute a
nested explanation for each ni ∈ N .

More formally, we define the concept of nested explanation as follows:

Definition 20. The nested explanation problem consists of — given a non-redundant explanation
(E ,S,N ), and a newly derived fact n ∈ N — finding a non-redundant explanation sequence

⟨ (I ′
0, (∅, ∅, ∅)), (I ′

1, (E ′
1,S ′

n,N ′
1)), . . . , (I ′

n, (E ′
n,S ′

n,N ′
n)) ⟩

such that:

• I ′
0 is the partial interpretation {¬ni ∧ E};

• S ′
i ⊆ S for each i;
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Figure 3.2: A difficult explanation step, including its nested explanation
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• f(E ′
i ,S ′

i,N ′
i ) < f(E ,S,N ) for each i;

• I ′
n is inconsistent; and

• a predefined aggregate over the sequence (f(E ′
i ,S ′

i,N ′
i ))i≤n is minimised.

We can hence augment each explanation (E ,S,N ) with a set of nested explanations, if they exist.
We next discuss algorithms for computing explanations and nested explanations.

3.6 Explanation Generation

In this section, we tackle the goal of searching for a non-redundant explanation sequence that is
as simple as possible to understand.

Ideally, we could generate all explanations of each fact in max(I0, C), and search for the lowest
scoring sequence among those explanations. However, the number of explanations for each fact
quickly explodes with the number of constraints, and is hence not feasible to compute. Instead,
we will greedily construct the sequence, by generating candidates for a given partial interpretation
and searching for the smallest one among those.

3.6.1 Sequence construction

We aim to minimise the cost of the explanations of the sequence, measured with an aggregate
over individual explanation costs f(Ei,Si,Ni) for some aggregate like max() or average(). The
cost function f could for example be a weighted sum of the cardinalities of Ei, Si and Ni; in
Section 3.7, we discuss a concrete cost function for the use case of logic grid puzzles.

Instead of globally optimising the aggregated sequence cost, we encode the knowledge that we
are seeking a sequence of small explanations in our algorithm. Namely, we will greedily and
incrementally build the sequence, each time searching for the lowest scoring next explanation,
given the current partial interpretation. Such an explanation always exists since the end point of
the explanation process max(I0, C) only contains consequences of I0 and C.

Algorithm 3.1 formalises the greedy construction of the sequence, which determines Iend =
max(I0, C) through propagation and relies on a call to
ExplainOneStep(C, f, I, Iend) to find the next cost-minimal explanation.
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Algorithm 3.1: greedy-explain(C, f, I0)
Input : A set of constraints C, a cost-function f : S → R with S ⊆ C ∧ Iend , and an

initial interpretation I0.
Output : An explanation sequence Seq

1 Iend ← propagate(C ∧ I0)
2 Seq ← empty sequence
3 I ← I0
4 while I , Iend do
5 (E ,S,N )← ExplainOneStep(C, f, I, Iend)
6 append (E ,S,N ) to Seq
7 I ← I ∪N
8 end

3.6.2 Cost functions and cost-minimal explanations

We use Algorithm 3.3 to generate candidate explanations, but in general our goal is to find cost-
minimal explanations.

To guide the search to cost-minimal MUSs, we use the observation that typically a small (1 to a
few) number of constraints is sufficient to explain the reasoning. A small number of constraints
is also preferred in terms of easy to understand explanations, and hence have a lower cost. For
this reason, we will not call candidate-explanations with the full set of constraints C, but we will
greedily grow the number of constraints using the powerset of C.

We make one further assumption to ensure that we do not have to search for candidates for all
possible subsets of constraints. The assumption is that we have an optimistic estimate g that maps
a subset S of C to a real number such that

∀ E ,S,N : g(S) ≤ f(E ,S,N )

This is for example the case if f is an additive function, such as f(E ,S,N ) = f1(E) + f2(S) +
f3(N ) where g(S) = f2(S) assuming f1 and f3 are always positive.

We can then search for the smallest explanation among the candidates found, by searching among
increasingly worse scoring S as shown in Algorithm 3.2. This is the algorithm called by the
iterative sequence generation (Algorithm 3.1).

Every time ExplainOneStep(C, f, I, Iend) is called with an updated partial interpretation I

the explanations should be regenerated. The reason is that for some derivable facts n, there may
now be a much easier and cost-effective explanation of that fact. There is one benefit in caching
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Algorithm 3.2: ExplainOneStep(C, f, I, Iend)
Input : A set of constraints C, a cost-function f , a partial interpretation I , an

interpretation to explain Iend .
Output : A non-redundant explanation (E ,S,N ) with E ⊆ I , S ⊆ C, E ∪ S |= N

1 N ← Iend \ I
2 best ← (I, C,N )
3 for S ⊆ p(C) ordered ascending by g(S) do
4 if g(S) > f(best) then
5 break
6 end
7 cand← best explanation from CandidateExplanations(S, I)
8 if f(cand) < f(best) then
9 best ← cand

10 end
11 end
12 return best

the Candidates across the different iterations, and that is that in a subsequent call, the cost of the
most cost-effective explanation that is still applicable can be used as a lower bound to start from.
Furthermore, in practice, we cache all candidates and when we (re)compute a MUS for a fact n,
we only store it if it is more cost-effective than the best one we have previously found for that
fact, across the different iterations.

3.6.3 Candidate generation

The main challenge is finding the lowest scoring (easiest) explanation, among all reasoning steps
that can be applied for a given partial interpretation I . We first study how to enumerate a set of
candidate non-redundant explanations given a set of constraints.

For a set of constraints C, we can first use propagation to get the set of new facts that can be
derived from a given partial interpretation I and the constraints C. For each new fact n not in I ,
we wish to find a non-redundant explanation (E ⊆ I,S ⊆ C, {n}) that explains n (and possibly
explains more). Recall from Definition 18 that this means that whenever one of the facts in E
or constraints in C is removed, the result is no longer an explanation. We now show that this
task is equivalent to finding a Minimal Unsat Core (or Minimal Unsat Subset, MUS). To see this,
consider the theory

I ∧ C ∧ ¬n.
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This theory surely is unsatisfiable since n is a consequence of I and C. Furthermore, under
the assumption that I ∧ C is consistent (if it were not, there would be nothing left to explain),
any unsatisfiable subset of this theory contains ¬n. We then see that each unsatisfiable subset
of this theory is of the form E ∧ S ∧ ¬n where (E ,S, {n}) is a (not necessarily redundant)
explanation of the derivation of {n} from I . Vice versa, each explanation of {n} corresponds to
an unsatisfiable subset. Thus, the minimal unsatisfiable subsets (MUS) of the above theory are in
one-to-one correspondence with the non-redundant explanations of n, allowing us to use existing
MUS algorithms to search for non-redundant explanations.

We must point out that MUS algorithms typically find an unsatisfiable core that is subset-minimal,
but not cardinality-minimal. That is, the unsatisfiable core can not be reduced further, but there
could be another minimal unsatisfiable core whose size is smaller. That means that if size is taken
as a measure of simplicity of explanations, we do not have the guarantee to find the optimal ones.
Optimality is certainly not guaranteed when a cost function is involved.

Algorithm 3.3 shows our proposed algorithm. The key part of the algorithm is on line 4 where we
find an explanation of a single new fact n by searching for a MUS that includes ¬n. We search for
subset-minimal unsatisfiable cores to avoid redundancy in the explanations. Furthermore, once a
good explanation (E ,S,N ) is found, we immediately explain all implicants of E and S. In other
words: we takeN to be subset-maximal. The reason is that we assume that all derivable facts that
use the same part of the theory and the same part of the previously derived knowledge probably
require similar types of reasoning and it is thus better to consider them at once. Thus, we choose
to generate candidate explanations at once for all implicants of (E ,S) on line 7. Note that the
other implicants N \ {n} may have simpler explanations that may be found later in the for loop,
hence we do not remove them from N ∗.

We assume the use of a standard MUS algorithm, e.g., one that searches for a satisfying solution
and if a failure is encountered, the resulting Unsat Core is shrunk to a minimal one [100]. While
computing a MUS may be computationally demanding, it is far less demanding than enumerating
all MUSs (of arbitrary size) as candidates.

Consider the following example in propositional logic to illustrate how ExplainOneStep sup-
ports the search for low cost explanation steps by generating candidate explanation steps with the
help of CandidateExplanations.

Example 14. Let C be the CNF formula over atoms x1, x2, x3 with the following four clauses:

c1 := ¬x1 ∨ ¬x2 ∨ x3 c2 := ¬x1 ∨ x2 ∨ x3 c3 := x1 c4 := ¬x2 ∨ ¬x3
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Algorithm 3.3: CandidateExplanations(C, I)
Input : A partial interpretation I and a set of constraints C
Output : A set of candidate explanations Candidates

1 Candidates← {}
2 N ∗ ← propagate(C ∧ I) \ I
3 for n ∈ N ∗ do

// Minimal expl. of each new fact:

4 X ← MUS(C ∧ I ∧ ¬n)
5 E ← I ∩X // facts used

6 S ← C ∩X // constraints used

7 N ← propagate(S ∧ E) // all implied facts

8 add (E ,S,N ) to Candidates
9 end

10 return Candidates

The cost function f is defined as a linear sum

f(E ,S,N ) =
∑
c∈S

wi · ci + |E|+ |N | (3.1)

over the following clause weights:

wc1 = 10 wc2 = 20 wc3 = 50 wc4 = 30

The optimistic estimated g is defined as:

g(S) =
∑
c∈S

wi · ci (3.2)

Let I0 = {¬x2} be the initial interpretation with corresponding maximal consequence Iend =
{x1,¬x2, x3} computed by propagating constraints C and initial I0, see Line 1 of Algorithm 3.1).
In the following, we will consider one iteration of the main loop in Algorithm 3.1 that corre-
sponds to extracting an explanation step with ExplainOneStep. Algorithm 3.2 first identi-
fies the set of remaining literals to explain N = Iend \ I = {x1, x3}. Candidate explanation
best = (I, C,N ) = ({¬x2}, {c1, c2, c3, c4}, {x1, x3}) is used to provide an upper bound on the
cost of the best explanation so far.

By greedily growing the subset of constraints S using the powerset of C (Line 3 of Algorithm 3.2),
we aim to search for a better explanation step that is easier to understand than the current best
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explanation best.

Table 3.1 decomposes the intermediate steps of ExplainOneStep in the search for a better ex-
planation candidate computed in CandidateExplanations for a given subset of constraints
S, and its optimistic estimate g(S). Every subset is propagated with interpretation I to check if
new facts can be derived. The table shows that no new facts can be propagated until step 6.
Propagating c3 ∧ ¬x2 leads to a new fact {x1}.

Step S g(S) N ∗ CandidateExplanations best f(best)
— — — — ({¬x2}, {c1, c2, c3, c4}, {x1, x3}) 103

1 {c1} 10 ∅ ∅
2 {c2} 20 ∅ ∅
3 {c1, c2} 30 ∅ ∅
4 {c4} 30 ∅ ∅
5 {c1, c4} 40 ∅ ∅
6 {c3} 50 {x1} {(∅, c3, {x1})} (∅, c3, {x1}) 51
7 {c2, c4} 50 ∅ ∅
8 {c1, c3} 60 — — — —

Table 3.1: Candidate explanation generation

For computing a non-redundant explanation of x1 with given interpretation I = {¬x2}, we
simply extract a

MUS(S ∧ I ∧ ¬ℓ) = MUS(S ∧ {¬x2} ∧ {¬x1}) = {c3,¬x1}

also written as
c3 ⇒ x1

with cost 51. The execution is ExplainOneStep is interrupted at step 8 since the cost of
g(S) > f(best), in this case 60 > 51.

Note that all explanations in the examples are expressed in terms of this logical representation,
however, the explanations can be translated back to the original input (e.g. natural language clues,
alldifferent constraints, ...).

3.6.4 Searching nested explanations

We extend Algorithm 3.1 to generate new candidate explanations with support for nested expla-
nations as introduced in Section 3.5. Fundamentally, the generated candidate explanations are
further decomposed in a nested explanation sequence provided that the sequence is easier than
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the candidate explanation according to the defined cost function f . We assess the possibility for
a nested explanation for every newly derived fact in the candidate explanation. Similar to Al-
gorithm 3.1, Algorithm 3.4 exploits the ExplainOneStep function to generate the candidate
nested explanations. The only difference is that after computing each explanation step, also a call
to nested-explanations (which is found in Algorithm 3.5) is done to generate a nested sequence.

Algorithm 3.4: GreedyExplainSequence(C, f, I0)
Input : A set of constraints C, a cost function f , and an initial interpretation I0
Output : An explanation sequence Seq

1 Iend ← propagate(C ∧ I0)
2 Seq ← empty sequence
3 I ← I0
4 while I , Iend do
5 (E ,S,N )← ExplainOneStep(C, f, I, Iend)
6 nested← ExplainNested(E ,S,N )
7 append ((E ,S,N ), nested) to Seq
8 I ← I ∪N
9 end

Given an explanation step (E ,S,N ) and a newly derived fact n ∈ N for which we want a more
detailed explanation, Algorithm 3.5 first constructs a partial interpretation I ′ formed by the facts
in E and the negated new fact n. Then, we gradually build the sequence by adding the newly
found explanations (E ′,S ′,N ′) as long as the interpretation is consistent, and the explanation is
easier than explanation step (E ,S,N ) (this is in line with Definition 20 and serves to avoid the
nested explanation being a single-step explanation that is equally difficult as the original step).

The computation of a nested explanation, described in Algorithm 3.5, also reuses ExplainOneStep.
The main differences with the high level explanation generating algorithm come from the fact that
the search space for the next easiest explanation step is bounded by the input explanation: it can
use only constraints (and facts) from the original explanation, and the cost of the parent explana-
tion is an upper bound on the acceptable costs at the nested level.

While Algorithm 3.5 tries to find a nested explanation sequence for each derived fact, it will not
find one for each fact due to the if-check at Line 9. This check can kick in for two different
reasons. The first reason is that the explanation step at the main level is simply too simple to be
further broken up in pieces. For instance, the explanation of Figure 1.1 is of that kind: it uses a
single bijectivity constraint with a single previously derived fact. Breaking this derivation up in
strictly smaller parts would thus not be helpful.

This phenomenon can also occur for difficult steps: sometimes the best nested explanation of a
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Algorithm 3.5: ExplainNested(E ,S,N )
Input : Explanation facts E , constraints S and newly derived facts N
Output : A collection of nested explanation sequences nested_explanations

1 nested_explanations← empty set
2 for n ∈ N do
3 store← true
4 nested_seq ← empty sequence
5 I ′ ← E ∧ ¬{n}
6 while consistent(I ′) do
7 I ′

end ← propagate(S ∧ I ′)
8 (E ′,S ′,N ′)← ExplainOneStep(S, f, I ′, I ′

end)
9 if f(E ′,S ′,N ′) ≥ f(E ,S,N ) then

10 store← false
11 break
12 end
13 append (E ′,S ′,N ′) to nested_seq
14 I ′ ← I ′ ∪N ′

15 end
16 if store then

// only when all steps simpler than (E , S, N )
17 append nested_seq to nested_explanations

18 end
19 end
20 return nested_explanations

difficult explanation step contains a step that is as difficult or harder than the high-level step itself.
In that case, this is a sign that reasoning by contradiction is not simplifying matters in this step and
other methods should be explored to further explain it, for example counterfactual explanations
that aim to answer the question: ‘what if Y instead of X?’.

3.7 Explanations for logic grid puzzles

We instantiated the above described algorithms in the context of logic grid puzzles. In that setting,
for C, we take CP for some puzzle P , as described in Definition 13 in Section 3.3. There are
three types of constraints in C: transitivity constraints, bijectivity constraints and clues, where
the first two follow the same structure in every puzzle and the clues are obtained in a mostly
automatic way (see Section 3.8). Before defining a cost-function, and the estimation for g used in
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our implementation, we provide some observations that drove our design decisions.

Observation 1: Propagations from a single implicit constraint are very easy to understand
Contrary to the clues, the implicit constraints (transitivity/bijectivity) are very limited in form
and propagations over them follow well-specified patterns. For instance in the case of bijectivity,
a typical pattern that occurs is that when X − 1 out of X possible values for a given function
have been derived not to be possible, it is propagated that the last value should be true; this is
visualised for instance in Figure 1.1. Hence, in our implementation, we ensure that they are
always performed first. Stated differently, g and f are designed in such a way that g(S1) ≥
f(E ,S2,N ) whenever S2 consists of only one implicit constraint and S1 does not.

Observation 2: Clues rarely propagate by themselves We observed that the automatically
obtained logic representation of clues usually has limited propagation in isolation. This is not a
property of the clues, but rather of the final obtained translation. As an example, consider the
following sentence: ‘The person who ordered capellini is either Damon or Claudia’. From this, a
human reasoner might conclude that Angie did not order capellini. However, the (automatically)
obtained logical representation is

∃p ∈ person : ordered(p, capellini) ∧ (p = damon ∨ p = claudia).

This logic sentence only entails that Angie did not order capellini in conjunction with the bijec-
tivity constraint on ordered . In the natural language sentence, this bijectivity is implicit by the
use of the article ‘The’ which entails that there is a unique person who ordered capellini.

We observed that there is rarely any propagation from sole clues, and that only few implicit con-
straints are active together with a clue at any time. Because of this last observation, in our imple-
mentation for logic grid puzzles we decided not to consider all subsets of implicit constraints in
combination with a clue as candidate sets S in Line 3 in Algorithm 3.2. Instead, we combine each
clue with the entire set of all implicit constraints, subsequently counting on the non-redundance
of the explanation (the subset-minimality of the core) to eliminate most of the implicit constraints
since they are not used anyway.

Observation 3: Clues are typically used independently from other clues A next observation
is that in all the puzzles we encountered, human reasoners never needed to combine two clues in
order to derive new information and that when such propagations are possible, they are quite hard
to explain, and can be split up into derivations containing only single clues. The latter is of course
not guaranteed, since one can artificially devise disjunctive clues that do not allow propagation

47



CHAPTER 3. A FRAMEWORK FOR STEP-WISE EXPLAINING HOW TO SOLVE CSPS

by themselves. Our algorithms are built to handle this case as well, but it turned out to be not
necessary in practice: in the puzzles we tested, we never encountered an explanation step that
combined multiple clues.

Observation 4: Previously derived facts are easier to use than clues or implicit constraints
Our final observation that drove the design of the cost functions is that using previously derived
facts is often easier than using an extra clue or implicit constraint. This might be due to the fact
that previously derived facts are of a very simple nature while, even implicit constraints contain
quantification and are thus harder to grasp. An additional reason for this perceived simplicity is
that the derived facts are visualised in the grid.

A cost function With these four observations in mind, we devised f and g as follows (where
nc(S) denotes the number of clues rather than implicit constraints in S , while M and N are
explanation parameters:

f(E ,S,N ) = basecost(S) + |E|+ N · |S|

g(S) = basecost(S) =


0 if |S| = 1 and nc(S) = 0
M if |S| > 1 and nc(S) = 0
M · nc(S) otherwise

The parameter M is taken here to be larger than any reasonable explanation size |E|+ N · |S| and
N to be relatively small in comparison, but slightly larger than a few facts |E|. In our experiments,
we use the combination M = 100 and N = 5 which provided good explanation sequences for
the tested puzzles. The effect of this, is that we can generate our subsets S in Line 3 of Algorithm
3.2 in the following order:

• First all S containing exactly one implicit constraint.

• Next, all S containing exactly all implicit constraints and (optionally) exactly one clue.

• Finally, all clue pairs, triples etc. though in practice this is never reached.

Summarised, our instantiation for logic grid puzzles differs from the generic methods developed
in the previous section in that it uses a domain-specific optimisation function f and does not
consider all S in Line 3, but only promising candidates based on our observations.

For the complete non-redundant explanation sequence our tool produces on the running example
using these scoring functions, we refer to http://bartbog.github.io/zebra/past
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a. An example of the hardest derivation we encountered (with cost 108), as well as its nested
explanation, is depicted in Figure 3.2. It uses several bijectivity constraints for uniqueness of
persons, but also for reasoning on the relation between costs and types of pasta, in combination
with a clue and three assumptions.

3.8 Logic grid puzzles: From natural language clues to
typed first-order logic

The demo system we developed, called ZEBRATUTOR, is named after Einstein’s zebra puzzle,
which is an integrated solution for solving logic grid puzzles, and for explaining, in a human
understandable way, how the solution can be obtained from the clues. The input to ZEBRATUTOR

is a plain English language representation of the clues and the names of the entities that make up
the puzzle, e.g. ‘Angie’, ‘arrabiata’.

