
Promoters: Prof. Dr Jan Van den Bussche | UHasselt
 Prof. Dr Bart Bogaerts | VUB

DOCTORAL DISSERTATION

Shapes Constraint Language:
Formalization, Expressiveness,
and Provenance

www.uhasselt.be
Hasselt University
Martelarenlaan 42 |BE-3500 Hasselt

Doctoral dissertation submitted to obtain the degrees of:
- Doctor of Sciences: Information technology | tUL
- Doctor of Sciences | VUB

Maxime Jakubowski

Stichting transnationale
Universiteit Limburg (tUL)
is a cooperation between
Hasselt University (Belgium)
and Maastricht University
(the Netherlands) and can be
considered as one university
with a home base in each
country.

2024 | Faculty of Sciences

DOCTORAL DISSERTATION

Shapes Constraint Language:
Formalization, Expressiveness,
and Provenance

Doctoral dissertation submitted to obtain the degrees of
- Doctor of Sciences: Information technology | tUL
- Doctor of Sciences | VUB

Promoters: Prof. Dr Jan Van den Bussche | UHasselt
 Prof. Dr Bart Bogaerts | VUB

2024 | Faculty of Sciences

D/2024/2451/48

Maxime Jakubowski

Foreword

With this thesis, another chapter of my life comes to an end. Writing this foreword almost
feels like writing a goodbye letter, and maybe that makes sense. During my PhD, and
especially towards the end, I have felt immense gratitude. Never would I have thought that
it would change me so fundamentally; or that I could do the research described in this thesis.
None of this would have been possible if it wasn’t for my two sharp, competent and caring
advisors: Jan and Bart.

First and foremost, I would like to thank Jan. He guided me “day-to-day” and acted as
my mentor. He trained me to be a researcher, taught me to be precise, and think critically.
These skills are something I can carry with me throughout my life. Next to this, he showed
me how to navigate conferences, work (scientifically) with others, and how to properly use
LATEX, among other things. Our good working relation contributed greatly to my motivation
and output, and I am grateful to have worked with him.

From the beginning of my PhD, I also had the pleasure of working with Bart. Soon after
starting, he became my second advisor. Our collaboration was very fruitful: the first two
papers from this thesis [18,20] exist because he pushed for them. Bart is quite creative, and
has a talent for finding counterexamples to our claims which evidently greatly contributed
to our work.

Both Jan and Bart had incredible patience with me, and both entertained and shot down
many of my half thought-out ideas — always in a polite way. All of this is to say that I feel
incredibly lucky to have had such a strong backing in doing this research.

Furthermore, I would like to thank the additional members of the jury: Dr Shqiponja
Ahmetaj, Prof. Dr Anastasia Dimou, Prof. Dr Bas Ketsman, Dr S lawek Staworko, and
Prof. Dr Stijn Vansummeren for taking the time to go go through this thesis and provide
helpful suggestions which improved the overall quality. Also, an additional special thanks to
Anastasia for laying the foundations of the ideas for Chapter 5.

Next, the positive environment at our group at UHasselt should not be taken for granted.
The group grew dramatically since my time here, and I thank my colleagues with whom I
spent many hours traveling, lunching, talking, and walking around the campus, and again
had the patience to listen to me ramble about some topic I was occupied with at that
moment.

Finally, I want to thank my extended family and friends, but especially my parents who,
despite the difficult road, managed to raise my brother and me to have a good life. I’m
thankful to my mother for helping me get through school, motivating me, and teaching me
what it means to persevere. I know she would be proud. I’m thankful to my father, who
supported me, gave me all the opportunities to go for higher education, and taught me
how to care. Last but not least, I am grateful to Ellen, my partner, for reminding me I’m
human and making our little apartment feel like home. And, not to forget, our dog Tofu
who reminds me every day that I should also sometimes go touch some grass.

i

Nederlandstalige samenvatting

Het Resource Description Framework (RDF) is een standaard voor voor het representeren
van kennis op het Web, gedefinieerd door het World Wide Web Consortium (W3C). Infor-
matie wordt gerepresenteerd in een graaf-achtig datamodel gestructureerd als een verzamel-
ing subject-predikaat-object triples. Een verzameling van dergelijke triples wordt een RDF
graaf genoemd. waarbij de triples gezien kunnen worden als bogen van subject naar object,
met het predikaat als booglabel. Deze booglabels worden gebruikt om eigenschappen van
knopen aan te geven.

Voor gebruikers van RDF grafen is het belangrijk om te weten welke eigenschappen te
verwachten, of, meer algemeen, om te kunnen vertrouwen op bepaalde structurele beperkin-
gen waaraan de graaf gegarandeerd voldoet. Daarvoor hebben we een declaratieve taal nodig
om zulke beperkingen formeel te specificeren. In databasetermen: we hebben een schemataal
nodig.

Shapes constraint language Het W3C beveelt Shapes Constraint Language (SHACL)
aan als de schemataal voor RDF-grafen [86]. Het is de meest recente toevoeging aan de reeks
technologieën die het beheer van RDF data vergemakkelijken. Anderen zijn SPARQL voor
queries en OWL voor redeneren over RDF data.

Het belangrijkste doel van SHACL is het schrijven van een schema, in SHACL termi-
nologie een shapes graaf, dat de verwachte structuur van een RDF graaf beschrijft. De RDF
graaf waarvan een bepaalde structuur verwacht wordt een data graaf genoemd. Gegeven
een shapes graaf en een data graaf, is de belangrijkste taak binnen SHACL om te con-
troleren of de gegeven data graaf voldoet aan de vereisten gespecificeerd door de shapes
graaf. Deze taak wordt conformiteitscontrole genoemd en wordt gedaan door software die
een SHACL-validator wordt genoemd. Verder wordt vaak van validators verwacht dat ze niet
alleen controleren op conformiteit, maar ook maar dat ze ook een validatierapport genereren
waarin staat welke knopen welke delen van de shapes graaf schenden.

Een SHACL shapes graaf bestaat uit een verzameling shapes die structurele beperkingen
op knopen zijn. Als we een shape evalueren op een knoop (we checken dan of de knoop
voldoet aan de beschrijving van de shape), wordt die knoop een een focusknoop genoemd.
Er zijn twee soorten shapes: node shapes en property shapes. Een node shape definieert
direct beperkingen op de focusknoop, terwijl property shapes beperkingen definiëren op de
waardeknopen van de focusknoop. De waardeknopen zijn de knopen die bereikbaar zijn via
een eigenschap of paduitdrukking die gegeven wordt als een parameter voor de property
shape (met behulp van het sh:path sleutelwoord in SHACL).

Als eenvoudig voorbeeld zullen we enkele shapes beschouwen in een access control setting.
Basis gebruikers kunnen resources openen en aanmaken, terwijl gemachtigde gebruikers ook
nieuwe gebruikers kunnen toevoegen aan het systeem en hen goedkeuren om ook gemachtigde
gebruikers worden. Beschouw de volgende data graaf:

iii

iv

:admin_user a :Admin ;

:adds :user_a ;

:adds :user_b ;

:approves :user_b .

:user_b :adds :user_c ;

:approves :user_c .

:user_a :accesses :resource1 .

:user_b :accesses :resource1 .

:user_c :accesses :resource1 ;

:creates :resource2 .

Het idee achter de eerste paar lijnen van de bovenstaande beschrijving is dat de :admin user

gebruiker de andere gebruikers :user a en :user b toevoegt aan het systeem. De :admin user

gebruiker machtigt verder ook gebruiker :user b, wat betekent dat :user b nu ook gemachtigd
is binnen dit systeem.

Beschouw de volgende node shape die bestaat uit een knooptest en twee property shapes:

:basicUserShape a sh:NodeShape ;

sh:nodeKind sh:IRI ;

sh:property [

sh:path :accesses ;

sh:minCount 1

] ;

sh:property [

sh:path :creates ;

sh:maxCount 0

] .