In typical logic grid puzzles, the entity names are present in the grid that is supplied with the
puzzle. For some puzzles, not all entities are named or required to know in advance; a prototypical
example is Einstein’s Zebra puzzle, which ends with the question ‘Who owns the zebra?’, while
the clues do not name the zebra entity and the puzzle can be solved without knowledge of the fact
there is a zebra in the first place.

The complete specification undergoes the following steps, starting from the input:

A Part-Of-Speech tagging: A Part-Of-Speech (POS) tag is associated with each word using
an out-of-the-box POS tagger [99].

B Chunking and lexicon building: A problem-specific lexicon is constructed.

C From chunked sentences to logic: Using a custom grammar and semantics a logical rep-
resentation of the clues is constructed

D From logic to a complete IDP specification: The logical representation is translated into
the IDP language and augmented with logic-grid-specific information.

E Explanation-producing search in IDP: This is the main contribution of this chapter, as
explained in Section 3.6.

F Visualization: The step-by-step explanation is visualised.

The first three of these steps are related to Natural Language Processing (NLP) and are detailed
in section 3.8.1 hereafter. Next, we explain in section 3.8.2 how the IDP specification formed
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in step Step D is used to generate the explanations and visualizations in steps Step E and Step F
respectively. An online demo of our system can be found on http://bartbog.github.i
o/zebra, containing examples of all the steps (bottom of demo page).

3.8.1 Natural Language Processing

Step A. POS tagging

The standard procedure in Natural Language Processing is to start by tagging each word with
its estimated Part-Of-Speech tag (POS tag). We use the standard English Penn treebank Pos
tagset [99] together with NLTK’s built-in perceptron tagger 1 as POS tagger. It uses a statistical
inference mechanism trained on a standard training set from the Wall Street Journal. Since any
POS-tagger can make mistakes, we manually verify and correct the assigned POS-tags to make
sure that all of the puzzle’s entities are tagged as noun.

Step B. Chunking and lexicon building

From a natural language processing point of view, the hardest part is step B: automatically deriv-
ing the lexicon and building the grammar. The lexicon assigns a role to different sets of words,
while the grammar is a set of rules describing how words can be combined into sentences. The
goal of this second step is to group the POS-tagged words of the clues into chunks that are tagged
with lexical categories of which 3 are puzzle-specific: proper nouns for the individual entities that
are central to the puzzle, other nouns to groups of entities (like pasta, sauce) and transitive verbs
that link two entities to each other (e.g. Claudia did not choose puttanesca sauce). The other
categories are determiner, number, preposition, auxiliary verb etc. and contain a built-in list of
possible members. We refer to [29] for full details on the categories.

This process of grouping words is referred to as chunking. We use NLTK and a custom set of
regular expressions for chunking the proper nouns and different types of transitive verbs. The
result is a lexicon where each word or set of words (chunk) is assigned a role based on the POS
tags. On top of these roles, we defined a puzzle-independent grammar in the Blackburn and Bos
framework [15, 16]. The grammar itself was created based on 10 example training puzzles, and
tested on 10 different puzzles to ensure genericity [29].

1http://www.nltk.org/
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Step C. From chunked sentences to logic

Next in Step C, the lexicon, partly problem agnostic and partly puzzle-specific, is fed into a type-
aware variant of the semantical framework of Blackburn & Bos [15, 16], which translates the
clues into Discourse Representation Theory [81]. The typed extension allows us to discover the
case where different verbs are used as synonyms for the same inherent relation between two types,
e.g. ‘ate(person, pasta)’ and ‘ordered(person, pasta)’.

In our system, this is a semi-automated method that suggests a lexicon and lets a user modify
and approve it, to compensate for possible ‘creativity’ of the puzzle designers who tend to insert
ambiguous words, or use implicit background knowledge such as using ‘in the morning’ when
there is only one time slot before 12:00.

3.8.2 From logic to visual explanations

Once the types are built, we generate a complete specification which is used by the reasoner, the
IDP system [26], to solve the problem.

Step D. From logic to a complete IDP specification

From the types built in Step C, we construct the IDP vocabulary containing: all the types and
a relation for each transitive verb or preposition. For instance, if the clues contain a sentence
‘Claudia did not choose puttanesca sauce’, then the vocabulary will contain a binary relation
chose(. . . , . . . ) with the first argument of type person and the second argument of type sauce.

After the vocabulary, we construct IDP theories: we translate each clue into the IDP language, and
we add implicit constraints present in logic grid puzzles. The implicit constraints stem from the
translation of the clues: our translation might generate multiple relations between two types. For
instance, if there are clues ‘The person who ate taglioni paid more than Angie’ and ‘The person
who ordered farfalle chose the arrabiata sauce’, then the translation will create two relations ate
and ordered between persons and pasta. However, we know that there is only one relation between
two types, hence we add a theory containing synonymy axioms; for this case concretely:

∀ x ∈ person ∀ y ∈ pasta : ate(x, y)↔ ordered(x, y)

Similarly, if two relations have an inverse signature, they represent inversion functions, for in-
stance liked_by and ordered in the clues ‘Taglioni is liked by Elisa’ and ‘Damon ordered capellini’.
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In this case we add constraints of the form

∀ x ∈ person ∀ y ∈ pasta : liked_by(y, x)↔ ordered(x, y)

Next, we refer back to the end of section 3.3 for examples of the bijectivity and transitivity axioms
that link the different relations.

The underlying solver, IDP [26], uses this formal representation of the clues both to solve the
puzzle and to explain the solution. We chose the IDP system as an underlying solver since
it natively offers different inference methods to be applied on logic theories, including model
expansion (searching for solutions), different types of propagation (we used optimal-propagate
here to find max(I, C)), unsat-core extraction and offers a LUA [73] interface to glue these
inference steps together seamlessly [26].

3.9 Experiments

Using logic grid puzzles as a use-case, we validate the feasibility of finding non-redundant ex-
planation sequences and generating nested explanation sequences. As data, we use puzzles from
Puzzle Baron’s Logic Puzzles Volume 3 [120]. The first 10 puzzles were used to construct the
grammar; the next 10 to test the genericity of the grammar. Our experiments below are on test
puzzles only; we also report results on the pasta puzzle, which was sent to us by someone who
did not manage to solve it himself.

As constraint solving engine, we use IDP [26] due to the variety of inference methods it supports
natively. The algorithms themselves are written in embedded LUA, which provides an imperative
environment inside the otherwise declarative IDP system. The code was not optimised for effi-
ciency and can at this point not be used in an interactive setting, as it takes between 15 minutes
to a few hours to fully explain a logic grid puzzle. Experiments were run on an Intel(R) Xeon(R)
CPU E3-1225 with 4 cores and 32 Gb memory, running linux 4.15.0 and IDP 3.7.1. The code for
generating the explanations of the puzzles in the experiments is available at [55].

3.9.1 Sequence composition

We first investigate the properties of the puzzles and the composition of the resulting sequence
explanations. The results are shown in Table 3.2.

The first column is the puzzle identifier, where the puzzle identified as p is the pasta puzzle, our
running example. The next 3 columns show the properties of each puzzle: |type| is the number
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p |types| |dom| |grid| # steps cost 1 bij. 1 trans. 1 clue 1 clue+i. mult i. mult c.
1 4 5 150 112 27.06 31.25% 50.00% 0.89% 17.85% 0% 0%
2 4 5 150 119 27.77 23.53% 57.14% 1.68% 17.64% 0% 0%
3 4 5 150 110 23.93 32.73% 51.82% 0% 15.46% 0% 0%
4 4 5 150 115 24.54 27.83% 55.65% 2.61% 13.92% 0% 0%
5 4 5 150 122 24.97 24.59% 59.02% 0.82% 15.58% 0% 0%
6 4 5 150 115 22.58 26.96% 58.26% 2.61% 12.18% 0% 0%
7 4 5 150 110 26.79 35.45% 46.36% 0.91% 17.27% 0% 0%
8 4 5 150 118 26.81 33.90% 47.46% 3.39% 15.25% 0% 0%
9 4 5 150 114 24.75 28.95% 54.39% 3.51% 13.16% 0% 0%
p 4 4 96 83 34.45 33.73% 40.96% 1.20% 21.69% 2.41% 0%

Table 3.2: Properties of the puzzles, explanation sequences and constraints used in the explana-
tions.

of types (e.g. person, sauce) while |dom| is the number of entities of each type and |grid| is the
number of cells in the grid, i.e. the number of literals in the maximal consequence interpretation
In = max(∅, C). Coincidentally, almost all the puzzles have 4 types with domain size 5, hence
150 cells, except for the pasta puzzle which has a domain size of 4, thus 96 cells.

Columns 5 and 6 show the amount of steps (#steps) in the explanation sequences found, and
cost is the average cost of an explanation step in the puzzle. The number of inference steps is
around 110-120 for all but the pasta puzzle, which is related to the grid size.

Table 3.2 investigates the proportion of inference steps in the explanation sequence, e.g. the trivial
steps using just one bijection constraint (1 bij.), one transitivity constraint (1 trans.) or one clue
(1 clue) and no other constraints; and the more complex inference steps using one clue and some
implicit (bijectivity or transitivity) constraint (1 clue+i), multiple implicit constraints (mult i.).

average nr. of facts used % of explanations with a clue that use # facts
p all Bij. Trans. Clue multi i. 0 facts 1 facts 2 facts 3 facts >3 facts
1 1.84 2.37 2.00 0.52 - 66.67% 28.57% 0% 0% 4.76%
2 1.85 2.50 2.00 0.61 - 47.83% 47.83% 0% 4.35% 0%
3 1.84 2.33 2.00 0.24 - 82.35% 11.76% 5.88% 0% 0%
4 1.89 2.50 2.00 0.47 - 68.42% 15.79% 15.79% 0% 0%
5 1.85 2.50 2.00 0.35 - 65.00% 35.00% 0% 0% 0%
6 1.84 2.35 2.00 0.29 - 76.47% 17.65% 5.88% 0% 0%
7 1.88 2.31 2.00 0.75 - 55.00% 25.00% 10.00% 10.00% 0%
8 1.86 2.58 2.00 0.18 - 81.82% 18.18% 0% 0% 0%
9 1.85 2.45 2.00 0.32 - 78.95% 15.79% 0% 5.26% 0%
p 1.73 2.07 2.00 0.53 4.00 68.42% 21.05% 0% 10.53% 0%

Table 3.3: Statistics on number of previously derived facts |E| used in the explanation steps.
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We can observe (see Section 3.7) around 30% of steps are simple bijectivity steps (e.g. com-
pleting a row or column in one relation), around 50% are transitivity steps (except for the pasta
puzzle) and up to 3% use just a single clue (see Section 3.7). The majority of the steps involving
clues use a more complex combination of a clue with other constraints. We see that while our
method can combine multiple clues, the explanations generated never require combining multiple
clues in one inference step (mult c. always 0, see Section 3.7), that is, the method always find
simpler steps involving just one clue. Also notably, the puzzles from the booklet never require
combining implicit constraints, while the harder pasta puzzle does. In general, less than 1/5th of
the explanations actually need to use a clue or a combination of a clue and implicit constraints.
Note that however, for puzzle 3, it is not possible to find new facts based on clue information only,
it has to be combined with 1 or multiple constraints.

3.9.2 Sequence progression

The left side of Figure 3.3 shows a visualization of the type of explanation used in each of the
explanation steps for the hardest puzzles 1,2 and p (puzzles with the highest average step cost).
We can see that typically at the beginning of the sequence, individual clues (3rd line) and some
individual bijectivity (1st line) and transitivity (2nd line) constraints are used, i.e., trivial ones.
This is then followed by a series of clues that also involve bijectivity/transitivity constraints, after
which a large fraction of the table can be completed with bijectivity/transitivity, followed by a
few last clue/implicit constraint combinations and another round of completion. The exception
to this is the pasta puzzle. We can see that after around 20 steps where mostly clues have been
used, twice a combination of implicit logigram constraints must be used to derive a new fact, after
which the table can be easily completed with bijectivity/transitivity and twice the use of a clue.

3.9.3 Explanation size

Our cost-function is constructed to favor few (if any) clues and constraints in the explanations,
and a small number of previously derived facts |E|. Table 3.3, first 5 columns, shows the average
number of facts used per type of constraints used in the explanation. We can observe that the
average number of facts used is indeed low, less than two (column ‘all’). The breakdown per type
of constraint shows that bijectivity typically uses more facts: it either uses three ‘negative’ facts
in one row to infer a ‘positive’ fact, as in Figure 1.1 or it uses one ‘positive’ fact to infer three
negative facts. Note that for such an intuitive constraint, the number of facts used does not matter
much. Transitivity, by nature, always uses two previously derived facts. When an explanation
involves a clue, few facts are involved on average.
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(f) Pasta puzzle.

Figure 3.3: Side-by-side comparison of puzzle composition (left) and puzzle complexity with
nested explanation steps highlighted (right).

The rest of the columns take a closer look at the number of facts used when the explanation
involves a clue. We can see that our approach successfully finds small explanations: many clues
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(the trivial ones) use no facts, while some use 1 fact and only occasionally 2 or more facts are
needed. The puzzles 1, 2, 9 and pasta require the use of 3 facts or more together with a clue
corresponding to the puzzles with the highest amounts of clues with implicit constraints. Only
puzzle 1 requires clues to be combined with more than 3 facts. Even though puzzle 9 has a
lower cost, the fact it uses more than 3 facts combined with a clue is linked to a complex clue
formulation.

Notably, the amount of facts for explanations requiring clues, is equal to 0 half of the time, which
means that the new information can be derived independently of other new facts. Part of the clues
with 1 fact are linked to the clue involving constraints, namely clues combined with bijectivity as
they can derive 3 new facts from only 1 fact. Altogether clues with 0 or 1 facts form more than
80% of the explanations using clues with facts.

3.9.4 Nested explanations

We next investigate the explanation cost of the different steps in an explanation sequence, and
which ones we can find a nested explanation for. The right side of Figure 3.3 shows the explana-
tion cost of each explanation step for puzzles 1, 2 and p; for each step it is also indicated whether
or not a nested explanation was found (those where one was found are indicated by a dot in the
figure). The first observation we can draw from the side-by-side figures, is peaks with nested
explanations (on the right) overlap with almost all peaks on the left. Simply put, for each of the
non-trivial explanations, we are most often able to find a nested explanation that can provide a
more detailed explanation using contradiction. Secondly, we observe that the highest cost steps
involve more than one constraint: either a clue and some implicit constraints, or a combination of
implicit constraints (only in the pasta puzzle). The harder pasta puzzle also has a higher average
cost, as was already reported in Table 3.2.

As the explanation sequence progresses, the cost of difficult explanation steps also increases,
meaning that we can find easy explanations in the beginning, but we will require more complex
reasoning to find new facts that unlock more simpler steps afterwards. This is especially visible
from the trend line that fits all each puzzle’s nested explanation dots on the right side of Figure
3.3.

We now have a closer look at the composition of these nested explanations in Table 3.4. When
looking at the percentage of reasoning steps that have a nested explanation, we see that only a
fraction of all steps have a nested explanation. As the figures already indicated, when looking at
the non-trivial steps, we see that for all of those, our method is able to generate a nested sequence
that explains the reasoning step using contradiction.
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% steps with nested average steps Composition of nested explanation
p # steps of all of clue+i. of m-i nested expl. 1 bij. 1 trans. 1 clue 1 clue+i. mult i.
1 112 14.29% 100% - 2.94 36.99% 32.88% 12.33% 17.81% 0%
2 119 14.29% 100% - 2.65 48.28% 10.34% 20.69% 20.69% 0%
3 110 7.27% 100% - 2.00 50.00% 0% 0% 50.00% 0%
4 115 13.04% 100% - 4.04 40.26% 29.87% 20.78% 9.09% 0%
5 122 13.11% 100% - 2.29 47.83% 0% 8.70% 43.48% 0%
6 115 10.43% 100% - 2.56 50.00% 8.00% 20.00% 22.00% 0%
7 110 15.45% 100% - 3.29 37.50% 32.69% 18.27% 11.54% 0%
8 118 9.32% 100% - 2.36 43.75% 9.38% 25.00% 21.88% 0%
9 114 10.53% 100% - 3.50 31.25% 28.12% 20.31% 20.31% 0%
p 83 16.87% 100% 100% 3.07 48.44% 20.31% 7.81% 17.19% 6.25%

Table 3.4: Properties of the nested explanations.

When looking at the number of steps in a nested sequence, we see that the nested explanations are
rather small: from 2 to 4 steps. The subsequent columns in the table show the composition of the
nested explanations, in terms of the types of constraints used. The majority of those are simple
steps involving just a single constraint (a single bijectivity, transitivity or clue). Interestingly, even
in nested explanations which typically explain a ‘1 clue+i.’ step, the nested explanation also has
a step involving a clue and at least one other implicit constraint. Detailed inspection showed this
was typically the final step, which is a contradiction in the clue as in Figure 3.2.

The composition of the nested sequence also shows that the nested explanations were so simple
that they cannot be further decomposed into a second (deeper) level of nested explanations. This
is due to the way our cost function is defined, i.e. promoting the use of simple constraints and
heavily penalizing combinations of clues and/or constraints.

We can further look at the cost of the different steps in a nested explanation, which we use as
a proxy for difficulty of the steps. Figure 3.4 displays a violin plot of the ratio of the cost of
a nested step divided by the cost of the original parent step that it is contributing to explain; a
wider region indicates a higher density of steps having that ratio. Note that by Definition 20, a
step in a nested explanation can never be as costly or more costly than its parent step (always
below the top orange line, though it often comes close). The figure shows us that there are many
steps with a cost of only a fraction of the parent step (near 0-10% of the original cost), but also
some steps closer but still a bit simpler than the parent step. Due to the construction of the cost
function in Section 3.7 with each clue contributing a value of ‘100’ and each fact only a value of
‘1’, this means it typically involves fewer previously derived facts, which should make it easier to
understand.
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Figure 3.4: Distribution of the ratio of the cost of a nested explanation sequence step and the cost
of original explanation step for all puzzles.

3.10 Discussion, future work, and conclusions

In this chapter, we formally defined the problem of step-wise explanation generation for constraint
satisfaction problems, as well as presenting a generic algorithm for solving the problem. We
extended the mechanism so that it can be used in a nested way, to further explain an explanation.
We developed the algorithm in the context of logic grid puzzles where we start from natural
language clues and provide a human-friendly explanation in the form of a visualization.

Observations

When investigating the nested explanation in Figure 3.2 as it is produced by the system, one can
observe that this explanation does not entirely match an explanation that would be produced by a
human reasoner for a couple of reasons:

• In the generation of the nested explanation, as well as in the high-level sequence, we used
the greedy algorithm from section 3.6. While at the high level, this yields good results, at
the nested level, this results in sometimes propagating facts that are not used afterwards.
The very first propagation in the nested explanation is of this kind. While this would be easy
to fix by post-processing the generated explanation, we left it in our example to highlight
this difference between the nested and non-nested explanation.
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• It sometimes happens that the system finds, as a minimal explanation, one in which X − 1
negative facts are used instead of the corresponding single positive fact. This can be seen
in the last step. For human reasoners the positive facts often seem to be easier to grasp.
A preference for the system towards these negative facts might be incidentally due to the
formulation of the clues, or it can incidentally happen due to the way the MUS is computed
(only subset-minimality is guaranteed there), or the granularity of the information that can
be captured by the cost function such as a distinction between positive and negative facts.
In general, observations of this kind should be taken into account when devising a cost
function.

• A last observation we made (but that is not visible in the current figure) is that sometimes
the generated nested explanations seem to be unnecessarily difficult to understand. In all
cases we encountered where that was the case, the explanation was the same: the set of
implicit constraints contains a lot of redundant information: a small number of them would
be sufficient to imply all the others. Our cost function, and the subset-minimality of the
generated MUS entails that in the explanation of a single step, implicit constraints will
never be included if they follow from other included implicit constraints. However, when
generating the nested explanations, it would actually be preferred to have those redundant
constraints, since they allow breaking up the explanation in simpler parts, e.g., giving a
simple step with a single bijectivity, rather than a complex step that uses a combination of
multiple implicit constraints.

These observations suggest that further research into the question what constitutes an understand-
able explanation for humans. In Chapter 5, we propose learning how to characterise which is the
most helpful explanation directly from users.

Future work

Bleukx et al. [17] noticed that there were a lot of redundant steps and unnecessarily complex parts
when generating a sequence for explaining unsatisfiability. Similar to our nested explanations
generated using reasoning by contradiction, Bleukx et al. [17] first build a greedy explanation
sequence and filter out input facts and derived facts that are not necessary in reaching the con-
tradiction. While that approach can be directly applied for improving the generation of nested
explanations, there is no clear way of applying it to explaining satisfiability. More precisely, we
are interested in explaining all facts of a solution, meaning no steps can be left out. However,
as in [17], we build our sequence greedily, focussing on finding the next best explanation given
an interpretation. Therefore, additional directions to produce easier-to-understand explanations
would be to optimise the sequence as a whole, rather than only individual steps.
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Additionally, on our puzzles, the nested explanations were so simple that no further refinement
was needed. For more difficult problems, this may no longer be the case; as such, a possible
avenue for future work is a generic approach to multi-level nested explanations. Another interest-
ing direction is to research whether nesting can be related to existing notions of abstraction and
refinement [90, 123, 105].

With respect to efficiency, the main bottleneck of the current algorithm is having to rely on many
calls to MUS, which is a hard problem by itself, to ensure we find low cost explanations. In
Chapter 4, we explore methods to perform unsatisfiable subset optimisation [54] to guarantee
optimality of an explanation with respect to a given cost-function.We investigate how to take ad-
vantage of the explanation sequence generation context to make our approach (near) real-time,
essentially allowing explanations to be generated while a user is solving the puzzle. This will
become especially important when we implement our ideas in more critical domains, such as
interactive configuration, where a human and a search engine cooperate to solve a configura-
tion problem and the human can often be interested in understanding why the system did certain
derivations [68, 25].

Finally, while most of the steps in the pipeline used to derive a typed first-order logic from natural
language clues are largely automated, some steps still require human intervention. For instance,
our system suggests a lexicon and lets a user modify and approve it, to compensate for possible
“creativity” of the puzzle designers who tend to insert ambiguous words, or use implicit back-
ground knowledge such as using ‘in the morning’ when there is only one timeslot before 12:00.
An possible avenue for future work is to whether recent large language models, LLMs fine-tuned
for code generation or mathematical reasoning, can be leveraged to generate typed FOL specifi-
cation directly from the natural language clues [77, 107].
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CHAPTER 4

Efficiently Explaining CSPs with
Unsatisfiable Subset Optimization

Explanations of inference steps are computed by extracting a Minimal Unsatisfiable Sub-
set (MUS) of a derived formula. A cost function is used to evaluate the difficulty of
understanding an explanation. However, since MUS extraction methods do not provide a
guarantee of optimality for a given cost function, a heuristic must be used to ensure that
low-cost explanations are found. This chapter explores how to efficiently generate expla-
nations that are guaranteed to be optimal (MUSs), and how to exploit the fact that we are
generating a sequence of explanations incrementally.

This chapter is largely based on the following scientific publications:

Emilio Gamba, Bart Bogaerts, and Tias Guns. Efficiently explaining csps with un-
satisfiable subset optimization. In Proceedings of the 30th International Joint Con-
ference on Artificial Intelligence, IJCAI, pages 1381–1388, 2021. doi: 10.24963/ijc
ai.2021/191

Emilio Gamba, Bart Bogaerts, and Tias Guns. Efficiently explaining csps with unsat-
isfibale subset optimization. Journal of Artificial Intelligence Research, 78:709–746,
2023. doi: 10.1613/jair.1.14260

4.1 Introduction

In Chapter 3, we decompose explaining the maximal consequence of a CSP as a sequence of
simple inference steps, where a cost function is used to approximate human understandability
of the corresponding explanation step. The explanation generation algorithms in the previous
chapter rely on extracting Minimal Unsatisfiable Subsets (MUSs) of a derived unsatisfiable for-
mula, exploiting a one-to-one correspondence between so-called non-redundant explanations and
MUSs.
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Experiments have shown that such a MUS-based approach can easily take hours, especially when,
at every explanation step, repeated MUS calls are performed for each remaining literal to explain
(line 3 of Algorithm 3.3) to increase the chance of finding a low-cost MUS. Furthermore, MUS
extraction algorithms do not provide any guarantee of ⊆-minimality or optimality with respect
to a given cost function f . Therefore, we handle the absence of ⊆-minimality and optimality
guarantees by heuristically considering increasingly larger subsets of the unsatisfiable formula
(C ∧ I ∧ ¬l), as shown on line 3 of Algorithm 3.2.

Hence, there is a need for algorithmic improvements to make it more practical. We see three main
points of improvement, all of which will be tackled by our generic OCUS algorithm presented in
Section 4.2.

• First, since the algorithm is based on MUS calls, there is no guarantee that the explanation
found is indeed optimal (with respect to the given cost function). Performing multiple MUS
calls is only a heuristic that is used to circumvent the restriction that there are no algorithms
for cost-based unsatisfiable subset optimization.

• Second, this algorithm uses MUS calls for every literal ℓ ∈ Iend \ I to explain separately.
The goal of all these calls is to find a single unsatisfiable subset of C ∧ I ∧ (Iend \ I) that
contains exactly one literal from (Iend \ I) = {¬ℓ | ℓ ∈ Iend \ I}. This begs whether it is
possible to compute a single (optimal) unsatisfiable subset subject to constraints, where in
our case, the constraint is to include exactly one literal from (Iend \ I).

• Third, the algorithm that computes an entire explanation sequence makes use of repeated
calls to ExplainOneStep and hence will solve many similar problems. This raises the
issue of incrementality: can we re-use the computed data structures to achieve speed-ups
in later calls?

Contributions In this chapter, we tackle the limitations discussed above and improve the state
of the-art in the following ways:

• We develop algorithms that compute (cost-)Optimal Unsatisfiable Subsets (from now on
called OUSs) based on the well-known hitting-set duality that is also used for computing
cardinality-minimal MUSs [74, 122].

• We observe that in the explanation setting, many of the individual calls for MUSs (or OUSs)
can actually be replaced by a single call that searches for an optimal unsatisfiable subset
among subsets satisfying certain structural constraints. We formalise and generalise this
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observation by introducing the Optimal Constrained Unsatisfiable Subsets (OCUS) prob-
lem. We then show how O(n2) calls to MUS/OUS can be replaced by O(n) calls to an
OCUS oracle, where n denotes the number of facts to explain.

• We develop techniques for optimizing the O(C)US algorithms further, exploiting domain-
specific information coming from the fact that we are in the explanation-generation context.
Such optimizations include

1. the development of methods for information re-use between consecutive O(C)US
calls; as well as

2. an explanation-specific version of the OCUS algorithm.

• Finally, we extensively evaluate our approaches on a large number of CSP problems.

Chapter structure. Section 4.2 introduces the OCUS problem, and a hitting set-based algo-
rithm for computing OCUSs. In Section 4.3, we study 2 other methods for computing the next
best explanation in the explanation sequence. Then, in Section 4.4 we present methods to improve
the efficiency of our algorithms, e.g. by making them incremental or by using different methods
to extract multiple correction subsets. Finally, in Section 4.5 we evaluate our approach on a large
set of puzzle instances and conclude with some future perspectives.

4.2 Optimal Constrained Unsatisfiable Subsets

In this section, we address the first two challenges, namely

1. the lack of optimality guarantees when relying on MUS extraction methods (and heuristics)
to compute an explanation step, and

2. while the optimal explanation of a single literal can be formalised as an optimal MUS
(with respect to a given objective), finding the optimal next explanation step over all literals
remains an open question.

To tackle these, we introduce the concept of an Optimal Constrained Unsatisfiable Subset (OCUS)
and propose an algorithm for computing one.

Definition 21. Let F be a formula, f : 2F → N a cost function and p a predicate p : 2F →
{true, false}. We call S ⊆ F an Optimal Constrained Unsatisfiable Subset (OCUS) of F(with
respect to f and p) if
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• S is unsatisfiable,

• p(S) is true

• all other unsatisfiable S′ ⊆ F for which p(S′) is true satisfy f(S′) ≥ f(S).

The purpose of the predicate p is to allow additional structural constraints to be imposed on the
set of solutions to the OCUS problem.

If no predicate p is involved, Optimal Constrained Unsatisfiable Subset (OCUS) is reduced to an
Optimal Unsatisfiable Subsets (OUS).

Definition 22. Let f : 2F → N be a cost function. We call S ⊆ F an Optimal Unsatisfiable
Subsets (OUS) of F(with respect to f ) if is S is unsatisfiable, and all other unsatisfiable S′ ⊆ F
for which p(S′) is true satisfy f(S′) ≥ f(S).

Proposition 2. Let F be a CNF formula, p be a predicate specified as a CNF over (meta)-
variables indicating the inclusion of clauses of F, and f be a cost-function obtained by assigning
a weight to each such meta-variable, then the problem complexity of finding an OCUS is ΣP

2 -
complete.

Proof. If we assume that the predicate p is specified itself as a CNF over (meta)-variables in-
dicating the inclusion of clauses of F , and f is obtained by assigning a weight to each such
meta-variable, then the complexity of the problem of finding an OCUS is the same as that of the
SMUS (cardinality-minimal or ‘Smallest’ MUS) problem [74]: the associated decision problem
is ΣP

2 -complete. Hardness follows from the fact that SMUS is a special case of OCUS; contain-
ment follows - intuitively - from the fact that this can be encoded as an ∃∀-QBF using a Boolean
circuit encoding of the costs. □

The following properties hold for cost functions:

Definition 23. Let f be a cost function assigning a cost to each set of constraints S ⊆ F . f is
strictly monotonically increasing if S′ ⊊ S, then f(S′) < f(S). A cost function f is called linear
if it maps each S to

∑
c∈S wc for given weights wc ∈ R.

Definition 24. Let f be a cost function assigning a cost to each set of constraints S ⊆ F , an
O(C)US is also guaranteed to be a MUS, if the cost function f is strictly monotonically increasing.

Recall the one-to-one correspondence between MUSs of I ∧C ∧¬n and non-redundant explana-
tions of (E ⊆ I,S ⊆ C, {n}) introduced in Section 3.6.3.
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Definition 25. An optimal explanation step, with respect to a given cost function f , is said to be
non-redundant if f is strictly monotonically increasing.

In the next sections, we first explain how OCUS can be used to compute an explanation step
and then propose an algorithm for computing OCUSs using the well-known hitting set duality
between MUSs and MCSs [94, 117], see Proposition 1.

4.2.1 ExplainOneStep with OCUS

ExplainOneStep implicitly uses an “exactly one of” constraint on the set of literals to explain
{ℓ ∈ Iend \ I}, and the way this is done is by considering each literal ℓ from that set separately.
It searches for a good, but not necessarily optimal CUS (an Unsatisfiable Subset that satisfies the
Constraint in question). The goal is however to find an optimal one. Therefore, when considering
the procedure ExplainOneStep from the perspective of OCUS defined above, the task of the
procedure is to compute an OCUS of the formula F := C ∧ I ∧ Iend \ I with p the predicate that
holds for subsets that contain exactly one literal of Iend \ I . The pseudocode for this is shown in
Algorithm 4.1.

Algorithm 4.1: ExplainOneStep-OCUS(C, f, I, Iend)
1 F ← C ∧ I ∧ Iend \ I

2 p← (S 7→ |S ∩ Iend \ I| = 1)
3 S∗, status ← OCUS(F , f, p)
4 if status = FAILURE then return ∅
// Mapping to explanation step

5 E ← I ∩ S∗

6 S ← C ∩ S∗

7 N ← propagate(E ∧ S)
8 return (E ,S,N )

Explaining 1 Literal per Step. We define the ‘exactly one’ constraint p as the equality con-
straint shown on line 2 of Algorithm 4.1. p evaluates to true if the size of the intersection of the
negated literals to explain Iend \ I with the subset S of F considered is equal to 1, otherwise p

evaluates to false.

The call to OCUS at line 3 of ExplainOneStep-OCUS will never lead to the FAILURE case,
since an OCUS is guaranteed to exist for the input cost function f , predicate p, and formula F
we consider. Failure can occur for a different predicate p; consider for example the predicate
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p : (S 7→ f(S) ≤ v) of Algorithm 4.5 that evaluates to true if a subset S has a value lower than
a given bound v. In this case, it might lead to the failure case if no OCUS for a given bound v

exists.

In the next section, we provide the details on how to compute an OCUS on line 3.

4.2.2 Computing an OCUS

In order to compute an OCUS of a given formula, we propose to build on the hitting set duality of
Proposition 1. For this, we will assume to have access to a solver CondOptHS that can compute
hitting sets of a given collection of sets that are optimal (w.r.t. a given cost function f ) among
all hitting sets satisfying a condition p. The choice of the underlying hitting set solver will thus
determine which types of cost functions and constraints are possible.

Cost function In our implementation, we use a cost function f which is encoded as a linear
term (weighted sum) similar to the cost function defined after Observation 4 in Section 3.7, where
e.g. constraints are given a larger weight than already derived literals. For example, (unit) clauses
representing previously derived facts can be given small weights, and regular clauses can be given
large weights, so that explanations are penalized for including clauses when previously derived
facts can be used instead.

Condition p can easily be encoded as a linear constraint (see Equation (4.8) for an example), thus
allowing the use of highly optimised mixed integer programming (MIP) solvers for computing
optimal hitting sets. In the following, we explain how the conditional optimal hitting set problem
CondOptHS can be encoded into MIP to reason over combinations of clauses and literals (hitting
sets) of the unsatisfiable formula.

Hitting Set Problem Given F , we define a MIP decision variable dc for every clause c ∈ F
and write D = {dc | c ∈ F} for the set of all such variables. We assume a given collection
of sets-to-hit H. The goal is to find a hitting set h ⊆ D that hits every set-to-hit at least once
(Equation (4.3)), that satisfies predicate p (Equation (4.2)) and minimises f(D) (Equation (4.1)).
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The CondOptHS formulation is as follows:

minimise
h⊆D

f(h) (4.1)

s.t. p(h) (4.2)∑
c∈H

dc ≥ 1, ∀H ∈ H (4.3)

dc ∈ {0, 1}, ∀dc ∈ D (4.4)

In the case of OCUS, every set-to-hit corresponds to a correction subset of F .

OCUS Algorithm Our generic algorithm for computing OCUSs is depicted in Algorithm 4.3. It
combines the hitting set-based approach for MUS of Ignatiev et al. [74] depicted in Algorithm 4.21

with the use of a MIP solver for (weighted) hitting sets as proposed for maximum satisfiability
by Davies and Bacchus [34]. The key novelties are the ability to add structural constraints to the
hitting set solver, without impacting the duality principles of Proposition 1, as we will show.

Algorithm 4.2: SMUS(F)
1 H ← ∅
2 while true do
3 h← MinimumHS(H)
4 S ← {ci|ei ∈ h}
5 if not SAT(S) then
6 return SMUS ← S

7 K ← grow(S)
8 H ← H∪K

9 end

Algorithm 4.3: OCUS(F , f, p)
1 H ← ∅
2 while true do
3 S, status ← CondOptHS(H, f, p)
4 if status = FAILURE then return (∅, status)
5 if not SAT(S) then
6 return (S, status)
7 end
8 K ← CorrSubsets(S,F)
9 H ← H∪K

10 end

Both the SMUS and the OCUS algorithm alternate calls to a hitting set solver with calls to a SAT
oracle on a subset S of F .

In case the SAT oracle returns true, i.e., subset S is satisfiable, the grow procedure of SMUS
expands a satisfiable subset S of F further such that its complement, a single correction subset
K is as small as possible. Shrinking the correction subset as a result of the grow finds stronger
constraints on the sets-to-hit, since it restricts the choice on the clauses that need to be selected.

1Note that we have replaced variables F ′ and C in the original SMUS algorithm with variables S and C respectively
to facilitate the comparison between the SMUS and the OCUS algorithm.
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In OCUS, the CorrSubsets procedure extracts a non-empty set of subsets of F \ S, more
precisely correction subsets, and added to the collection of sets-to-hit H. Furthermore, he calls
for hitting sets will also take into account the cost (f ), as well as the meta-level constraints (p);
as such, it is not clear a priori which properties a good CorrSubsets function should have
here. In Section 4.2.3, we propose different domain-specific methods for enumerating multiple
correction subsets.

For correctness of the algorithm, all we need to know is that for a given satisfiable subset S,
CorrSubsets returns a non-empty set of correction subsets K where ∀ C ∈ K : C ⊆ (F \S).
At any given step, if S is satisfiable,H is guaranteed to grow, since a non-empty set of correction
subsets K is returned that is disjoint from S. Therefore, K cannot be present inH. Completeness
and soundness of the algorithm follow from the fact that the algorithm is guaranteed to terminate
since there is a countable number of correction subsets of F , and from Theorem 1, which states
that what is returned is indeed a solution and that a solution will be found if it exists.

Theorem 1. Let H be a set of correction subsets of F. If S is a hitting set of H that is f -optimal
among the hitting sets ofH satisfying a predicate p, and S is unsatisfiable, then S is an OCUS of
F . IfH has no hitting sets satisfying p, then F has no OCUSs.

Proof. For the first claim, it is clear that S is unsatisfiable and satisfies p. Hence, all we need to
show is f -optimality of S. If there would exist some other unsatisfiable subset S′ that satisfies p

with f(S′) ≤ f(S), we know that S′ would hit every minimal correction set of F , and hence also
every set in H (since every correction set is the superset of a minimal correction set). Since S is
f -optimal among hitting sets of H satisfying p and S′ also hits H and satisfies p, it must thus be
that f(S) = f(S′).

The second claim immediately follows from Proposition 1 and the fact that an OCUS is an unsat-
isfiable subset of F . □

Perhaps surprisingly, the correctness of the proposed algorithm does not depend on the mono-
tonicity properties of f nor p. In principle, any (computable) cost function and condition on the
unsatisfiable subsets can be used. In practice, however, one is bound by the limitations of the
chosen hitting set solver.

As an illustration, we provide an example of one call to ExplainOneStep-OCUS (Algo-
rithm 4.1) and the corresponding OCUS-call in detail (Algorithm 4.3) for our running example:

Example 15. Consider the 4 clauses of our running example C := c1 ∧ c2 ∧ c3 ∧ c4 with:

c1 := ¬x1 ∨ ¬x2 ∨ x3 c2 := ¬x1 ∨ x2 ∨ x3 c3 := x1 c4 := ¬x2 ∨ ¬x3
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Consider a call to ExplainOneStep-OCUS with I = ∅ and Iend = {x1,¬x2, x3}. We add the
following three new clauses, which represent the complement of literals to-be-derived Iend \ I:

{¬x1} {x2} {¬x3}

The cost function f is defined as a linear sum

f(S) =
∑
c∈S

wi · ci (4.5)

over the following clause weights:

Clause weights: wc1 = 60 wc2 = 60 wc3 = 100 wc4 = 100

I ∧ Iend \ I weights: w¬x1 = 1 wx2 = 1 w¬x3 = 1

We encode the same cost function in the MIP encoding as a weighted sum using the corresponding
decision variables as follows:

f(S) =
∑
c∈S

wc · dc (4.6)

To ensure that we only explain one literal at a time, we add predicate p as

p(S) := |S ∩ {¬x1, x2,¬x3}| = 1 (4.7)

The MIP encoding of predicate p corresponds to

p(h) :=
∑

c∈Iend\I

dc = d{¬x1} + d{x2} + d{¬x3} = 1 (4.8)

At Line 3 of ExplainOneStep-OCUS, F is constructed, consisting of :

F = C ∧ I ∧ (Iend \ I) = c1 ∧ · · · ∧ c4 ∧ ¬x1 ∧ x2 ∧ ¬x3 (4.9)

Finally, for generating an explanation step, we proceed to call OCUS on formula F with given
cost function f and exactly-one constraint p:

OCUS(F , f, p) (4.10)

In this small example, the CorrSubsets(S,F) procedure simply returns {F \ S}.
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Step S SAT(S) H ← H∪ CorrSubsets(S,F)
∅

1. {¬x3} true {{c1, c2, c3, c4,¬x1, x2}}
2. {¬x1} true {. . . , {c1, c2, c3, c4, x2,¬x3}}
3. {x2} true {. . . , {c1, c2, c3, c4,¬x1,¬x3}}
4. {c1, x2} true {. . . , {c2, c3, c4,¬x1,¬x3}}
5. {c2, x2} true {. . . , {c1, c3, c4,¬x1,¬x3}}
6. {c1,¬x3} true {. . . , {c2, c3, c4,¬x1, x2}}
7. {c2,¬x1} true {. . . , {c1, c3, c4, x2,¬x3}}
8. {c1,¬x1} true {. . . , {c2, c3, c4, x2,¬x3}}
9. {c2,¬x3} true {. . . , {c1, c3, c4,¬x1, x2}}
10. {c4, x2} true {. . . , {c1, c2, c3,¬x1,¬x3}}
11. {c3, x2} true {. . . , {c1, c2, c4,¬x1,¬x3}}
12. {c3,¬x1} false

Table 4.1: Example 15 - Intermediate steps when computing an OCUS for
ExplainOneStep-OCUS where CorrSubsets(S,F) = {F \ S}.