De shape :basicUserShape specifieert drie vereisten voor een gegeven focusknoop. Ten
eerste moet het focusknoop een IRI zijn. Het sleutelwoord sh:property geeft aan dat de
focusknoop ook moet moet voldoen aan een property shape. De eerste property shape gaat
over de waardeknopen die bereikbaar zijn met de :accesses eigenschap. Specifiek moet er
ten minste één zo’n waardeknoop zijn. De tweede property shape gaat over de waardeknopen
die bereikbaar zijn met de eigenschap :creates. In dit geval kunnen er maximaal 0 zijn.
In natuurlijke taal zegt deze shape: “De focusknoop is een IRI en :accesses minstens
één resource, maar maakt er geen nieuwe aan.” Dus in onze voorbeeldgraaf voldoen enkel
:user a en :user b aan :basicUserShape.

Een shape op zich is geen beperking op een graaf, maar op een knoop. Om een beperking
over een hele graaf te realiseren, voegen we een target declaration toe aan de shape definitie.
Een target declaration is simpelweg een (eenvoudige) query die voor een gegeven shape
bepaalt wat precies de focusknopen zijn. Bijvoorbeeld, we zouden een target declaration
kunnen toevoegen aan het bovenstaande dat zegt dat elke knoop die voorkomt als een subject
in een triple met als predikaat :approves moet voldoen aan :basicUserShape. In dat geval
voldoet onze data graaf aan de beschreven beperking.

De semantiek van SHACL is nodeloos ingewikkeld als we deze bestuderen vanuit de
oorspronkelijke syntax. Daarom is het tweede hoofdstuk van de thesis gewijd aan het for-
maliseren van SHACL op een manier die het geschikt maakt voor verschillende onderzoeken.

Expressiveness Gezien de definitie van SHACL als een beperkingstaal, zijn gebruikers
vaak gëınteresseerd in wat je er eigenlijk mee kunt doen; welke shapes kun je eigenlijk
schrijven? Wanneer een taal wordt gedefinieerd, worden veel criteria opgesteld over wat

v

de taal zou moeten kunnen beschrijven. Vaak worden deze criteria dan direct in de taal
opgenomen. Een eenvoudig voorbeeld zijn de klassenbeperkingen in SHACL. Hiermee kun-
nen shapes geschreven worden die aangeven dat de focusknoop van een bepaalde RDF klasse
(of subklasse daarvan) moet zijn. Het is gemakkelijk om te zien dat deze functie technisch
gezien overbodig is: als we deze restrictiecomponent uit SHACL zouden verwijderen, zou
de uitdrukkingskracht hetzelfde blijven, omdat we het al kunnen uitdrukken met andere
restrictiecomponenten. Bijvoorbeeld, gegeven een IRI <c> elke shape van de vorm:

[a sh:NodeShape ;

sh:class <c>

]

kan geschreven worden als de shape:

[a sh:PropertyShape ;

sh:path (rdf:type [sh:zeroOrMorePath rdfs:subClassOf]) ;

sh:hasValue <c>

]

Het is duidelijk dat beperkingen over klassen nuttig zijn, dus is het opgenomen in de taal. Ons
voorbeeld laat echter zien dat de complexe pad expressies fundamenteler zijn voor SHACL.
We hebben deze, dus we kunnen al klassebeperkingen beschrijven.

Deze bespreking van de klassenbeperkingen is vrij duidelijk; het is gemakkelijk in te
zien dat het uit te drukken is door andere componenten van SHACL te gebruiken. Nu
rijst de natuurlijke vraag op: gebeurt dit ook op andere plaatsen in SHACL? Kunnen we
bijvoorbeeld het Equals Constraint Component uitdrukken met andere SHACL features? Het
is niet duidelijk of dit mogelijk is, maar hoe kun je er zeker van zijn dat het niet uitdrukbaar
is? Dit zijn de expressiviteitsvragen die we onderzoeken in het derde hoofdstuk (en om de
vraag te beantwoorden, nee, je kan het equals component niet met andere componenten
uitdrukken).

Vragen over expressiviteit komen ook naar voren in ander onderzoek naar SHACL. On-
langs onderzochten Ferranti et al. [40] het uitdrukken van de integriteitsbeperkingen van
Wikidata in SHACL, waaruit bleek dat SHACL-core mogelijk niet in staat is om sommige
van die beperkingen uit te drukken.