Table 4.1 breaks down the intermediate steps of algorithm 4.3 for generating an OCUS of given
F , f and p. First, the collection of sets-to-hit His initialized as the empty set. At each iteration, the
hitting set solver searches for a cost-minimal assignment that hits all sets in Hand that contains
exactly one of {¬x1, x2,¬x3} (due to p). If the hitting set is unsatisfiable, it is guaranteed to be
an OCUS.

The first iterations show that the OCUS algorithm first hits all the literals of Iend \ I (steps 1-3
of Table 4.1) and then starts combining one literal of Iend \ I with the remaining clauses until
an OCUS is found (step 12 of Table 4.1). Finally, lines Line 5 to Line 8 map the clauses of the
unsatisfiable formula back to an explanation step. More precisely, OCUS {c3,¬x1} signifies that
using clause c3 we can derive x1, and more formally c3 ⇒ x1.

Incremental MIP Solver The OCUS algorithm requires repeatedly computing hitting sets over
an increasing collection of sets-to-hit. Initializing the MIP solver once and keeping it warm
throughout the OCUS iterations allows it to reuse information from previous solver calls to solve
the current hitting set problem. Similar to Davies and Bacchus [34], we notice a speed-up between

70



OPTIMAL CONSTRAINED UNSATISFIABLE SUBSETS

3 to 5 times by keeping the solver warm1 compared to initializing a new MIP solver instance at
every iteration.

As can be seen in Table 4.1, the OCUS algorithm requires a lot of intermediate steps in order to
find an OCUS. Notice for instance that the computed correction subsets contain more than 1 literal
to explain that are not relevant for explaining the literal in the current hitting set. Taking step 2 as
an example, if {¬x1} is a hitting set, its corresponding correction subset {c1, c2, c3, c4, x2,¬x3}
contains {x2,¬x3} which cannot be taken.

Even though our running example has a rather small number of clauses, OCUS needs to combine
an increasingly large number of literals and clauses in order to find an OCUS. Next, we investigate
how to grow a given satisfiable subset efficiently in order to reduce the size of the corresponding
correction subset. By imposing stronger restrictions on the hitting sets, we will be able to reduce
the number of sets-to-hit.

4.2.3 Computing Correction Subsets

The CorrSubsets procedure generates a set of correction subsets starting from a given satisfi-
able subset S of an unsatisfiable formula F .
However, calling ExplainOneStep-OCUS on our running example has shown that a naive
‘No grow’:

CorrSubsets(S,F)← {F \ S} (4.11)

drastically increases the number of sets-to-hit required compared to using the model provided by
the SAT solver. This last observation suggests that the satisfiable subset S should be efficiently
grown into a larger satisfiable subset before computing the complement similar to the observation
in [74]:

CorrSubsets(S,F)← {F \ Grow(S,F)} (4.12)

Growing satisfiable subsets using domain-specific information

The goal of the Grow phase of the CorrSubsets procedure (see Equation (4.12)) is to turn S

into a larger satisfiable subformula of F . The effect of this is that the complement added to Hwill
be smaller, and hence imposes stronger restrictions on the hitting sets.

There are multiple conflicting criteria that determine what makes an effective ‘grow’ procedure.

1We use the same setup as in the experiment section: a single core on a 10-core INTEL Xeon Gold 61482 (Skylake),
a memory-limit of 8GB. The code is written on top of PySAT 0.1.7.dev1 [76], for MIP calls, we used Gurobi 9.1.2, and
for the SAT calls MiniSat 2.2.
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On the one hand, we want our subformula to be as large as possible (which ultimately would
correspond to computing a maximal satisfiable subformula), but on the other hand, we also want
the procedure to be very efficient as it is called in every iteration.

For the case of explanations, we make the following observations:

• Our formula at hand (using the notation from the ExplainOneStep-OCUS algorithm)
consists of three types of clauses:

1. (translations of) the problem constraints (this is C)

2. literals representing the assignment found (this is I), and

3. the negations of literals not-yet-derived (this is Iend \ I).

• C and I together are satisfiable, with assignment Iend, and mutually supportive, by this we
mean that making more clauses in Ctrue, more literals in I will automatically become true
and vice versa.

• The constraint p enforces that each hitting set will contain exactly one literal of Iend \ I

Since the restrictions on the third type of elements of F are already strong, it makes sense to
search for a maximal satisfiable subset of C∪I with as hard constraints that S should be satisfiable,
using a call to an efficient (partial) MaxSAT solver.

Furthermore, we can initialize this call as well as any call to a SAT solver with the polarities for
all variables set to the value they take in Iend .

We evaluate different grow strategies as part of the CorrSubsets(S,F) procedure in the ex-
periments section, including:

SAT extracts a satisfying model from the SAT solver to turn S into a larger satisfiable subset.
This grow will be considered the baseline for comparing the other grow-variants.

SubsetMax-SAT extends the satisfiable subset computed by SAT by looping over every re-
maining clause c ∈ F \ S. If S ∪ {c} is satisfiable, then the clause c is added to S as well
as any other clause from c′ ∈ F \ S ∪ {c} that is satisfied in the model found by the SAT
solver.

Dom.-spec. MaxSAT grows satisfiable subset S with a MaxSAT solver using only the previ-
ously derived facts and the original constraints.

MaxSAT Full grows satisfiable subset S with a MaxSAT solver using the full unsatisfiable
formula F .
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In the experiments, we omit the ‘No grow’ procedure, where the complement {F \S} is returned
by CorrSubsets. Not growing produces large sets-to-hit as seen in Table 4.1 of the running
example. Additional experiments comparing the effectiveness of the naive ‘No grow’ to growing
with the SAT solver procedure shows that ‘No grow’ leads to significantly longer OCUS runtimes.

Finally, Table 4.1 showed that OCUS has to combine an increasingly large number of literals and
clauses. In the next section, we analyse whether we can break the more general OCUS problem
into smaller subproblems, similar to Algorithm 3.3, where instead of searching for a MUS, we
search for an Optimal Unsatisfiable Subset (OUS) and select the best one.

4.3 Multiple Optimal Unsatisfiable Subsets

Preliminary experiments have shown that most of the time (∼ 90% of the time) is spent searching
for hitting sets when generating an explanation step with OCUS. The main reason for this is that
the hitting set solver needs to consider an increasingly large collection of sets-to-hit, potentially
searching over an exponential number of literals and clauses (see Table 4.1 of Example 15).

In this section, we first analyse if instead of working OCUS-based, we can split up the OCUS-
call into individual calls that compute Optimal Unsatisfiable Subsets (OUSs) for every literal by
replacing a MUS call to OUS in Algorithm 3.3. In that case, the original ExplainOneStep
introduced in Algorithm 3.2 no longer requires greedily growing the subset of constraints to
guarantee finding low-cost (optimal) explanations. The resulting simplified algorithm is shown in
Algorithm 4.4.

4.3.1 Bounded OCUS

Since OUS, without an additional predicate, is a special case of OCUS, we can take advan-
tage of Proposition 1 and reuse the OCUS algorithm with a trivially true p, i.e., OUS(F , f) :=
OCUS(F , f, t) for each F and f . However, the switch from MUS to OUS in Algorithm 3.3 still
requires looping over every literal and computing the OUS, potentially introducing overhead com-
pared to the single OCUS call. However, we can use the OUS obtained in one iteration, to infer a
bound on the score that must be achieved in subsequent OUS calls.

Upper Bound Every MUS or OUS computed at Line 4 of Algorithm 3.3 provides an upper
bound on the cost, which should be improved in the next iteration. By keeping track of the best
candidate explanation, its corresponding cost can be considered the current best upper bound on
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Algorithm 4.4: ExplainOneStep-OUS(C, f, I, Iend)
1 N ← Iend \ I
2 best ← (I, C,N )
3 for n ∈ N do
4 X ← OUS(C ∧ I ∧ ¬n, f)

// Mapping to explanation step
5 E ← I ∩X
6 S ← C ∩X
7 N ← propagate(E ∧ S)
8 if f(E ,S,N ) < f(best) then
9 best ← cand

10 end
11 end
12 return best

the cost of the OUSs of the remaining literals to explain.

Lower Bound Every hitting set computed inside the OUS algorithm produces a lower bound
on the best cost that can be obtained, even the satisfying ones. Indeed, the candidate hitting set
returned on line 3 of Algorithm 4.3 is guaranteed to be the lowest-cost one. Consequently, the
cost of the best candidate explanation so far can be used as an early stopping criterion: if the cost
of the current hitting set is larger than the cost of the best explanation so far, OUS will not be able
to find a better (cheaper) unsatisfiable subset S for that literal.

In fact, such a bounded OCUS call is naturally obtained by doing an OCUS call with as constraint
p(S) := f(S) ≤ f(Sbest).

Bounded OCUS-based Explanations ExplainOneStep-OCUS-Bounded in Algorithm 4.5
uses calls to the OCUS algorithm for every individual literal to compute the next best explanation
step. The algorithm keeps track of the current best OCUS candidate Sbest. This Sbest is only up-
dated if the OCUS algorithm is able to find an OCUS that is cheaper than the current upper bound
f(Sbest). The predicate f(S) ≤ f(Sbest) of the OCUS-call at line 4 of Algorithm 4.5 allows us
to ensure that the cost of the hitting set does not exceed the upper bound. In case it does happen,
the hitting set solver will return a failure message, meaning that a better candidate explanation
cannot be computed for that literal given the current interpretation I .
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Algorithm 4.5: ExplainOneStep-OCUS-Bounded(C, f, I, Iend)
1 Sbest ← nil
2 Sℓ

best ← nil for each ℓ (or from previous iteration)
3 for ℓ ∈ {Iend \ I} sorted by f(Sℓ

best) do
4 Sℓ

best, status ← OCUS((C ∧ I ∧ ¬l), f, f(S) ≤ f(Sbest))
5 if status , FAILURE then
6 Sbest ← Sℓ

best

7 end
8 end
// Mapping to explanation step

9 E ← I ∩ Sℓ
best

10 S ← C ∩ Sℓ
best

11 N ← propagate(E ∧ S)
12 return (E ,S,N )

Literal Sorting Obtaining a good upper-bound quickly can further reduce runtime. We can
heuristically aid this by keeping track of Sℓ

best across explanation steps, and then use its score
f(Sℓ

best) to sort the literals at line 3. The literal sorting ensures we first try the cheapest Sℓ
best

from a previous explanation step since these are more likely to provide a good upper bound on
the cost of the next candidate OCUS.

4.3.2 Interleaving OCUS Calls for Different Literals: a Special-case
OCUS Algorithm

The case to avoid for ExplainOneStep-OCUS-Bounded is that an OCUS call for a literal
takes many hitting set iterations, and returns an ‘expensive’ OCUS with lower-cost OCUSs to be
found for other literals.

Conceptually, one should only do hitting set iterations for the most promising literal, one that is
most likely to produce an OCUS with the lowest cost. Indeed, this is what the original OCUS
algorithm with an ‘exactly one of’ constraint is built for: to choose freely among all possible
hitting sets across the different literals in order to find the globally optimal next candidate OUS.

For this special case, where the constraint p is that exactly one of a set of literals must be chosen,
we can manually decompose the problem to iteratively search for the best hitting set across the
independent problems. In such an approach, we do not repeatedly call (bounded) OCUS until
optimality, but do one hitting-set iteration at a time; each time continuing with one hitting-set
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iteration of the most promising literal.

This is shown in Algorithm 4.6. Every literal to explain ℓ is associated with:

1. its current collection of sets to hit Hℓ; and

2. corresponding optimal hitting set Sℓ (initially the empty set for both) as well as

3. its corresponding cost f(Sℓ).

These are stored in a priority queue, sorted by the cost.

Algorithm 4.6: ExplainOneStep-OCUS-Split(C, f, I, Iend)
1 queue← InitializePriorityQueue((ℓ, ∅, ∅) : 0 | ∀ℓ ∈ Iend \ I)
2 while (ℓ, Sℓ,Hℓ)← queue.pop() do
3 if ¬SAT(Sℓ) then

// Mapping to explanation step
4 E ← I ∩ Sℓ

5 S ← C ∩ Sℓ

6 N ← propagate(E ∧ S)
7 return (E ,S,N )
8 K ← CorrSubsets(Sℓ, (C ∧ I ∧ ¬ℓ))
9 Hℓ ← Hℓ ∪K

10 Sℓ ← OptHittingSet(Hℓ, f)
11 queue.push((ℓ, Sℓ,Hℓ) : f(Sℓ))
12 end

ExplainOneStep-OCUS-Split repeatedly extracts the best literal-to-explain and corre-
sponding hitting set out of the priority queue. Similar to Algorithm 4.3, if the corresponding
hitting set is unsatisfiable, it is guaranteed to be the cost-minimal OUS. This is because the queue
ensures that this hitting set is the lowest scoring hitting set across all literals, and because each
hitting set is guaranteed to be an optimal hitting set of its collected sets-to-hitHℓ. If, on the other
hand, the hitting set is satisfiable, a number of correction subsets are extracted from the literal-
specific unsatisfiable formula and added to its respective collection of sets to hit. Finally, a new
hitting set is computed, and this information is pushed back into the priority queue.

The intermediate steps of OCUS depicted in Table 4.1 of Example 15 shows that OCUS needs to
consider many combinations of clauses and literals for all literals to explain. Whereas, OCUS_Split
reasons over a smaller unsatisfiable formula containing literals relevant for the literal to ex-
plain, and only expands the most promising literal. In the experiments, we compare which
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ExplainOneStep-* configuration (OCUS, OCUS_Bound, or OCUS_Split) is the fastest for
computing explanations.

Example 16 (continued). Consider the previously introduced clauses of our running example C

c1 := ¬x1 ∨ ¬x2 ∨ x3 c2 := ¬x1 ∨ x2 ∨ x3 c3 := x1 c4 := ¬x2 ∨ ¬x3

In this example, we detail the execution of one call to ExplainOneStep-OCUS-Bounded

and one call to ExplainOneStep-OCUS-Split for I = ∅ and Iend = {x1,¬x2, x3}.

The intermediate steps for ExplainOneStep-OCUS-Bounded are depicted in Table 4.2.
Furthermore, we consider that there does not exist an initial ordering to the literals to explain
that can be computed from previous iterations. Table 4.3 depicts the intermediate steps for
ExplainOneStep-OCUS-Split.

Table 4.2 highlights that executing for a call to OCUS for each literal ℓ still requires many iter-
ations even though an upper bound bound on the cost of the best explanation was found after 4
iterations.

The intermediate steps of Table 4.3 highlight the benefit of only executing 1 iteration of OCUS for
each literal to explain. In fact, the number of iterations, until an explanation, is found is lower
compared to both ExplainOneStep-OCUS-Bounded (Table 4.2) and ExplainOneStep-OCUS
(Table 4.1), i.e. 10 instead of 15 and 12 respectively.

In the following section, we analyse how to exploit the fact that OCUS and its variants have to
be called repeatedly on an unsatisfiable formula that is incrementally extended when generating
a sequence of explanations. We then consider how to reduce the number and size of sets-to-hit,
e.g. to include only information relevant to each literal-to-explain, and how to generate small
(p-)disjoint correction subsets from a given hitting set.

4.4 Efficiently computing optimal explanations

Up until now, we have investigated how to speed up the generation of an explanation step from
the perspective of OCUS as an oracle. In the following, we discuss optimizations applicable to
the O(C)US algorithms that are specific to explanation sequence generation, though they can also
be used when other forms of domain knowledge are present.
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ℓ Step S SAT(S) H ← H∪ CorrSubsets(S,F)
x1 ∅

1. {¬x1} true {{c1, c2, c3, c4}}
2. {c2,¬x1} true {. . . , {c1, c3, c4}}
3. {c1,¬x1} true {. . . , {c2, c3, c4}}
4. {c3,¬x1} false

¬x2 ∅
5. {x2} true {{c1, c2, c3, c4}}
6. {c1, x2} true {. . . , {c2, c3, c4}}
7. {c2, x2} true {. . . , {c1, c3, c4}}
8. {c3, x2} true {. . . , {c1, c2, c4}}
9. {c4,¬x3} true {. . . , {c1, c2, c3}}
10. {c1, c2,¬x2} FAILURE

x3 ∅
11. {¬x3} true {{c1, c2, c3, c4}}
12. {c1,¬x3} true {. . . , {c2, c3, c4}}
13. {c2,¬x3} true {. . . , {c1, c3, c4}}
14. {c3,¬x3} true {. . . , {c1, c2, c4}}
15. {c4,¬x3} true {. . . , {c1, c2, c3}}
16. {c1, c2,¬x3} FAILURE

Table 4.2: Example 16 - Intermediate steps when computing an explanation step with
ExplainOneStep-OCUS-Bounded where CorrSubsets(S,F) = {F \ S}.

4.4.1 Incremental OCUS computation

Inherently, generating a sequence of explanations still requires many O(C)US calls. Indeed, a
greedy sequence construction algorithm calls an ExplainOneStep variant repeatedly with a
growing interpretation I until I = Iend .

All of these calls to ExplainOneStep, and hence O(C)US, are done with very similar input
(the set of constraints does not change, and the I slowly grows between two calls). For this reason,
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ℓ Step Sℓ SAT(Sℓ) Hℓ ← Hℓ ∪ CorrSubsets(Sℓ, (C ∧ I ∧ ¬ℓ))
∅

x1 1. {¬x1} true {{c1, c2, c3, c4}}
¬x2 2. {x2} true {{c1, c2, c3, c4}}
x3 3. {¬x3} true {{c1, c2, c3, c4}}
x1 4. {c1,¬x1} true {. . . , {c2, c3, c4, }}
¬x2 5. {c1, x2} true {. . . , {c2, c3, c4}}
x3 6. {c1,¬x3} true {. . . , {c2, c3, c4}}
x1 7. {c2,¬x1} true {. . . , {c1, c3, c4}}
¬x2 8. {c2, x2} true {. . . , {c1, c3, c4}}
x3 9. {c2,¬x3} true {. . . , {c1, c3, c4}}
x1 10. {c3,¬x1} false

Table 4.3: Example 16 - Intermediate steps when computing an explanation step with
ExplainOneStep-OCUS-Split where CorrSubsets(S,F) = {F \ S}.

it makes sense that information computed during one of the earlier stages can be useful in later
stages as well. The main question is:

Suppose two OCUS calls are done, first with inputs F1, f1, and p1, and later with F2,
f2, and p2; how can we make use as much as possible of the data computations of
the first call to speed up the second call?

The answer is surprisingly elegant. The most important data OCUS keeps track of is the collection
Hof correction subsets that need to be hit.

Bootstrapping H with satisfiable subsets

This collection in itself is not useful for transfer between two calls, since – unless we assume that
F2 is a subset of F1 – there is no reason to assume that a set in H1 is also a correction subset of
F2 in the second call. However, each set H in H is the complement (with respect to the formula
at hand) of a satisfiable subset of constraints, and each subset of a satisfiable subset is satisfiable
as well. Thus, instead of storing H, we can keep track of a set of satisfiable subsets SSs; as the
intermediate results of calls to CorrSubsets.
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When a second call to OCUS is performed, we can then initializeH as the complement of each of
these satisfiable subsets with respect to F2, i.e.,

H ← {F2 \ S | S ∈ SSs}. (4.13)

The effect of this is that we bootstrap the hitting set solver with an initial setH.

Incrementality with MIP

For hitting set solvers that natively implement incrementality, such as modern Mixed Integer Pro-
gramming (MIP) solvers, we can generalise this idea further: we know that all calls to OCUS(F , f, p)
will be cast with F ⊆ C ∪ Iend ∪ Iend \ I0, where I0 is the start interpretation. To compute the
conditional hitting set for a specific C ∪ I ∪ Iend \ I ⊆ C ∪ Iend ∪ Iend \ I0, we need to ensure
that the hitting set solver only uses literals in C ∪ I ∪ Iend \ I . For incremental hitting set solvers,
this means updating the constraint p at every explanation step to include (1) only literals from
interpretation I at the current explanation step, and (2) the ‘exactly-one’ constraint for explaining
one literal at a time.

Since our implementation uses a MIP solver for computing hitting sets (see Proposition 1 of
Section 2.3), and we know the entire formula from which elements must be chosen,we initialize
the MIP solver once with all relevant decision variables of C ∪ Iend ∪ Iend \ I0.

Bear in mind that retracting a constraint p to replace it with an updated one (in the next explanation
call) is non-trivial for MIP solvers. Therefore, we assign an infinite weight in the cost function to
all literals of Iend \ I and update their weights as soon as they have been derived according to the
given cost function. In this way, the MIP solver will automatically maintain and reuse previously
found sets-to-hit in each of its computations.

Next, we investigate how to speed up the generation of an OCUS using an appropriate CorrSubsets
method when domain-specific information is available. Through our running example, we will
look at the impact of incremetality and a better CorrSubsets procedure.

Efficiently generating an explanation sequence with Incremental OCUS

In the following example, we illustrate the efficiency of incrementality with MIP together with
the SAT grow to speed up generating an OCUS-based explanation sequence.

Example 17 (continued). Consider the previously introduced clauses of our running example C:

c1 := ¬x1 ∨ ¬x2 ∨ x3 c2 := ¬x1 ∨ x2 ∨ x3 c3 := x1 c4 := ¬x2 ∨ ¬x3
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To define the input for the MIP-incremental OCUS with initial interpretation I = ∅, we extend C
with the new clauses representing the final interpretation

Iend = {{x1,¬x2, x3}}

and the complement thereof
Iend \ I = {{¬x1, x2,¬x3}}

For the MIP-incremental variant of OCUS, p remains the same. The cost function fI is defined as
a weighted sum over the following weights:

Clause weights: w1 = 60 w2 = 60 w3 = 100 w4 = 100

I ∧ Iend \ I weights: w¬x1 = 1 wx2 = 1 w¬x3 = 1
Iend \ I weights: wx1 =∞ w¬x2 =∞ wx3 =∞

Note how the literals that haven’t been derived yet (Iend\I) are given an infinite weight according
to Section 4.4.1 for incrementality purposes. Therefore, fI will be updated at every explanation
step whenever interpretation I changes. The incremental OCUS-call is now:

OCUS(C ∧ Iend ∧ (Iend \ I), fI , p) (4.14)

In this example, the Grow procedure uses the model provided by the SAT solver to grow a given
subset S. The CorrSubsets procedure simply returns

K = CorrSubsets(S,F) = {F \ Grow(S,F)} (4.15)

The following tables (Tables 4.4 to 4.6) summarise the intermediate steps to compute an OCUS-
based explanation sequence for our running example. The literals that cannot be selected by the
hitting set solver have been struck out because they have not been derived yet.

Observation 1. (An effective grow) The most striking aspect of Table 4.4 compared to Table 4.1
is the number of steps required to find an OCUS that is greatly reduced, i.e. from 12 steps to 6, as
a result of choosing an effective grow.

For the next explanation step, since x1 has been explained, we adapt the weights of the clauses
{x1} and {¬x1} to wx1 = 1 and w¬x1 =∞ respectively.

Observation 2. (Incrementality) In the intermediate OCUS steps of explanation step 2 (Ta-
ble 4.5), we observe the effect of incrementality from the number of steps required to find an
OCUS. Recall that in the MIP setting, Fis constructed overall literals of Iend and Iend \ I , and
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Step S SAT(S) Grow(S,F) H ← H∪K

∅
1. {¬x3} true {c1, c2, c4,¬x1,¬x2,¬x3} {{c3,��x1, x2,��x3}}
2. {x2} true {c1, c2, c3, x1, x2, x3} {..., {c4,¬x1,��¬x2,¬x3}}
3. {¬x1} true {c1, c2, c4,¬x1,¬x2, x3} {..., {c3,��x1, x2,¬x3}}
4. {c4, x2} true {c1, c2, c4,¬x1, x2,¬x3} {..., {c3,��x1,��¬x2,��x3}}
5. {c3,¬x3} true {c1, c3, c4, x1,¬x2,¬x3} {..., {c2, x2,��x3,¬x1}}
6. {c3,¬x1} false - -

Table 4.4: Example (continued). Explanation step 1 (c3 ⇒ x1) of the explanation sequence
generated with ExplainOneStep-OCUS with incremental MIP solving (see Section 4.4.1).

hence stays the same throughout all explanation steps. Therefore, the correction subsets of the
previous explanation steps can be reused as is. Using the previously computed sets-to-hit ensures
that the OCUS algorithm starts from a good candidate OCUS. If the same OCUS-call is performed
without bootstrapping the previous sets-to-hit, the number of intermediate steps is higher, i.e. 5
instead of 2.

Step S SAT(S) Grow (S, F) H ← H∪K

{{c3, x1, x2,¬x3},
{c3, x1, x2,��x3},
{c4,��¬x1,��¬x2,¬x3},
{c3, x1,��¬x2,��x3},
{c2, x2,��x3,��¬x1}}

1. {c2, x1,¬x3} true {c2, c3, c4, x1, x2,¬x3} {..., {c1,��x3,��¬x2}}
2. {c1, c2, x1,¬x3} false

Table 4.5: Example (continued). Explanation step 2 (c1 ∧ c2 ∧ x1 ⇒ x3) of the explanation
sequence generated with ExplainOneStep-OCUS incremental.

Finally, for the last explanation step, we adapt the weights to reflect the current interpretation
and that we only want to explain ¬x2 (wx3 = 1 and w¬x3 =∞).

Observation 3. (Disjoint Correction Subsets) Observe set-to-hit {c4,��¬x1,��¬x2,��¬x3} in the col-
lection of previously compute sets-to-hit of Table 4.6. Given the current interpretation and the
literal ¬x2 to explain, only c4 can and has to be taken. The phenomenon of a set being disjoint
from another with respect to p is what we call in Definition 26 p-disjointness. In this case, subset

82



EFFICIENTLY COMPUTING OPTIMAL EXPLANATIONS

Step S SAT(S) Grow (S, F) H ← H∪K

{{c3, x1, x2,��¬x3},
{c3, x1, x2, x3},

{c4,��¬x1,��¬x2,��¬x3},
{c3, x1,��¬x2, x3},
{c2, x2, x3,��¬x1},
{c1, x3,��¬x2}}

1. {c4, x2, x3} false

Table 4.6: Example (continued). Explanation step 3 (c4 ∧ x3 ⇒ ¬x2) of the explanation se-
quence generated with ExplainOneStep-OCUS incremental.

{c4,��¬x1,��¬x2,��¬x3} is p-disjoint from the other sets-to-hit for the hitting set solver. Therefore, it
poses a stronger restriction on the sets-to-hit.

Definition 26. Two sets S1 and S2 are p-disjoint if every set that hits both S1 and S2 and satisfies
p contains s1 ∈ S1 and s2 ∈ S2 with s1 , s2.

Example 17 shows that incrementality with MIP and growing the satisfiable subset S are effective
at reducing the size and the number of sets-to-hit when computing a sequence of explanations
using ExplainOneStep-OCUS. Next, in section 4.4.1, we take advantage of Definition 26 to
enumerate multiple correction subsets that are p-disjoint of each other during the CorrSubsets
procedure.

Correction subsets enumeration

Our OCUS algorithm repeatedly alternates between computing hitting sets and correction subsets.
The increasingly large collection of sets-to-hit makes finding optimal hitting sets much more
expensive compared to the CorrSubsets procedure, which solely relies on finding correction
subsets from a given satisfiable subset. Additionally, in the last explanation step of Example 17,
we saw that one of the sets-to-hit ({c4,��¬x1,��¬x2,��¬x3}) was p-disjoint to the others, imposing a
strong restriction on the hitting set solver. The question is:

Can we cheaply find multiple, ideally p-disjoint, correction subsets and thereby add
multiple sets-to-hit in one go?

Inspired by Marques-Silva et al. [102], we depict a CorrSubsets procedure in Algorithm 4.7
that computes a collection of correction subsets K starting from a given subset of constraints S
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(either the empty set or a computed hitting set). The CorrSubsets procedure will repeatedly
compute a satisfiable subset S′ ⊇ S, and add its complement to the collection of disjoint MCSs
K and to S, ensuring that the constraints in the correction subset cannot be present in the next
correction subset (disjoint), until no more satisfiable subsets can be found.

Algorithm 4.7: CorrSubsets(S,F)
1 K ← ∅
2 S ′ ← S
3 while SAT(S′) do
4 C← F \ Grow(S′,F)
5 S′ ← S′ ∪ C
6 K ← K ∪ {C}
7 end
8 return K

For simple constraints p, Algorithm 4.7 is directly applicable and will be able to compute dis-
joint correction subsets. However, for more complicated p constraints, this easily degrades into
computing only a single correction subset.

Correction subset enumeration with incremental MIP

If Algorithm 4.7 is directly applied to the MIP incremental OCUS variant that considers the whole
formula C ∧ Iend ∧ (Iend \ I), both the literal-to-explain and its negation will be present at line 5
leading to UNSAT. In a given explanation step, only the base constraints C, the current interpre-
tation I , and the literals of (Iend \ I) can be hit by the hitting set solver. Therefore, we project
subset S′ onto the base constraints, the current interpretation, and the negated literals to explain.
This extra step is executed right after line 5 of Algorithm 4.7:

S′ ← S′ ∩ (C ∪ I ∪ Iend \ I)

By incorporating explanation-specific information, we are able to enumerate extra correction sub-
sets that are p-disjoint.

Example 18 (Example 17 continued). Consider the same setting as in Example 17 with given
initial interpretation I = ∅ and Iend = {x1,¬x2, x3}. Table 4.7 illustrates the efficiency of the
incremental variant of the CorrSubsets algorithm starting from hitting set S := {¬x3} as in
the first step of our running example (Table 4.4 of Example 17). This example uses the SAT-based
Grow of Section 4.2.3.
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Step S′ SAT(S′) S′ ← Grow(S,F) K ← K ∪ {F \ S′}
∅

1. {¬x3} true {c1, c2, c4,¬x1,¬x2,¬x3} {{c3,��x1, x2,��x3}}
2. {c3, x2,¬x3} true {c2, c3, c4, x1, x2,¬x3} {..., {c1,¬x1,��¬x2,��x3}}
3. {c1, c3,¬x1, x2,¬x3} false

Table 4.7: Example 17 (continued). Correction Subset enumeration starting from hitting set
{¬x3} with MIP-incremental OCUS.

The MIP-based incremental variant of OCUS uses unsatisfiable formula Fdefined as C ∧ Iend ∧
(Iend \ I). For a given interpretation I = ∅, the F corresponds F := C∧{x1}∧{¬x2}∧{x3}∧
{¬x1} ∧ {x2} ∧ {¬x3}.

Having a closer look at step 1 of Table 4.7, ¬x3 is present in S and x3 is in the corresponding
correction subset. If we were to add it directly to S, the algorithm would stop at the next iteration,
since S would be unsatisfiable. However, x3 (and x1) cannot be selected by the hitting set solver,
and therefore should not be added. By adding only the clauses from {F \ S} projected onto
(C ∪ I ∪ Iend \ I), i.e. c3 and x2, we are able to enumerate multiple correction subsets that are
p-disjoint for the hitting set solver.

Example 18 depicts the effectiveness of enumerating multiple correction subsets that are p-
disjoint by projecting the correction subset onto the unsatisfiable formula for the current inter-
pretation (C ∪ I ∪ Iend \ I). In the rest of the chapter, we consider correction subset enumeration
with a SAT-based grow as the baseline approach. We refer to it as Multi-SAT.

4.5 Experiments

In this section, we validate the qualitative improvement of computing explanations that are op-
timal with respect to a cost function, as well as the performance improvement of the different
versions of our algorithms, in comparison with the explanation generation algorithms presented
in the previous chapter.
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Experimental Setup

Our experiments1 were run on a compute cluster where each explanation sequence was assigned
a single core on a 10-core INTEL Xeon Gold 61482 (Skylake) processor with a time limit of
60 minutes and a memory-limit of 8 GB. The code is written on top of PySAT 0.1.7.dev1 [76].
For the MIP calls, we used Gurobi 9.1.2, for SAT calls MiniSat 2.2 and for MaxSAT calls RC2
as bundled with PySAT. In the MUS-based approach, we used PySAT’s deletion-based MUS
extractor MUSX [100].

Benchmark dataset

Our benchmark dataset consists of generated Sudoku puzzles of increasing difficulty (different
amount of given numbers), the Logic Grid puzzles of Chapter 3, as well as the instances from
Espasa et al. [44].2 In Table 4.8 of Section 4.5, we summarise the average number of clauses
(avg. # clauses), the average number of literals to explain (avg. # lits-to-explain) as well as the
number of puzzles (n) in the benchmark data set for each puzzle family.

When generating an explanation sequence for these puzzles, the unsatisfiable subsets identify
which constraints and which previously derived facts should be combined to derive new informa-
tion. For Logic Grid puzzles, we assign a cost of 60 for puzzle-agnostic constraints (bijectivity
and transitivity constraints); 100 for puzzle-specific constraints (clues); and a cost of 1 for facts.
For all other puzzles, we assign a cost of 60 when using a constraint and a cost of 1 for facts.
In Table 4.8 of Section 4.5, we summarise the average number of clauses (avg. # clauses), the
average number of literals to explain (avg. # lits-to-explain) as well as the number of puzzles (n)
in the benchmark data set for each puzzle family.

Research Questions Our experiments are designed to answer the following research questions:

Q1 What is the effect of using an optimal unsatisfiable subset, on the quality of the generated
step-wise explanations?

Q2 What is the impact of information re-use on the efficiency of OCUS?

Q3 What are the time-critical components of OCUS?

1The code for all experiments is made available at https://github.com/ML-KULeuven/ocus-explain.
2We express our gratitude towards Matthew. J. McIlree and Christopher Jefferson of St. Andrews University for their

help with the extraction of CNF instances from Essence problem specifications [53] using Savile Row [110], as well as
for supplying the problem instances.
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Properties of instances
puzzle type instance n avg. # clauses avg. # lits-to-explain

logic pasta 1 4572 96
150 8 7535 150
250 1 17577 250

sudoku 9x9-easy 25 14904 497
9x9-simple 25 14904 497
9x9-intermediate 25 14904 501
9x9-expert 25 14904 505

demystify binairo 156 16759 99
garam 10 14486 756
kakurasu 1 226 16
kakuro 6 6961 240
killersudoku 13 3609685 729
miracle 1 59331 729
nonogram 1 9813 36
skyscrapers 16 17991 159
star-battle 5 7533 82
sudoku 76 34143 729
tents 4 18644 476
thermometer 1 1227 36
x-sums 1 109717 729

Table 4.8: Characteristics of benchmark instances

Q4 How does more advanced extraction of correction subsets and extraction of multiple cor-
rection subsets affect performance?

Q5 What is the efficiency of a single step O(C)US

(a) from an instantaneous (time-to-first) explanation point of view?

(b) from a step-wise (single next explanation) solving point of view?

4.5.1 Explanation Quality

To evaluate the effect of optimality on the quality of the generated explanations, we reimple-
mented a MUS-based explanation generator based on Algorithm 3.3. Before presenting the re-
sults, we want to stress that this is not a fair comparison with the implementations of Chapter 3
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and Espasa et al. [44], where a heuristic is used that relies on even more calls to MUS in order to
avoid the quality problems we will illustrate below. While in both cases this would yield better
explanations, it comes at the expense of computation time, thereby leading to several hours to
generate the explanation of a single puzzle.

To answer Q1, we ran the OCUS-based algorithm as described in Algorithm 4.1 and compared
at every step the cost (size) of the produced explanation with the cost (size) of the MUS-based
explanation of Algorithm 3.3. These costs are plotted on a heatmap in Figure 4.1a, where the
darkness represents the number of occurrences of the combination at hand. Figure 4.1b depicts
the length of the MUS and OCUS for the same explanation pairs.
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Figure 4.1: Q1 - Explanation quality comparison of optimal versus subset-minimal explanations
in the generated puzzle explanation sequences.

We see that the difference in quality is striking in many cases, with the MUS-based solution often
missing very cheap explanations (as seen by the darkest squares in the column above cost 60),
thereby confirming the need for a cost-based OUS/OCUS approach. The same observation can
be made about the lower triangle of the diagram in Figure 4.1b where the size of the MUS-based
explanation is smaller than the OCUS one. The MUS-based explanations use more constraints
and fewer facts and therefore have a higher cost, compared to the OCUS-based explanations
which use more facts and fewer constraints to derive new information and therefore have a lower
cost.
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4.5.2 Information Re-use

To answer Q2, we compare the effect of incrementality when generating a sequence of explana-
tions. Next to

1. OCUS, we also include

2. the bounded OCUS (OCUS_Bound) algorithm, where we call the OCUS algorithm for every
literal in every step, but we reuse information by giving it the current best bound f(Sbest)
and iterating over the literals that performed best in the previous call first; and

3. the split OCUS (OCUS_Split) approach, where we split up the computations by itera-
tively selecting the most promising literal and expanding only one hitting set for it, then
re-evaluating the most promising literal and so forth.

Incremental versus non-incremental explanation generation

Preliminary experiments have shown that incrementality by keeping track of the hitting sets us-
ing the MIP solver significantly outperforms bootstrapping satisfiable subsets. Therefore, in the
experiments, we only show results on incrementality using MIP solvers.

For OCUS, incrementality (+Incr) is achieved by reusing the same MIP hitting set solver through-
out the explanation calls, as explained in Section 4.4.1. Methods OCUS_Bound and OCUS_Split
use a separate hitting set solver for every literal to explain. Each hitting set solver can similarly
be made incremental (with respect to its own literal) across the explanation calls (+Incr.), or not.

Figure 4.2 depicts the number of instances fully explained through time before the given 1-hour
timeout. In each configuration depicted, we use a single SAT-based Grow in the CorrSubsets
procedure. The same colour is used for the same OCUS algorithms, with a full line for the incre-
mental version and a dashed line for the non-incremental one.

If we compare all configurations, we see that OCUS is faster than the plain MUS-based imple-
mentation for simpler instances. MUS is able to explain more instances than all OCUS versions,
as it solves a simpler problem (with worse quality results, as shown in Q1). OCUS_Bound

is faster than OCUS for easier instances but explains about the same number of instances, and
OCUS_Split is considerably faster and solves the most instances out of all OCUS algorithms.

The effect of introducing incrementality produces a speed-up in OCUS. For OCUS_Bound it is
negligible, and for OCUS_Split there is a speed-up in all but its most difficult instances. In
general, we see that the curves of the incremental variants are located somewhat lower. The best
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Figure 4.2: Time to generate a full explanation sequence with a single SAT grow call in the
CorrSubsets procedure for incremental and non-incremental OCUS algorithms. Incremental-
ity improves the number of instances solved and the time required to solve them for all O(C)US
algorithms.

runtimes are obtained with OCUS_Split+Incr., that is, using an incremental hitting set solver
for every individual literal-to-explain separately and only expanding the literal that is most likely
to provide a cost-minimal OCUS. Interestingly, the explanations for the instances solved by MUS
but not by the other algorithms (between OCUS_Split+Incr. and MUS) have a higher average
cost as well as a higher maximum cost. This means that the instances are more difficult to explain.

Instance-level speed-up with incrementality

Next, we analyse the speed-up of introducing incrementality per instance. Figure 4.3 compares
the time to generate a full sequence for the incremental variant with the non-incremental version
for each puzzle of every OCUS configuration. Results in the upper triangle signify an improvement
using incrementality, and the lower triangle indicates worse performance with incrementality.

Having a closer look at the results for OCUS, the story is similar to the results of Figure 4.2. Many
of the instances are explained quickly (around 10 to 20 seconds) by OCUS+Incr., whereas non-
incremental OCUS takes much longer to explain some instances, even leading to a timeout.

Incrementality with OCUS_Split and OCUS_Bound produce marginal improvements on the
runtime. Most of the instances lie close to the black line. Only a few instances are present in the
lower triangle, for the incremental variant of OCUS_Bound. For these instances, OCUS_Bound+Incr.
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Figure 4.3: Q2 - Runtime comparison of introducing incrementality on the time to generate a
whole explanation sequence with SAT-based Grow.

takes on average double the time to generate the first explanation step due to the overhead
associated with introducing incrementality. The story is similar for the few instances where
OCUS_Split+Incr. is slower than OCUS_Split.