Recursion Van een shape wordt gezegd dat het recursief is als de definitie terugverwijst
naar zichzelf. De W3C laat de definitie voor recursieve shapes open, en dit motiveert ons
om mogelijke semantiek voor dergelijke shapes te onderzoeken. De literatuur beschrijft
verschillende recursieve semantieken voor SHACL, maar er is ook veel werk gedaan aan
recursieve semantiek voor andere logische formalismen. We passen een algebräısch raamwerk
toe, Approximation Fixpoint Theory, om een sterke formele basis te leggen voor de studie
van recursieve semantiek voor SHACL. We vergelijken de resulterende semantiek met die uit
de literatuur.

Provenance Het bovenstaande ging vooral over fundamentele aspecten van SHACL. Het is
ook interessant om alternatieve semantieken voor SHACL te verkennen, zoals “provenance”
semantiek.

Gegeven een SHACL shapes graaf en een data graaf die voldoet aan die shapes graaf,
willen we weten welke subset van de data graaf relevant is om te beslissen dat het valideert.
Deze subset van de data graaf wordt de data provenance genoemd.

Er zijn veel intüıties voor welke gegevens relevant zijn. De provenance zou gezien kun-
nen worden als de subset van de graaf “uitgetraceerd” door de shape door de waarden van
sh:path te volgen in de property shapes. Een andere intüıtie is dat we graag een subset van

vi

de graaf die de validator “bekijkt” tijdens het valideren van de gegevens. Deze begrippen
zijn nuttig, maar onnauwkeurig. Onze benadering is om in ieder geval rekening te houden
rekening te houden met de zogeheten sufficiency eigenschap van de provenance. De suf-
ficiëntie-eigenschap stelt, informeel, dat de resulterende provenance nog steeds voldoet aan
de beperkingen gegeven door de shapes graph. Sufficiency vertelt ons dat onze provenance
eigenlijk relevant is op een heel precieze manier — het is duidelijk dat gegevens die bijdragen
aan conformiteit relevant moeten zijn.

We definiëren de provenance eerst op shape-niveau (in tegenstelling tot shape graaf
niveau). Dus, gegeven is een data graaf G, een shape s en een knoop n uit G die vol-
doet aan s, definiëren we de subset van de data graaf die we de neighborhood noemen. Deze
definitie kan later dan ook veralgemeend worden naar shapes graphs.

Neighborhoods kunnen duidelijk worden gezien als een aanvullende semantiek voor SHACL
die een opvraagmechanisme definieert. We noemen deze opvraagsemantiek shape fragements.

Gegeven een shape en een data graaf, is het shape fragment eenvoudigweg de neighbor-
hood van alle knopen die voldoen aan die shape. Als er target declaraties zijn, beschouwen
we alleen de knooppunten die worden bepaald door de target declaration (en nemen we
de informatie op die hen target). Het kan op dezelfde manier gedefinieerd worden voor
verzamelingen van shapes of voor shape grafen.

Men kan zich het nut van zo’n terughaalmechanisme wel voorstellen. Wanneer we grote
RDF grafen beschouwen, kan het zijn dat een shape graaf slechts een deel beschrijft dat
relevant is voor het beoogde gebruik. Het ophalen van het shape fragment van de data graaf
geeft ons dan een (mogelijk) kleinere RDF graaf die gemakkelijker te verwerken is en nog
steeds voldoet aan de beperkingen en dus toch relevante gegevens bevat.

Abstract

The Shapes Constraint Language (SHACL) is a W3C-proposed schema language for express-
ing structural constraints on RDF graphs. Constraints on nodes are called “shapes”, and
when shapes are coupled with so-called “target declarations”, specifying which nodes need
to adhere to which shapes, we have a complete constraint on RDF graphs. We study sev-
eral aspects of this language. First, recent formalizations show a striking resemblance with
description logics. We build on top of these formalizations to come to an understanding of
SHACL as a logic. Furthermore, because the SHACL specification only defines semantics for
non-recursive SHACL, some efforts have been made to allow recursive SHACL schemas. We
argue that for defining and studying semantics of recursive SHACL, lessons can be learned
from research in non-monotonic reasoning. We look at the proposed semantics from the lit-
erature and compare it with techniques from well-established research from non-monotonic
reasoning.

Next, SHACL expressions can use three fundamental features that are not so common in
similar logics. These features are equality tests; disjointness tests; and closure constraints.
It is not clear how the presence of these non-standard features impacts the expressiveness
of SHACL. We show that each of the three features is primitive: using the feature, one can
express boolean queries that are not expressible without using the feature. We also show
that the restriction that SHACL imposes on allowed targets is inessential, as long as closure
constraints are not used. In addition, we show that enriching SHACL with “full” versions
of equality tests, or disjointness tests, results in a strictly more powerful language.

Lastly, we propose provenance semantics for SHACL. We propose the notion of neigh-
borhood of a node v satisfying a given shape in a graph G. This neighborhood is a subgraph
of G, and provides data provenance of v for the given shape. We establish a correctness
property for the obtained provenance mechanism, by proving that neighborhoods adhere to
the Sufficiency requirement articulated for provenance semantics for database queries. As
an additional benefit, neighborhoods allow a novel use of shapes: the extraction of a sub-
graph from an RDF graph, the so-called shape fragment. We compare shape fragments with
SPARQL queries. We discuss implementation strategies for computing neighborhoods, and
present initial experiments demonstrating that our ideas are feasible.

vii

Contents

Foreword i

Nederlandstalige samenvatting iii

Abstract vii

Contents ix

1 Introduction 1
1.1 SHACL in a nutshell . 1
1.2 Expressiveness . 5
1.3 Semantics for recursion . 6
1.4 Provenance and SHACL . 10
1.5 Thesis outline . 13
1.6 Publications . 13
1.7 Funding acknowledgements . 14

2 Formalization 15
2.1 The logical perspective . 16
2.2 From graphs to interpretations . 19
2.3 SHACL, Description Logics, and OWL . 21
2.4 Correspondence with the recommendation . 23

2.4.1 Translating real SHACL to formal SHACL 25
2.4.2 Translating formal SHACL to real SHACL 30

3 Recursion 33
3.1 Preliminaries: Approximation Fixpoint Theory 33
3.2 Fixpoint Semantics for Recursive SHACL . 34
3.3 Comparison with Existing Semantics . 36

4 Expressiveness 41
4.1 Expressiveness of SHACL features . 42

4.1.1 Preliminaries on path expressions . 44
4.1.2 Disjointness . 46
4.1.3 Equality . 50
4.1.4 Closure . 51

4.2 Are target-based shape schemas enough? . 52
4.3 Extensions for full equality and disjointness tests 53

4.3.1 Full equality . 54

ix

x CONTENTS

4.3.2 Full disjointness . 58
4.3.3 Further non-definability results . 65

4.4 Extension to stratified recursion . 67

5 Provenance 69
5.1 Data provenance for SHACL . 70

5.1.1 Neighborhoods . 70
5.1.2 Formal definition . 71
5.1.3 Algorithms for neighborhoods . 73
5.1.4 The sufficiency property . 74

5.2 Shape fragments . 77
5.2.1 Applicability of shape fragments . 78
5.2.2 Translation to SPARQL . 79
5.2.3 Adapting a validation engine . 83
5.2.4 Experiments . 84

5.3 Related work . 86
5.3.1 Triple pattern fragments . 88
5.3.2 Knowledge graph subsets . 89
5.3.3 Path-returning queries on graph databases 90

6 Conclusions 91
6.1 Formalization . 91
6.2 Recursion . 91
6.3 Expressiveness . 92
6.4 Provenance . 92
6.5 Research directions . 93

Bibliography 95

1
Introduction

The Resource Description Framework (RDF) is a standard for representing knowledge on
the Web recommended by the World Wide Web Consortium (W3C) [78]. Information is
represented in a graph-like data model structured as a set of subject-predicate-object triples.
A set of such triples is referred to as an RDF graph where the triples can be seen as edges
from subject to object, with the predicate as edge-label. These edge-labels are used to
indicate properties of nodes.

For consumers of RDF graphs, it is important to know what properties to expect, or, more
generally, to be able to rely on certain structural constraints that the graph is guaranteed
to satisfy. Therefore, we need a declarative language to specify such constraints formally. In
database terms, we need a schema language.