4.5.3 Runtime Decomposition

To evaluate the time-critical components of OCUS (Q3), we decompose the time spent in each
part of the OCUS algorithms in Table 4.9. We only included the runtimes of instances that do not
time out for all methods to allow a fair comparison.

The table depicts for each configuration

1. the number of instances explained;

2. %OPT the percentage of time spent in the hitting set solver;

3. %SAT the percentage of time spent in the SAT solver:

4. %CorrSS the percentage of time spent in the CorrSubsets procedure; and
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5. Nsth the average total number of sets-to-hit computed.

Each version of the OCUS algorithm uses the SAT-based grow in the CorrSubsets procedure
(see Table 4.10).

Looking closer at the runtime decomposition, we observe that most of the time in all the OCUS
algorithms is spent computing the optimal hitting sets. The results in the Nsth column (top 3
rows versus incremental bottom 3 rows), highlight the decrease in the amount of sets-to-hit that
need to be computed when adding incrementality, in our case, re-using the MIP solver between
explanation steps. Indeed, similar to the results of Example 17, the OCUS algorithms do not need
to recompute the previously derived sets-to-hit, and will therefore start with a good candidate
hitting set at the beginning of an explanation step.

config explained %OPT %SAT %CorrSS Nsth

OCUS [233 / 403] 96.65% 3.01% 0.35% 6245
OCUS_Bound [229 / 403] 86.86% 12.31% 0.83% 9310
OCUS_Split [273 / 403] 88.58% 10.41% 1.01% 7480

OCUS+Incr. [242 / 403] 99.16% 0.78% 0.06% 405
OCUS_Bound+Incr. [233 / 403] 95.95% 3.94% 0.1% 1538
OCUS_Split+Incr. [272 / 403] 96.28% 3.42% 0.3% 1713

MUS [311 / 403] — — — —

Table 4.9: Runtime decomposition of core parts of O(C)US with the SAT-based grow. On the
left, most of the computational time is spent in computing more optimal (constrained) hitting sets,
while on the right, the runtime is shifted towards higher quality correction subsets. Incrementality,
by re-using the same MIP solver throughout the explanation steps, helps to drastically reduce the
average number of sets-to-hit Nsth.

4.5.4 Correction subset extraction

As Table 4.9 shows, most time is spent computing the optimal hitting sets. Hence, there is poten-
tial in reducing its effort by computing better or more correction subsets, thereby having better
collections of sets-to-hit. This induces a trade-off between the efficiency of the Grow strategy,
the quality of the produced satisfiable subset, as well as the corresponding sets-to-hit generated
by the CorrSubsets procedure. In this section, we answer Q4 by determining whether an
efficient Grow-call is able to balance the efficiency and the quality of the produced satisfiable
subset. Second, we analyse whether the enumeration of multiple, ideally p-disjoint, correction
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subsets reduces the time spent in the hitting set solver. Finally, note that the average num-
ber of sets-to-hit is significantly lower for OCUS+Incr. than for OCUS_Split+Incr. and
OCUS_Bound+Incr., due to the fact that OCUS+Incr. solves a single hitting set problem,
whereas OCUS_Split+Incr. and OCUS_Bound+Incr. have to solve for each literal to ex-
plain.

Thus, to answer Q4, we compare the incremental variants of OCUS, bounded OCUS, split OCUS,
and only change the CorrSubsets strategy they use.

Efficient Correction Subset Enumeration Extending the observation of Section 4.2.3 that a
call to an efficient MaxSAT solver helps in finding maximally satisfiable subsets, we propose
three additional variants of Algorithm 4.7:

1. The first variant, Multi-SAT, repeatedly grows with SAT and blocks the corresponding
correction subset until no more correction subsets can be extracted.

2. The second variant is Multi-MaxSAT. This correction subset enumerator repeatedly grows
using the domain-specific MaxSAT introduced in Section 4.2.3 until the updated subset S′

is no longer satisfiable.

3. The last variant Multi-SubsetMax-SAT repeatedly grows using the SubsetMax-SAT
to balance the trade-off between efficiency and quality.

CorrSubsets Description
SAT Extract a satisfiable model computed by the SAT solver.

SubsetMax-SAT
Extends the satisfiable subset computed by SAT by adding every
remaining clause c ∈ F \ S if S ∪ {c} is satisfiable.

Dom.-spec. MaxSAT
Grow using an unweighted MaxSAT solver with domain-specific
information, i.e. only previously derived facts and the original
constraints (see Section 4.4.1).

MaxSAT Full
Grow with an unweighted MaxSAT solver using the full
unsatisfiable formula F .

Multi SAT
Repeatedly grow with SAT and block the corresponding correction
subset until no more correction subsets can be extracted.

Multi Dom.-spec. MaxSAT
Repeatedly with Dom.-spec. MaxSAT and block the corresponding
correction subset until no more correction subsets can be extracted.

Multi SubsetMax-SAT
Repeatedly grow with SubsetMax-SAT and block the corresponding
correction subset until no more correction subsets can be extracted.

Table 4.10: Description of the correction subset procedures.
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Figure 4.4: Average cumulative explanation time of correction subset configurations for the in-
cremental O(C)US variants. The legends for each graph are ordered from the least instances
explained (top) to the most instances explained (bottom).

Figure 4.4 depicts for each incremental OCUS algorithm, the number of instances solved across
time for varying correction subset approaches. For OCUS+Incr., all MaxSAT-based methods
for enumerating correction subsets provide similar results and are able to explain more instances
than the rest. When examining the instances that did not timeout in any correction subset pro-
cedure, the results for OCUS+Incr. show that 60% more sets-to-hit need to be extracted for
all non MaxSAT-based methods compared to around 40 % for the MaxSAT-based grows. The
consequence is that more time is spent in solving the hitting set problem: close to 90 % for
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the non MaxSATbased algorithms compared to around 40 % for the MaxSATones. The story
for OCUS_Split+Incr. and OCUS_Bound+Incr. is different. The best method for enu-
merating correction subsets with OCUS_Split+Incr. and OCUS_Bound+Incr. is Multi-
SubsetMax-SAT. Multi-SubsetMax-SAT is able to consistently beat all other correction
subset enumeration methods and is substantially faster than the naive MUS approach.

To summarise, the best explanation sequence configuration corresponds to the iterated MIP-
incremental approach of OCUS_Split+Incr. combined with Multi-SubsetMax-SAT.

Runtime Decomposition We now look at the runtime decomposition in Table 4.11 for the
best performing CorrSubsets configuration, i.e. Multi-SubsetMax-SAT, also for the non-
incremental OCUS variants. For the non-incremental variants, we observe that the shift in com-
putation from the hitting set solver to correction subset enumeration clearly reaps its benefits.

Multi-SubsetMax-SAT

config explained %OPT %SAT %CorrSS Nsth

OCUS [291 / 403] 68.15% 2.78% 29.07% 3649
OCUS_Bound [311 / 403] 39.87% 6.53% 53.6% 29747
OCUS_Split [311 / 403] 45.24% 3.62% 51.14% 28320
OCUS+Incr. [245 / 403] 87.38% 1.03% 11.59% 402

OCUS_Bound+Incr. [309 / 403] 81.57% 5.68% 12.76% 1251
OCUS_Split+Incr. [311 / 403] 79.64% 1.77% 18.58% 1274

MUS [311 / 403] — — — —

Table 4.11: Runtime decomposition of core parts of OCUS. On the left, most of the computation
time is spent in computing more optimal (constrained) hitting sets, while on the right, the runtime
is shifted toward higher-quality correction subsets.

Compared to Table 4.9, more instances are explained, and the computation is more balanced
both for incremental and non-incremental OCUS algorithms. The non-incremental OCUS variants
require considerably more correction subsets to be extracted, and somewhat fewer in the incre-
mental case. However, the number of instances explained is substantially higher for all OCUS
configurations.

4.5.5 Efficiency of Single step O(C)US, Instantaneous and Step-wise

In this section, we analyse whether the algorithms we developed could be fit for an interactive
context. By an interactive context, we consider two types of settings. First, a user may want an
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immediate explanation step for the given CSP, and second, a user is asking for the next step, and
the next, and so forth.

Table 4.12 depicts Multi-SubsetMax-SAT the best performing CorrSubsets procedure of
Figure 4.4. For each OCUS algorithm, we compute the average time to produce the first expla-
nation step t1 (instantaneous), the average time to generate one step-wise explanation tstep, and
the explanation time quantiles 25 up to 100, where quantile 100 q100 symbols the most expensive
step to generate over all the problem instances.

Multi-SubsetMax-SAT

config t1 tstep q25 q50 q75 q95 q98 q100

OCUS 3.41 2.54 0.51 0.77 1.39 8.37 18.50 523.67
OCUS_Bound 1.70 1.35 0.58 0.92 1.88 3.67 4.45 7.34
OCUS_Split 0.92 1.31 0.54 0.90 1.84 3.58 4.24 6.11
OCUS+Incr. 4.33 3.66 0.27 0.42 0.72 8.69 21.46 3452.20

OCUS_Bound+Incr. 3.22 0.58 0.39 0.51 0.67 1.07 1.57 17.58
OCUS_Split+Incr. 2.58 0.45 0.32 0.43 0.54 0.70 1.04 18.05

Table 4.12: Non-timed-out instances: Decomposition of runtime for individual explanations
into time to generate the first explanation step (t1), the average time to produce an additional
explanation step texpl and qxx the quantiles of the explanation times.

For the non-incremental variants, in the upper part of Table 4.12, OCUS is able to compute part
of the explanations faster than the other OCUS configurations. We see, however, that both incre-
mental and non-incremental OCUS still take a lot of time for some explanations compared to the
other OCUS-based algorithms.

In the case of OCUS_Bound, the time to the first explanation reflects how important the ordering
of literals to explain is for quickly finding a good bound on the cost of the next best explanation.

The next step is to find out what causes instances to timeout before the full explanation sequence
has been generated with Multi-SubsetMax-SAT for all OCUS configurations.

Timed out Instances Most of the instances that timed out had on average more literals to ex-
plain than those that did not, more precisely all killersudoku instances, the miracle problem,
all sudoku problem instances of the demistify dataset, one of the skyscrapers instances, and the
x_sums instance. Table 4.13 provides more context about the timed-out instances:

• #timed-out is the number of instances that have timed out.

• #none is the number of instances where no explanation step was generated.
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config #none #timed-out % explained

MUS 13 92 — 0.68% 15.09% 8.86% —

OCUS 1 112 1.19% 0.96% 23.90% 5.96% 3.43%
OCUS_Bound 43 92 — — 40.25% 2.20% —
OCUS_Split 16 92 — — 49% 7.79% —

OCUS+Incr. 2 158 1.06% 0.82% 28.30% 21.96% 0.41%
OCUS_Bound+Incr. 43 94 — — 55.34% 7.29% —
OCUS_Split+Incr. 15 92 — — 43.40% 15.75% —
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Table 4.13: Timed-out instances: #none is the number of instances where no explanations step
was found before the time out, #timed-out is the number of instances that timed out, % expl is
the average percentage of literals explained.

• % explained is the average percentage of literals that were explained before the instance
timed out for each instance family.

Even though OCUS and OCUS+Incr. has the most time out, it is able to at least find an expla-
nation for most of the difficult instances where no other configuration finds any.

In Figure 4.5 we specifically report the average time taken to generate a first explaining step (t1)
for all configurations.

Note from Table 4.13 that OCUS(+Incr.) has the smallest number of instances where no expla-
nation was found. Unlike OCUS_Bound(+Incr.) and OCUS_Split(+Incr.), OCUS(+Incr.) does
not need to iterate over the many literals to explain in order to find a good bound on the cost of the
next best explanation step. Furthermore, we observe that OCUS(+Incr.) is the fastest at generating
a first explanation step, with many outliers close to the timeout.

Similar to the observations in Section 4.5.2, incrementality has a high impact on the time to ex-
plain an instance for all OCUS configurations. Adding incrementality to all OCUS configurations
results in more instances with no explanation found than without incrementality. However, incre-
mentality helps to explain more literals, except for OCUS_Bound, which first requires computing
many OUSs before the best one is found. A similar trend can be seen in Figure 4.5, where the
introduction of incrementality increases the time to generate a first explanation step. Second,
OCUS_Bound depends on a good ordering of the literals, which can change at any explanation
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Figure 4.5: Average time to a first explanation step t1.

To conclude, for an interactive context where the user asks for an immediate explanation, OCUS_Split
will be the fastest to compute an explanation step. If the user explores the sequence of explana-
tions and repeatedly asks for additional explanations, OCUS_Split+Incr. will be able to
capitalise on incrementality to bring the average time close to real time.

4.6 Related Works

In Chapter 3, we have introduced step-wise explanations to explain the solution of satisfiable
instances, exploiting a one-to-one correspondence between so-called non-redundant explanations
and MUSs of a derived program. The focus of that chapter was on explaining Zebra puzzles;
building on this work, Espasa et al. [44] investigated interpretable explanations using MUSs for a
wide range of puzzles. Our current work is motivated by a concrete algorithmic need: to generate
these explanations efficiently, we need algorithms that can find MUSs that are optimal with respect
to a given cost function, where the cost function approximates human understandability of the
corresponding explanation step.

The closest related work can be found in the literature on generating or enumerating MUSs [98,
7, 6, 95]. Various techniques are used to find MUSs, including manipulation of resolution proofs
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produced by SAT solvers [61, 59, 39], incremental solving to enable/disable clauses and branch-
and-bound search [113], BDD-manipulation methods [71]. Some methods rely on seed-shrink
algorithms [10, 11] which repeatedly start from unsatisfiable seed (an unsatisfiable core) and
shrink the seed to a MUS. Other methods work by means of translation into a so-called Quantified
MaxSAT [75], a field that combines the expressiveness of Quantified Boolean Formulas (QBF)
[83] with techniques from Maximum Satisfiability (MaxSAT) [91], or by exploiting the so-called
hitting set duality [74]. To the best of our knowledge, only few works have considered optimizing
MUSs: the only criterion considered so far is cardinality-minimality [98, 74]. Extending some
of the above mentioned to handle can be straightforward for cost functions that can be encoded
as a weighted sum, for instance, by ordering (subsets of) constraints based on the weight of each
constraint similar to Algorithm 3.2. However, modifying the above algorithms to handle more
complex, e.g. non-linear, cost functions is non trivial.

An abstract framework for describing hitting set–based algorithms, including optimization, has
been developed by Saikko et al. [122]. While our approach can be seen to fit within the frame-
work, the terminology is focused on MaxSAT rather than MUS and would complicate our ex-
position. For instance, hitting set–based algortihms for MaxSATwork by extracting unsatisfiable
cores until a MaxSATsolution is found. In contrast, our approach is based on extracting correction
subsets.

4.7 Concluding Remarks

In this chapter, we tackled the problem of efficiently generating explanations that are optimal
with respect to a cost function. For that, we introduced algorithms that replace the many calls to
an unsatisfiable core extractor with a single call for an optimal constrained unsatisfiable subset
(OCUS). Our algorithm for computing OCUSs uses the implicit hitting set duality between Min-
imum Correction Subsets (MCS) and Minimal Unsatisfiable Subsets (MUSs). We propose two
additional variants for the ‘exactly one of’ constraint used in step-wise explanation generation.
The main bottleneck of these approaches is having to repeatedly compute optimal hitting sets.
To compensate, we have developed methods for enumerating correction subsets that explore the
trade-off between efficiency and quality of the subsets generated. An open question in an inter-
active setting is whether there are other methods of enumerating correction subsets that are better
suited to reducing the time to first explanation and the average explanation time.

To efficiently generate the whole explanation sequence, we introduced incrementality, which al-
lows the reuse of computed information, i.e. satisfiable subsets remain valid from one explanation
call to another. In the case of OCUS for explanation sequence generation, where the underlying
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OPTIMIZATION

hitting set solver is MIP-based, we instantiate the MIP solver once for all explanation steps and
keep track of computed sets-to-hit. However, MIP solvers do not natively support non-linear cost
functions. The current implementation of OCUS may therefore not be able to fully capture the
complexity of what constitutes a good explanation due to the limitations of the cost functions we
can encode. In the next chapter, we investigate machine learning techniques to characterise what
understandable explanations directly from users, and their integration with our current explana-
tion methods to generate user-preferred explanations.

Finally, for interactive settings such as interactive tutoring systems, we are able to generate ex-
planations in near real time (less than a second) using OCUS_Split. Another question is how
to distribute the computation across multiple cores to parallelize the computation to further speed
up the generation of explanations.
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CHAPTER 5

Learning Preferences over
Explanations

For a given partial assignment of a CSP, there exist many possible next explanation steps,
but only one is actually shown to the user. However, it is not clear which explanation would
be most helpful to a user. This chapter investigates how to learn explanation preferences
directly from users and integrate it into the current explanation techniques.

This chapter has been submitted to the 30th International Conference on Principles and Practice
of Constraint Programming (CP2024).

5.1 Introduction

A prominent problem in explainable constraint solving is explaining why a model is unsatisfi-
able [95, 17, 80, 87]. Many methods tackle this problem by providing a deductive explanation in
the form of a minimal unsatisfiable subset (MUS), which is a subset of the model’s constraints
that renders the problem unsatisfiable, and thus yielding an inconsistency. In Chapter 3, we have
shown that MUS can also be used to explain why a value is assigned to a specific variable us-
ing a one-to-one correspondence between non-redundant explanations and Minimal Unsatisfiable
Subsets (MUSs) of a derived unsatisfiable formula.

In general, given a partial assignment of a CSP, there are many possible next explanation steps
(MUSs), but only one is actually shown to the user. [74] proposes the cardinality of the MUS,
in other words the size of an explanation step, as a potential measure of explanation quality and,
as such, compute the (cardinality-)smallest MUS (SMUS). In Chapter 3, we take a pragmatic
approach, and search for a step that only uses few constraints and few previously derived facts.
In fact, we take a handcrafted linear objective function (in terms of the number of constraints
and facts used) and heuristically try to find a step with a low cost. In Chapter 4, we develop this
approach further and propose algorithms that can find an optimal explanation step with respect
to such a given weighted linear objective function, for a hand-crafted set of weights. The results
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of the experiments in Section 4.5.1 show that the introduction of a cost function helps to find
explanation steps that are more understandable than taking size into account.

It can challenging for human users to explicitly specify weights that consistently lead to good
solutions in a specific problem domain [103]. We aim to infer such weights indirectly from user
feedback.. Furthermore, as Miller [104] noted:

“It is fair to say that most work in explainable artificial intelligence uses only the
researcher’s intuition about what constitutes a good explanation”.

Indeed, our step-wise explanation framework leaves open the question of what exactly a good
objective function is, or how to obtain it.

Ideally, a good objective function should approximate human interpretability, so that the returned
explanation step is helpful to the user in understanding what can be derived next. This, however,
might well depend on the person the explanation is given to.

In this chapter, we investigate whether we can use preference learning to learn what a helpful
explanation is directly from data:

Can we learn which explanation steps are most helpful to a user?

We hence investigate whether we can learn a preference scoring function over explanation steps,
and therefore MUSs, from labelled data.

For this, we will ask pairwise preference queries [2, 32, 66, 82]. That is, we will ask users to
indicate whether one, the other, or neither of two explanations is preferred. We can then use
machine learning methods to learn a preference score over a feature representation of explanation
steps. This preference score can then be used to evaluate other, unseen, explanation steps and
select the best scoring one among them.

An important concern to keep in mind here is whether the preference score over the feature repre-
sentation can be reformulated as a linear objective function over the elements of the explanation.
If so, it can be plugged directly into our existing algorithms to generate a most preferred explana-
tion. On the other hand, if we use more advanced learning methods, we may get better results at
prediction time, but we will need a different mechanism to compute the best-scoring explanation.

We will evaluate the learning approach on the pedagogical domain of sudoku puzzles, as the
generated MUSs (explanations) are intuitive to visualise over the Sudoku grid. This makes it a
problem domain where many users have the necessary domain knowledge to interpret the expla-
nations, and for which labelling pairs of explanations can be done quickly.
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Contributions. To address the challenge of learning from a user’s explanation preferences, we
contribute the following:

1. We identify domain-agnostic as well as domain-specific features for MUSs by counting
over different subsets of constraints how many are present in the MUS.