The W3C recommends the Shapes Constraint Language (SHACL) [86] as the schema
language for RDF graphs. It is the most recent addition to the set of technologies facilitating
RDF data management, others including SPARQL for querying, and OWL for reasoning.

In this thesis, we study several aspects of SHACL. This chapter starts with a short
introduction into the topics of this thesis, starting with a short introduction to SHACL.

Throughout this chapter we will use Turtle notation [81] for RDF, and we assume the
following prefixes are defined:

@prefix : <https://www.mjakubowski.info/vocabulary/>

@prefix sh: <http://www.w3.org/ns/shacl#>

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

1.1 SHACL in a nutshell

The main purpose of SHACL is to write a schema, in SHACL terminology called a shapes
graph1, that describes the expected structure of an RDF graph. The RDF graph of which
some structure is expected is referred to as the data graph. Given a shapes graph and a data
graph, the main task is to check whether the given data graph satisfies the requirements
specified by the shapes graph. This task is called conformance checking and it is done by
software called a (SHACL) validator. Furthermore, it is often expected of validators to not
only check for conformance, but to also generate a validation report specifying which nodes
violate which parts of the shapes graph.

1The reason this is called a “graph” is that the SHACL syntax is written in RDF.

1

2 Introduction

Shapes

A SHACL shapes graph consists of a set of shapes which are structural constraints on nodes.
Shapes have a name which is a blank node or an IRI. When we evaluate a shape on a node,
that node is called a focus-node. There are two types of shapes: node shapes and property
shapes. A node shape directly defines constraints on the focus node, while property shapes
defines constraints on the value nodes of the focus node. The value nodes are the nodes
reachable through a property or path expression that is given as a parameter to the property
shape (using the sh:path keyword in SHACL).

Throughout this chapter, we will use examples from the access control setting. For this
section, we will simply define some shapes about users in this setting. Basic users can access
and create resources, while power users can also add users to the system and approve of
them to also become power users. Consider the following data graph:

:admin_user a :Admin ;

:adds :user_a ;

:adds :user_b ;

:approves :user_b .

:user_b :adds :user_c ;

:approves :user_c .

:user_a :accesses :resource1 .

:user_b :accesses :resource1 .

:user_c :accesses :resource1 ;

:creates :resource2 .

The idea of the first few lines is that the :admin user adds users :user a and :user b to
the system. They also approve of :user b, meaning that :user b is now also trusted within
the system.

Consider the following node shape that consists of one node test and two property shapes:

:basicUserShape a sh:NodeShape ;

sh:nodeKind sh:IRI ;

sh:property [

sh:path :accesses ;

sh:minCount 1

] ;

sh:property [

sh:path :creates ;

sh:maxCount 0

] .

The shape name is :basicUserShape. It specifies three requirements for a given focus node.
First, the focus node should be an IRI, as opposed to a blank node or a literal. The
sh:property keyword indicates that the focus node must also adhere to a property shape.
The first property shape is about the value nodes reachable with the :accesses property.
Specifically, there must be at least one such value node. The second property shape is about
the value nodes reachable with the :creates property. In this case, there may be at most 0.
In natural language, this shape states: “The focus node is an IRI and :accesses at least one
resource, but :creates none.” So, in our example graph, only :user a and :user b satisfy
:basicUserShape.

SHACL has many different features for writing constraints. These features are called
constraint components. The previous example made use of a value type constraint component,

1.1 SHACL in a nutshell 3

here indicated with the sh:nodeKind keyword, to check whether the focus node is an IRI, but
also of cardinality constraint components to count the number of value nodes, indicated with
the sh:minCount and sh:maxCount keywords. SHACL has many constraint components and,
in this thesis, we will restrict ourselves to the core constraint components2. Next follows
some examples of some of the components that illustrate the capabilities of SHACL.

Property Pair Constraint Components. In property shapes, we can compare the value
nodes to another set of nodes (reachable by some other property) in some predefined ways.
The most important are equality and disjointness checks between the two sets. Consider the
following node shape:

:powerUserShape a sh:NodeShape ;

sh:not [a sh:PropertyShape ;

sh:path :adds ;

sh:disjoint :approves] .