2. We compare feature choices and use different point-wise and pair-wise learning-to-rank
methods, showing that in the Sudoku domain, domain-specific features are essential to
accurately discriminate between MUSs, and multiple learning techniques can do this well.

3. We demonstrate that we can not only learn how to discriminate between two smallest
MUSs, but that a few iterations of iterative learning with linear predictors allows learn-
ing a scoring function that can be directly used to generate good MUSs.

Chapter structure. In Section 5.2, we formalise our methodology for learning pairwise pref-
erences and generating explanations respectively, and illustrate it using the Sudoku use case in
Section 5.3. In Section 5.4, we evaluate how well ML models are able to capture a user’s explana-
tion preferences. Finally, Section 5.5 discusses the limitations of the current approach and future
work.

5.2 Data-driven Methodology

In Section 3.4.1 of Chapter 3, we introduce explanations of inference steps, and show in Sec-
tion 3.6.3 that they are closely related to the notion of MUSs. More precisely, computing an
explanation (E ⊆ I,S ⊆ C,N ) ofN = {x = v} for given constraints C and facts I corresponds
to extracting a MUS of I ∧ C ∧ {x , v}. In Section 4.2, we introduced the OCUS algorithm for
computing explanations that are optimal with respect to a given cost function characterizing an
explanation’s difficulty. In the rest of this chapter, we refer to an explanation step (E ,S,N ) as e,
and will define a linear scoring function f(e) for use with OCUS.

Our goal is to learn a scoring function that predicts a score for each possible explanation in a
given problem domain. We will use ML methods on user labelled data, which requires defining a
feature ϕ(e), that maps the explanation e to fixed-size vector of numbers (features). This allows
to learn a function fθ(ϕ(e)) with θ being the parameters of the learning model. A linear function
corresponds to θ⊤ϕ(e), which is linear in e if ϕ(e) is.
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5.2.1 Feature Encoding

Technically, the OCUS algorithm introduced in Section 4.2.2 allows us to search for an Optimal
Unsatisfiable Subset OUS, given a weight for every constraint. However, since the relevant con-
straints may differ between problem instances in the same domain, we cannot directly learn a
weight for each individual constraint directly.

The feature mapping ϕ(e) allows us to abstract from that. Each feature should represent a mean-
ingful property of a MUS. A straightforward property is the number of constraints in a MUS,
minimizing this leads to SMUS. However, there may be many SMUSs, so additional properties
are required to discriminate between them. Additionally, to apply the OCUS algorithm, we need to
ensure that the objective is a linear function of the constraints. To do this, we define each feature
as a linear sum over a meaningful subset of the constraints. In other words, if we can group the
constraints into different groups, the count of elements within each group serves as the feature
value. We can then use machine learning to learn a weighted combination over these counts.

Example 19. Consider a simple Boolean satisfiability problem:

a, b,¬a ∨ b,¬a ∨ ¬b

One SMUS is a,¬a ∨ b,¬a ∨ ¬b and another is a, b,¬a ∨ ¬b. Both have size 3 and can not be
discriminated based on size, though one can imagine most people finding the second one easier
to interpret. If we group constraints into ‘unit clauses’ and ‘other clauses’, then the first would
have counters (1,2) and the second (2,1) and any function assigning larger weight to the ‘other
clauses‘ feature would always generate MUSs of the second kind.

Features for explaining unsatisfiability We consider the case where a constraint is not re-
stricted to a clause (as in SAT solving), but rather can be any expression over finite-domain vari-
ables (as is typical in CP). This means that we can group the constraints based on the syntactic
form of expression used. For instance, we can group constraints into facts (x = v), pairwise
inequalities (x1 , x2)), linear constraints ((

∑
i(wi · xi) ≥ t), particular types of global con-

straints (e.g. alldifferent(S)), etc. These features are independent of the problem domain
and therefore domain-agnostic.

We can also identify additional domain-specific groupings. For example in the sudoku use case
explained below, we will differentiate between alldifferent constraints over rows, over columns
and over blocks. Syntactically they are all the same, but visually, users might have preferences of
one over the other.
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Features for explaining a fact x = v When we wish to explain that E ∧ S ⇒ (x = v) we
compute a MUS of the unsatisfiable E ∧ S ∧ (x , v). In this case, we can exploit the knowledge
that we want to explain x = v.

We propose to measure the distance from any constraint to the fact x = v. More specifically,
consider the (bipartite) variable-constraint graph in which variables are connected to the con-
straints they are involved in. We can group constraints by the distance (in this graph) to the
variable x. For instance, the constraints at distance one are precisely those that mention x. For
the special case of constraints that themselves are simple facts, i.e. y = z, we can use knowledge
of the target fact x = v in two ways: we can group the facts based on the distance of x to y or we
can group them based on whether they assign the same value (v = z) or a different value (v , z).
As these features are only dependent on the variable-constraint graph, they are domain-agnostic.
Also here we can identify additional domain-specific groupings; we will clarify this with sudoku
examples in Section 5.3 below.

5.2.2 ML Model Training

Our training data consists of a set of triple in the form of (e1, e2, l), where e1 and e2 are two
alternative explanations for the same unsatisfiable problem, and l indicates which one the user
preferred. Given that users are expected to rank one explanation higher than another, the learning
task can be framed as a Learning-to-Rank (LtR) problem [96]. LtR aims to learn a ranking
function that explicitly orders any new set of items. We particularly focus pointwise classification
and pairwise classification, which learn scoring function. As is common in LtR, we will disregard
the triples for which the user has no preference.

Pointwise classification The LtR problem can be framed as a standard classification task. This
is a pointwise LtR approach because this approach treats each explanation independently. Given
a tuple (e1, e2, l) we generate two data points: (ϕ(el), +1) for the explanation that was chosen
by the user, and (ϕ(eo),−1) for the other one. We can then use any off-the-shelf classifier for
training, including linear logistic regression [70], decision trees [21], random forests [3], SVM
classifiers [124] and more. Out of these, the logistic regression (when dropping the logistic func-
tion computation at inference time) and the SVM classifier (when used with a linear kernel)
produce linear scoring functions.

Pairwise learning-to-rank In the pairwise LtR formulation, each (e1, e2, l) can be used di-
rectly as training data. Let el be the explanation chosen by the user, and eo be the other. Then
we know that the former is preferred over the latter: el ≻ eo. In pairwise learning-to-rank, the
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Figure 5.1: Two possible explanation steps from the Sudoku app for {cells[7, 3] = 8}. Facts
are highlighted in yellow, while constraints are the blue rectangles.

methods learn a function fθ(ϕ(e)) such that fθ(ϕ(el)) > fθ(ϕ(eo)) for every labeled query. Ex-
amples of pairwise LtR methods are SVMRank [78] and XGBoostRanker [28]. Only SVMRank
with a linear kernel will produce a linear scoring function.

5.3 Use-case: Step-wise Explanations for Sudoku

To evaluate the feasibility of using ML to learn a preference scoring function over unsatisfiable
subsets, we will use explanation steps in the context of the sudoku puzzle.

An explanation step in Sudoku explains why an empty cells needs to take a particular value. This
is then repeated for the remaining empty cells, until all cells in the Sudoku are explained. All cell
values must be explainable by the constraints and the initial assignment, because a Sudoku has a
unique solution.

For the labelling, we developed a mobile-friendly web application that highlights the facts, rows,
columns and squares that are used in an explanation, as shown in Fig. 5.1. Once familiar with the
concept of explanation steps, we observed that users tend to have explicit preferences between
them, and that they can label pairs relatively quickly.

We store the response as a triple (e1, e2, l) where l = 0 if no preference is given, l = 1 if the first
is chosen and l = 2 if the second was chosen.

Our generation of explanation steps is as follows:

1. We use QQWing [114] to generate intermediate Sudoku puzzles. We opt for this level to
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avoid limiting participation to only users with expert knowledge.

2. We use OCUS to enumerate a sequence of explanation steps by computing the smallest
MUS.

3. For every step, we then either generate the second smallest MUS, or use a learned cost
function to generate an OUS depending on the experiment.

Feature encoding All constraints for sudoku are either facts (x = v) or alldifferent constraints.
So the two most basic syntactic features are: number of facts and number of constraints. Using
the concept of distance to the fact explained above, we can further group the constraints into
adjacent constraints (constraints at distance 1 from the fact to explain x = v) and other con-
straints (distance > 1). The facts can also be split into adjacent facts (the variables of the adjacent
constraints) and other facts, as well as whether the fact assigns the same value as x = v or a
different one. These features are domain-agnostic, in our case we selected a subset of 5 linearly
independent features, see Table 5.1 for the detailed list.

Feature Description
number_adjacent_constraints Number of used adjacent constraints

number_other_constraints Number of non-adjacent used constraints

number_adjacent_facts_other_value Number of used and adjacent facts that have a different
value from the explained fact

number_other_facts_same_value Number of used and non-adjacent facts that have the same
value of the explained fact

number_other_facts_other_value Number of used and non-adjacent facts that have a
different value from the explained fact

Table 5.1: Features for Syntactic-only training

For the domain-specific features, we can further split the above constraint groups into separate
subgroups for row, column and block constraints. We also introduce separate counters for adjacent
row/column or block facts; it is not an issue that adjacent block facts overlap with row/column
facts. The domain-specific features are considered together with the domain-agnostic ones, re-
sulting in 12 linearly independent features summarised in Table 5.2.
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Feature Description
number_adjacent_facts_other_value Number of used and adjacent facts that have a different

value from the explained fact

number_other_facts_same_value Number of used and non-adjacent facts that have the same
value of the explained fact

number_other_facts_other_value Number of used and non-adjacent facts that have a
different value from the explained fact

number_adjacent_block_cons Number of of adjacent used block constraints

number_adjacent_row_cons Number of of adjacent used row constraints

number_adjacent_col_cons Number of of adjacent used column constraints

number_other_block_cons Number of non-adjacent used block constraints

number_other_row_cons Number of non-adjacent used row constraints

number_other_col_cons Number of non-adjacent used column constraints

number_adjacent_block_facts Number of used and adjacent facts from blocks

number_adjacent_row_facts Number of used and adjacent facts from rows

number_adjacent_col_facts Number of used and adjacent facts from columns

Table 5.2: Features for domain-specific training

5.4 Experiments and Results

We will evaluate how well machine learning methods are able to capture user preferences over
sudoku explanation steps. The research questions are:

RQ1 How important is the feature representation to learn good scoring functions?

RQ2 What learning techniques (pointwise and pairwise) perform best?

RQ3 How well can the method be used for generating new explanations, and does this improve
over multiple feedback iterations?

Setup We use a single core of a 6-core INTEL(R) 2.6 Ghz processor with 16GB of RAM for
all experiments. We implement CSP modeling and OUS-based explanation generation using
CPMPY 0.9.16 [64], and ML classifiers from SCI-KIT LEARN 1.3.0 [115], XGBOOST 1.7.6
[28] and PYSVMRANK using 5-fold cross-validation. The source code of the algorithms imple-
mented as well as all user-labeled data will be made available on publication.
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5.4.1 Learning a discriminator function

We evaluate which type of features and learning methods are suitable to learn to discriminate
between two explanations. For around 250 explanation steps, we generate the top-2 SMUSs and
let users label these pairs. Table 5.3 depicts the performance of the models, using 5-fold cross-
validation independently for data from 6 different users. We evaluate it according to:

Correct If the scoring function gave the highest score to the user’s chosen explanation.

Equal If the scoring function gave the same score to both explanations.

Wrong If the scoring function gave the user-chosen explanation the lowest score.

In Table 5.3 we make a difference between only using the number of constraints and facts as
features, using only the domain-agnostic features, and using both domain-agnostic and domain-
specific features. As benchmarks, we consider two handcrafted linear functions: the one that is
used for computing the SMUS [74] and another from Section 4.5 making a distinction between
the number of used alldifferent constraints c and the number of used facts f . In terms of ML tech-
niques we considered linear pointwise classifiers (Logistic Regression, SVM with linear kernel)
and a non-linear classifier (Gradient Boosted Trees), as well as a linear ranker (SVM rank with
linear kernel) and a non-linear one (Gradient Boosted Tree ranker).

Table 5.3 (top row) shows that only using the size of the MUS leads to a large amount of Equal
results, which is to be expected since we generate the top-2 SMUSs to choose between. Con-
versely the handcrafted function from Section 4.5 can distinguish more explanations. Curiously,
all ML methods perform slightly worse than this function, perhaps due to the amount of data.

We also see that considering only domain-agnostic features still leads to many Equals, meaning
that such features are largely insufficient to differentiate between the two SMUSs. At the same
time all classifiers perform very similarly.

Finally, when all features are used, we rarely have Equal cases. We can also see very good
performance for all predictors, linear and non-linear, with an additional benefit for the pairwise
ranking methods. This shows that ML methods can learn to discriminate between two SMUSs
with very high accuracy, given a labelled dataset. This is true for all users.

5.4.2 Iterative learning a generator function

Given that SVM Ranker (with a linear kernel) returns a linear scoring function, we investigate
whether this learned scoring function is suitable for directly generating a preferred explanation.
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Features Classifier Correct Equal Wrong

# cons, # facts

Handcr. SMUS (c + f ) [74] 7.1% 90.1% 2.8%
Handcr. OUS (20× c + f ) 25.6% 70.6% 3.8%

Logistic Regression 25.3% 70.6% 4.1%
SVM Classifier 20.4% 73.0% 6.6%

SVM Ranker 24.4% 70.7% 4.8%

Domain-agnostic

Logistic Regression 28.8% 64.8% 6.4%
SVM Classifier 29.9% 64.8% 5.2%

XGBoost Classifier 28.4% 65.2% 6.4%
SVM Ranker 29.2% 64.8% 6.0%

XGBoost Ranker 28.8% 65.7% 5.5%

Domain-specific

Logistic Regression 90.7% 1.2% 8.1%
SVM Classifier 85.7% 1.4% 12.9%

XGBoost Classifier 87.3% 1.2% 11.5%
SVM Ranker 90.8% 1.3% 7.9%

XGBoost Ranker 91.8% 1.5% 6.7%

Table 5.3: Correctness of Point wise Classifiers and Pairwise ranker methods. We train one
classifier per user and compute the average.

To test this, we generate around 50 new pairs of Sudoku explanation steps from a single puzzle.
Each pair combines one SMUS and one using the OCUS algorithm which optimises the learned
scoring function, and we ask the users which one they prefer.

The first row (Iteration 1) in Table 5.4 shows that this initially performs much worse than gener-
ating an SMUS. This is because the predictors are only trained on SMUSs and are hence biased
towards predicting between MUSs which are already small and subset minimal. Since the learned
scoring function is not trained to rank all MUSs, this essentially tests its performance on a large
out-of-sample distribution and we can see that it is too specific to the training data.

To address the shortcoming of the data, we perform additional iterations as is common in machine
learning with concept drift. In the i + 1th iteration, the newly labelled explanation pairs are
added to the training data. For each iteration we evaluate the prediction accuracy using crossfold
validation (3 left columns) and on the newly generated pairs using the learned scoring function (3
right columns).

As the number of iterations increases, the accuracy in predicting the preferred explanation on
the training data decreases. This shows that there are fewer ’shortcuts’ to take in the data, and
the classifier has a harder time balancing the multiple and possibly conflicting preferences in the
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Test data New generate & label
Iteration Correct Equal Wrong ML wins No preference SMUS wins

1 94.0% 0.0% 6.0% 0.0% 0.0% 100.0%
2 75.1% 0.0% 24.9% 7.3% 7.3% 65.4%
3 72.2% 0.0% 27.8% 29.8% 8.8% 61.4%
4 70.5% 0.0% 29.5% 44.6% 39.3% 16.1%
5 66.8% 0.0% 33.2% 62.5% 19.6% 17.9%

Table 5.4: Iterative learning approach with SVM Rank (linear kernel) over domain-specific fea-
tures. In each iteration, new data is labelled by the user and added to the training data of the next
iteration.

labelled dataset.

At the same time, we can see that with each iteration, the scoring function becomes better suited
at directly generating explanations. In fact, the percentage of cases in which the ML-generated
explanation is preferred to an SMUS increases. It is hence learning a preference scoring function
that better aligns with the user preferences and can be used as to directly generate explanations..

5.5 Conclusions

In this chapter, we consider the task of learning a scoring function for MUSs, and hence explana-
tion steps, to capture which ones are more preferred by a user. To do so, we propose a principled
feature encoding technique for MUSs. This makes it possible to learn a scoring function from
a dataset of pairwise comparisons, using learning-to-rank techniques. We demonstrate this ap-
proach on the easily interpretable task of explaining sudoku cell assignment. In this domain,
using domain-specific features was essential to discriminate between preferred smallest MUSs.
Using linear features and linear SVMrank, we further showed that an iterative training approach
can learn a scoring function that can be used to directly generate good explanations.

Many avenues for future work exist. First, we have only applied this to the pedagogical Sudoku
domain, where it was quick and easy to experiment. This approach can now be validated in more
realistic problem domains, such as explaining staff rostering or crew scheduling, where domain
experts are harder to find. Our pairwise labelling approach also requires good domain-specific vi-
sualisations, so that users can quickly see the differences and express a preference. This potential
interaction between visualisation quality and perceived preferences invites a Human-Computer
Interaction (HCI) approach to designing and evaluating explanations in domain-specific settings.
Our learning techniques can then be applied in a subsequent step.
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On the technical side, the sufficiency of a linear scoring function and the effectiveness of the it-
erative method invite to investigate online, real-time learning approaches. Online methods could
require less data, where data labelling is an important bottleneck to the use as well as the eval-
uation of the techniques in this work. Online learning would also require sufficiently fast OCUS
algorithms for interactive use, another key bottleneck.
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CHAPTER 6

Conclusions, Future Perspectives and
Advice for AI Practitioners.
In ‘Pursuit of the Holy Grail’ [50], Freuder E. initially laid out a roadmap in 1996 of the chal-
lenges and opportunities in constraint satisfaction research. Of the various research directions
proposed in that work (i.e. modelling, interaction, explanation, knowledge, agents, evaluation,
and synthesis), we have focused on explanations, namely (1) ‘can we explain a solution?’; and
(2) when a solution is not possible, ‘can we understand why?’.

In this thesis, we have introduced a novel framework for step-wise explaining the maximal con-
sequence of constraint satisfaction problems with a focus on simple, human-interpretable expla-
nations. We address the computational and qualitative challenges to ensure that, at each step, we
efficiently generate an explanation that is most helpful to a user.

We propose to first review our contributions and summarise the results in Section 6.1. Next, in
Section 6.2, we look at the open challenges and exciting future research directions in explainable
constraint solving. Finally, in Section 6.3, we formulate recommendations for AI practitioners in
implementing the proposed explanation techniques.

6.1 Summary of the Results

This thesis addressed the problem of step-wise explaining the maximal consequence of constraint
satisfaction problems, with a focus on human interpretability. Specifically, we developed an
explanation-producing system that is complete and interpretable. By complete we mean that it
finds a sequence of simple reasoning steps that derives all consequences from the given problem
specification and a partial solution.

In the following, we identify how each chapter contributes to the development of such an explanation-
producing for explaining the satisfiability of CSPs.

6.1.1 Chapter 3: A Framework for Step-wise Explaining CSPs

In Chapter 3, we formally define the problem of step-wise explaining the maximal consequence
of a constraint satisfaction problem. We decompose the solution as a sequence of simple infer-
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ence steps, where simplicity is approximated by a cost function. At each step in the sequence,
we heuristically guide the search towards low-cost explanations by relying on a one-to-one cor-
respondence between so-called non-redundant explanations and Minimal Unsatisfiable Subsets
(MUSs) of a derived unsatisfiable formula. For explanations that are still too difficult to under-
stand, we introduced nested explanations as a way to refine an explanation step into a sequence
of simpler explanation steps using reasoning by contradiction. We empirically show that we are
able to generate a sequence of simple inference steps, and that nested explanations help to break
down complex inference steps into a sequence of simpler, more understandable explanations.

6.1.2 Chapter 4: Efficiently Explaining CSPs with Unsatisfiable Sub-
set optimisation

In Chapter 4, we tackle the two main weaknesses of Chapter 3 related to MUS-based explanation
generation: (1) the lack of optimality guarantees with respect to a given cost function, and (2) the
efficiency problems due to relying on heuristics to guide the search toward low-cost explanations.

To address the lack of optimality guarantees, we have introduced the concept of an optimal con-
strained unsatisfiable subset (OCUS), which is optimal with respect to a given cost function, and
satisfies certain structural constraints. Given a cost function that approximates the human inter-
pretability of explanations, integrating OCUS into explanation generation ensures that we find
optimal (easy) explanations and that we explain one fact at each explanation step. Our experi-
ments show that a MUS-based solution often misses very ‘cheap’ explanations (with respect to a
given cost function), confirming the need for a cost-based OCUSs approach.

To compute an OCUS, we proposed an algorithm based on the implicit hitting-set duality between
minimum correction subsets (MCS) and minimum unsatisfiable subsets (MUS). Similar to the
hitting-set–based techniques used in MaxSAT solving [34, 121], we combine the strengths of
Mixed Integer Programming (MIP), for computing optimal hitting sets with respect to a given
cost function, and Boolean Satisfiability (SAT), for checking satisfiability of a candidate subset.

The main bottleneck of OCUS (and other hitting-set–based algorithms) is having to repeatedly
compute (optimal) hitting sets [34]. To compensate, we have developed methods for enumerating
correction subsets that explore the trade-off between efficiency and quality of the subsets gener-
ated. We further optimise the efficiency of explanation generation by introducing explanation-
specific versions of the OCUS algorithm and incrementality to reuse information between consec-
utive O(C)US calls. Our empirical analysis shows that incrementality between explanation calls
greatly reduces the total number of sets-to-hit that need to be computed, as well as the time to
generate an entire sequence. We are able to reduce this number even further by computing dis-
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joint correction subsets, that remain valid throughout the sequence generation process. Overall,
our experimental evaluation on a diverse benchmark of CSP instances shows that we are able to
quickly generate a first explanation and significantly reduce the time to generate a full sequence,
even for large problems.

6.1.3 Chapter 5: Learning Preferences over Formal Explanations

In Chapter 5, we address the question left open by Chapter 3 and Chapter 4, namely how to
characterise which explanation is actually most helpful for a user. We proposed to generate a
dataset of preferences over pairwise cardinaility-minimal explanations for training an ML model
to learn a cost function that reflects user preferences. Next, we investigated training probabilistic
classifiers and learning-to-rank methods over a feature representation of explanations, and their
integration into the explanation generation methods of Chapter 3 and Chapter 4.

An important concern to keep in mind is whether the learned function can be reformulated as
a linear objective function over the elements of the explanation. If so, the learned function can
be plugged directly into our O(C)US-based explanation algorithms to generate a most preferred
explanation.

Our experimental evaluation shows that a simplistic cost function, based on the number and type
of constraints and facts, is not able to fully capture user preferences. In contrast, introducing
more complex features improves the effectiveness of explanations by capturing the interaction
between different components (constraints and facts) of the explanation. Furthermore, our results
show that it is important to include domain-specific features in addition to domain-agnostic fea-
tures. While the integration into OCUS-based explanation generation methods limits us to linear
objective functions, we show that these are sufficiently expressive to capture users’ explanation
preferences.

Finally, the results of the user study show that the cost function extracted from a trained learning-
to-rank model with a linear kernel (SVM Ranker) can be used to generate preferred explanations.
However, it is important that the training data set includes explanations that are outside the origi-
nal sample distribution, i.e. not just cardinaility-minimal explanations, but also explanations with
(too) many constraints or facts.
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6.2 Future Work

In this section, we identify key research directions for the explanation methods developed in this
thesis.

6.2.1 Implicit hitting set algorithms for Efficient Subset optimisation

The implicit hitting set duality between minimum correction subsets and minimum unsatisfi-
able subsets (see Proposition 1) is used not only for extracting minimal unsatisfiable subsets
[117, 8, 94, 74], and OCUS, but also in MaxSAT [33, 35, 121, 122, 45, 12, 111]. Recently,
Saikko et al. [122] proposed an abstract framework for describing hitting-set–based algorithms in
KR, including optimisation, focussing on MaxSAT terminology. In this context, implicit hitting
algorithms in MaxSAT (resp. OCUS) rely on a combination SAT solver to extract unsatisfiable
cores (resp. correction subsets from MaxSAT solutions) and an integer programming (IP) solver
to optimise hitting sets over unsatisfiable cores.

Unsatisfiable Subset optimisation with Non-linear Objectives

In OCUS and the implicit hitting-set framework for MaxSAT of [122], the goal is to optimise an
objective function f and for efficiency reasons, a MI(L)P solver is used for compute optimal hit-
ting sets with respect to f . However, both framework allow for more sophisticated cost functions,
such as non-linear objectives, as long as f(S) < f(S′) whenever S ⊂ S′. In Chapter 5, we intro-
duced features to characterise an explanation step. A feature is computed over the elements of an
explanation step, in other words, subsets of a corresponding unsatisfiable formula. A limitation
is that some proposed features are non-linear, meaning that they cannot be encoded as a linear
combination of decision variables. Future work there should investigate methods for encoding
non-linear objectives for computation hitting sets [27, 121].

Efficient (Incremental) Constraint Solving

Many hitting sets are computed using the OCUS algorithm. To improve its efficiency, we ini-
tialize the MIP solver once, and reuse throughout the OCUS iterations. A similar observation
was noted for MaxSAT by Davies and Bacchus [34]). However, Table 4.1 points out that an
exponential number of satisfiable subsets (resp. unsatisfiable cores for MaxSAT) need to be com-
puted, and many of the hitting sets are similar. To deal with this, Berg et al. [12] introduce
an abstract/compact representation of unsatisfiable cores. Other techniques, such as symmetry
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breaking in combinatorial optimisation [37, 41, 20], could benefit the OCUS algorithm to improve
its efficiency. Other ideas from implicit hitting-set–based MaxSAT solving to speed up OCUS

include local search strategies to add additional constraints on the sets-to-hit to postpone calling
the hitting-set solver [35].

6.2.2 A Most Helpful Explanation Step for the User

In Chapter 5, we investigated different ML methods for learning which explanation is most helpful
to a user, and their integration for directly generating a preferred explanation.

Learning an objective function

The methods for directly optimising an explanation impose limitations on the objective functions
that can be expressed, as well as machine learning techniques that can be used to learn such a
function. Table 5.4 of our experimental evaluation show that many of the generated explanations
were not MUSs. In fact, they contained redundant information, such as too many facts or too
many constraints. The learned objective function was not strictly monotonically increasing, and
therefore loses the non-redundancy property of explanations. Two sources could cause this. First,
the data provided to the machine learning models only compares non-redundant explanations be-
tween each other. Furthermore, we already focus on top 2 smallest ones. In future work, the
training of the ML model should include pairwise explanations comparing non-redundant expla-
nation and explanation with redundant facts and/or constraints. This would ensure that the scoring
function learned by the ML model, for example, scores non-redundant explanations higher than
redundant ones. Second, the machine learning methods used do not constrain the learned function,
and therefore do not provide any monotonicity guarantee. De and Chakrabarti [36] propose neural
models for learning monotone functions that could be used to guarantee the non-redundancy of
generated explanations.

Active Learning

In our user study of Chapter 5, users were asked to input their preferences on a large dataset of
pairwise explanations. Obtaining a similar dataset for other problems can therefore prove to be
a difficult, time-consuming and potentially expensive process [128]. Active learning literature
[128] proposes strategies to identify which instance should be labelled, that is most likely to
benefit the machine learning model. For explanation generation, this corresponds to identifying
which pair should be shown to a user.
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6.2.3 Improving Explanation Sequences

The algorithm for constructing the sequence greedily looks for simple explanations at every step.
A similar greedy process is used to construct a nested explanation sequence starting from the
negation of a consequence until a contradiction is reached. In contrast to step-wise explaining
satisfiability, there is no guidance on which fact should be explained in to reach the contradiction,
and nested explanations can contain many redundant steps. Bleukx et al. [17] propose an algo-
rithm for greedily constructing the sequence and filtering algorithms to remove redundant (and
unnecessarily complex) steps. A challenge in our work and in that of [17] is how to optimise
the sequence of explanations according to a metric. For example, by reordering the steps so that
deriving a fact earlier in the sequence might reduce the overall complexity of the sequence.

6.3 Advice for AI Practitioners

As AI systems employ more advanced reasoning mechanisms and computational power, it has
become increasingly difficult to understand why certain decisions are made. Explainable AI
(XAI) research aims to address the need for trustworthy AI systems to understand why the system
made a decision. For constraint satisfaction, this need for explainability manifests itself with the
development of tools to explain why a problem cannot be solved, and how to repair its feasibility.

The type of explanation expected. An array of explanation techniques have been developed
in constraint satisfaction (see [40] for a short survey on explanation in constraint satisfaction).
However, there is still confusion about the types of explanations, i.e. subsets of the problem
constraints, that exist, and which question they answer.

For unsatisfiable problems, a minimal unsatisfiable subset (MUS) is extracted as an explanation
to understand why a subset of the constraints cannot be satisfied. However, there exist many
MUSs of different sizes for a given problem. Which one should be shown? Our recommendation
would be to extract either a cardinality-minimal (minimal size) one [74], a preferred one [80]
if preference can be expressed as a relationship between constraints or to rely on an objective
function to assign a preference score to subsets of constraints, see Section 4.2.

In contrast to a MUS, a minimal correction subset (MCS) explains which constraints need to be
relaxed or removed in order to restore feasibility of the problem.

In this thesis, we tackle a third question: how to explain a solution. More precisely, we break
down explaining the maximal consequence of a problem as a sequence of simple inference steps.
For problems that can be solved without search, e.g. problems such as logic grid puzzles with
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a unique solution, this means explaining the entire problem-solving process. For problems in-
volving search, this means explaining the inference steps in one search node. Each (preferred)
explanation of an inference step explains why a variable is assigned a value x = v (or not x , v),
by extracting a (preferred) MUS of a derived unsatisfiable formula (see Section 3.6 for the details
of how this is done).

Applications The explanation-generating techniques we developed can be applied in a multi-
tude of use cases. For instance, it can explain the entire sequence of reasoning, such that a user
can better understand it. In case of an unexpected outcome, our methods can debug the reasoning
system or the set of constraints that specify the problem. As our approach starts from an arbitrary
set of facts, it can also be used as a virtual assistant when a user is stuck in solving a problem.
The system will explain the simplest possible next step. In an interactive setting, the system can
explain how it would complete a partial solution of a user. Such explanations can be useful in the
context of interactive configuration [46] where a domain expert solves a problem (e.g., a com-
plicated scheduling or rostering problem) but is assisted by an intelligent system. The system in
that case typically does not have all the knowledge required to solve the problem, since certain
things are hard to formalise, especially when personal matters are involved. In such case, the
system cannot find the optimal solution automatically, but it can help the expert, for instance by
propagating information that follows from its knowledge base. In case something undesired is
propagated, the user might need an explanation about why this follows; this is where our methods
can be plugged in. Finally, our measures of simplicity of reasoning steps can be used to estimate
the difficulty of solving a problem for a human, e.g. for gradual training of experts.

Our explanation-generation techniques are independent of the consistency level of the propagation
and do not require augmenting the solver and propagators with explanation capabilities. As a
consequence, they can be directly implemented on top of existing software to provide support in
decision-making. In practice, our methods require careful considerations of related to the kind
of explanations expected, their efficient generation and the target audience who will receive the
explanation.

In the following, we provide an overview of recommendations to help in implementation of our
explanation techniques.

Practical implementation There are several challenges when extending an existing decision
support system with the explanation techniques we developed. Solvers may not inherently sup-
port or simply provide access to the features needed for generating explanations, such as methods
for extracting minimal unsatisfiable subsets. Integrating with other solvers might require inter-
facing with other programming languages (text-based, object-oriented or more), or even with
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other modelling formalism (CP, SAT, SMT) to fit the input specification. Finally, many of the
solvers used in industrial applications are still commercial solvers for larger models due to their
performance advantage, although there are many (free) open source solvers available today. Re-
cent initiatives aim to reduce this engineering effort required to interface with different solvers.
For example, CPMpy [64] is a solver-independent modelling library for constraint programming
that interfaces with MIP, SAT, CP, and SMT solvers, and allows for incremental solving1. An-
other advantage in using CPMpy is that our explanation techniques are implemented, and many
examples of use-cases for it are available2.

In contrast, the development of a decision support system for a new use case provides an oppor-
tunity to model the problem around the explanation.

Modelling However, the formalism and abstraction level used in modelling the constraints and
the facts will directly impact the kind of explanations generated. Different encodings of con-
straints exist for a given problem, as explained in Section 1.1.1. A good encoding should reflect
the expected level of detail in an explanation, and should be adapted to the level of expertise of the
end-user. For instance, in Example 10 of Section 2.1, we model the Sudoku puzzle as a CSP using
the alldifferent global constraints. A lower level encoding, for example using binary equality and
inequality constraints, captures more detailed interactions between the constraints, facts and facts-
to-explain. Since a higher-level encoding likely propagates more facts and domain-reductions, it
may also lead to shorter sequences. In the following example, we illustrate this effect.

Example 20. Consider variables x1, x2, x3 with domains x1 ∈ {1, 2, 3}, x2 ∈ {2}, x3 ∈ {2, 3}.

(x1 , x2) ∧ (x2 , x3) ∧ (x1 , x3) vs alldifferent(x1, x2, x3)

Explaining why x3 = 3 can be done with:

• x2 = 2 ∧ alldifferent(x1, x2, x3) ⇒ x3 = 3 ∧ x1 = 1. Notice how the assignment
(x2 = 2) and the alldifferent constraint also propagate x1 = 1.

• In contrast, a lower level encoding for the same alldifferent constraint, provides more de-
tail. First, x2 = 2 ∧ (x2 , x3)⇒ (x3 = 3). No more information can be propagated from
using this constraint only.

1The documentation for CPMpy is available at https://cpmpy.readthedocs.io/en/latest/index.h
tml.

2https://github.com/CPMpy/cpmpy
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Which fact to explain? In most of the examples in this thesis, we focus on explaining variable
assignments, i.e. why variable x is assigned value v. Our explanation techniques also handle
explaining why a variable x is not assigned value v, to explain why values are not allowed in the
variable domain. For Example 20, this corresponds to explaining x3 , 2. In practice, we do not
fully support their visualisation, and leave this open for future work.

In Section 3.5, we introduce nested explanations (Section 3.5) to zoom in on a difficult expla-
nation step, and compute them using reasoning by contradiction. We assume the negation of a
consequence, and generates a sequence of explanation steps until an inconsistency is reached. We
observed that the system sometimes finds minimal explanations of X − 1 facts x , v instead of
a corresponding x = v fact when generating these explanations (Section 3.9.4). However, for
human reasoners, x = v is often easier to grasp. A preference for these kinds of explanations
should be reflected in the cost function, see Section 3.7.

Conveying explanations For the examples of this thesis, we convey our explanations using the
visual support that was available (Sudoku or Logic Grid) and the natural language description of
the problem (e.g. natural language text, clues, alldifferent, ...). While this can require considerable
(engineering) effort, we believe visualisations are important for users to understand the decision,
such as a schedule as shown in Example 5 of the (Chapter 1).

An alternative option is to provide natural language descriptions of explanations, e.g. using a
template that is completed using textual descriptions of the constraints. For example, Sqalli and
Freuder [129] equip inference rules with explanation templates such that each propagation event
of an inference rule also has a templated explanation. With the rise of large language models
LLMs, there is an opportunity to go beyond templated explanation generation, and instead provide
an environment in which users can interact with the explanations. For example, LLMs can be used
to paraphrase, simplify a textual explanation, or even tailor the explanations based on the level of
expertise of the user. These lower the technical knowledge barrier and make explanations more
accessible to non-experts.

For problems that cannot be easily interpreted using text or visually, one can make use of a (con-
straint) graph to visualise interactions between constraints and facts. For example, Senthooran
et al. [126] make use of both a graph representation and a textual description.1 Other options for
visualisation exist; this goes hand in hand with the abstraction level at which explanations are
given, and are an essential part of human understandable explanations. In this thesis, we used
visualisation that felt natural to us, but a deeper study on the effect of visualisations on explain-
ability and understandability.

1An example is provided for the nurse scheduling problem in https://github.com/CPMpy/XCP-explain
/.
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Preferred Explanations Defining a metric (e.g. a cost function) to measure the human inter-
pretability of an explanation is challenging. In Chapter 3 and Chapter 4, we handcrafted cost
functions to estimate the difficulty of understanding an explanation based on our experience as
constraint programming researchers. Another cost function could be defined as a weighted sum,
where each constraint is associated to a weight, such as counting the number of variables that are
in a constraint, or estimating the difficulty of using a type of constraint. Keep in mind that the
type of cost function imposes limitations on the type of explanation techniques that can be used.
Either an optimal explanation can be generated, or candidate explanations should be generated
and the best one should be chosen. In practice, while such simplistic functions do give satisfying
results on puzzles, they do not scale well, especially for large problems involving thousands of
constraints. Chapter 5 demonstrates the importance of learning it directly from (end) users, based
on a feature representation of explanations, see Section 5.3 for examples for the Sudoku puzzle.
The results of our experiments show that only using problem-agnostic features is not sufficient
( 29% accuracy), and problem-specific features are needed to improve the accuracy up to 90%.
However, defining such problem-specific features is non-trivial. In that case, a textual or visual
representation of explanations provides an opportunity to identify patterns in the explanations pre-
ferred by users, which can be encoded as features. For example, in Sudoku, we use the specific
grid structure to separate constraints into row, column, and block constraints.

Target audience Our user study demonstrates that preferences are not universal, and that ML
models perform better when trained on individual preferences rather than combined preferences,
see Section 5.4. If explanations are shown to users with different levels of expertise in the appli-
cation domain, then this should be captured in the training process. For example, a user could
be asked about their level of expertise; this information can then be used to associate learned
explanation patterns to expertise.

Efficiency recommendations In our work, we have broken down explaining the maximal con-
sequence of a problem as a sequence of simple inference steps. To do so, we greedily build the
sequence by selecting the simplest explanation out of all candidate explanations generated for
each fact to explain.

Computing an explanation for a new fact can be expensive:

1. A minimal unsatisfiable subset (MUS) of a derived unsatisfiable formula is extracted to
identify which constraints and derived facts can be used to derive that new fact. However,
there exist many MUSs for an unsatisfiable formula, and the ‘best’ one (the least scoring
one) is selected according to a cost function. If a cost function can be implemented in MIP,
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then we can directly generate an optimal one. If not, either a collection of MUSs need to
be enumerated and the best one is selected, or a MUS-based heuristic can be used to speed
up the candidate explanation generation, similar to the one introduced in Section 3.6.3.

2. The constraints and facts are propagated to determine if other (new) facts be explained as
well.

To generate optimal explanation steps (Algorithm 4.1), we proposed an algorithm to compute
an OCUS (Algorithm 4.3) as well as explanation-specific versions of it: OCUS_Bound (Al-
gorithm 4.5) and OCUS_Split (Algorithm 4.6), an improved version of OCUS_Bound. Our
experiments show that OCUS is better in case only 1 explanation is expected, and OCUS_Split
is faster at generating the whole sequence. The main bottlenecks in these implicit hitting-set-
based algorithms are, in order, repeatedly computing a hitting set over an incremental collection
of sets-to hit, computing correction subsets, and checking satisfiability of a hitting set. Solver
incrementality is key to speeding up OCUS generation (see Section 4.2.2) for parts that require
repeatedly solving a similar (incremental) problem. For the optimal hitting set problem, we in-
stantiate an (incremental) hitting set solver once, and re-use it throughout the OCUS iterations. A
similar observation holds for checking satisfiability of subsets of constraints for a given (fixed)
formula. We reify the constraints by introducing an assumption variable for each constraint, and
instantiate the SAT solver once. Satisfiability of a subset of constraints becomes as easy as check-
ing if the corresponding set of assumption variables is satisfiable or not. Finally, finding small
correction subsets is crucial for speeding up finding an OCUS, and a good balance should the
found to trade-off efficiency of generating a correction subset and its quality (Section 4.2.3). Out
of the multiple correction subset enumeration methods introduced in (Section 4.4.1), we recom-
mend using a sat-based heuristic called Multi SubsetMax-SAT.

Nested explanations In Section 3.5, we introduced nested explanations to zoom in on a dif-
ficult explanation step, and compute them using reasoning-by-contradiction. We observed that
the generated sequences contained many redundant steps that were not required to explain the
contradiction. To cope with this, we filter out the redundant explanations. Another approach,
introduced in [17], introduces a heuristic to generate a better sequence, and filtering algorithms to
remove all redundant steps and derive only the facts used to explain the contradiction.

With these recommendations, we hope to motivate AI practitioners in using the explanation tech-
niques for real-world problems.
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