This shape asks of the focus node that the set of value nodes, i.e., the nodes reachable
with the :adds property, is not disjoint from the set of nodes reachable with the :approves

property. In natural language: “The focus node approves at least one user they also added.”
So, in our graph :admin user and :user b satisfy :powerUserShape.

Shape-based Constraint Components. We can refer to other shapes as well. Most
notably, we can combine this with the counting from the cardinality constraint components
to count only value nodes that conform to some other given shape. For example, consider
the shape:

:authorizedUserShape a sh:PropertyShape ;

sh:path [sh:zeroOrMore [sh:inverseProperty :approves]] ;

sh:qualifiedValueShape :isAdminShape ;

sh:qualifiedMinCount 1 ;

] .

:isAdminShape a sh:PropertyShape ;

sh:path rdf:type ;

sh:hasValue :Admin .

A first thing to note is that this shape makes use of a (complex) path expression. SHACL
supports path expressions similar to those of SPARQL. This shape states that there must be
at least one value node reachable, by following inverse :approves properties, that conforms to
:isAdminShape. The keyword sh:qualifiedValueShape is used to refer to a shape, together
with the sh:qualifiedMinCount to denote the desired cardinality. In our example graph,
:admin user, :user b, and :user c satisfy :authorizedUserShape. Note that it is different
from writing:

:altAuthorizedUserShape a sh:PropertyShape ;

sh:path [sh:zeroOrMore [sh:inverseProperty :approves]] ;

sh:node :isAdminShape ;

sh:minCount 1 ;

] .

where sh:node is used to refer to another shape. This seems to express the same shape,
however, all constraints used in a property shape apply to all value nodes, i.e., it is an
implicit universal quantifier. When a cardinality constraint is then used, it is separate

2https://www.w3.org/TR/shacl/#core-components

https://www.w3.org/TR/shacl/#core-components

4 Introduction

from the other constraints, and only refers the number of value nodes. In words, the
:altAuthorizedUserShape states that all value nodes conform to :isAdminShape and there
is at least one node in the set of value nodes. In our example graph, only :admin user

satisfies :altAuthorizedUserShape.

Closed Constraint Component. Finally, another interesting feature is closedness. It
states that only a select few properties are allowed for a focus node. These select few
properties can be given explicitly by the sh:ignoredProperties keyword, or are implied by
the structure of the shape: the set of non-blank nodes obtained by following the sh:property
keyword, followed by the sh:path keyword. Consider :basicUserShape defined above. We
can expand the shape by adding the following triples:

:basicUserShape sh:closed true ;

sh:ignoredProperties (rdf:type) .

The shape is closed, meaning the only allowed properties are give by sh:ignoredProperties,
i.e., rdf:type, but we also allow the properties related to the property shapes: :accesses

and :creates. In natural language: “The focus node has no other properties than rdf:type,
:accesses, or :creates; and must have an :accesses property and no :creates property.”
So in our example graph, only :user a now satisfies :basicUserShape.

Clearly, there are many intricacies in the semantics of SHACL that make it unsuited to
study directly. Thereto, Chapter 2 is dedicated to formalizing SHACL in such a way that
makes it fit for the different investigations performed in this thesis. There are many other
constraint components than those demonstrated here. However, the ones discussed here are
illustrative of the core SHACL features. Detailing the exact semantics of all core SHACL
features is done in Chapter 2, Section 2.4.1.

Targeting

A set of shape definitions on its own does not allow us to validate a graph in SHACL. Every
shape can have a target declaration associated with it. A target declaration is a query that
determines all the focus nodes for a given shape. There are five types of target declarations
allowed in SHACL. Most of them are parameterized with an IRI or blank node t:

Node targets. There is one focus node, which is the parameter t (regardless whether t
occurs in the graph.)

Class-based targets. Targets all nodes that are of RDF class t.

Implicit class targets. Targets all nodes whose RDF class is the shape name.

Subjects-of targets. Targets all nodes that are the subject of a triple where the predicate
is t.

Objects-of targets. Targets all nodes that are the objects of a triple where the predicate
is t.

We can add target declarations to the shapes from the previous section to make a complete
shapes graph. Adding the Subjects-of target triple

:authorizedUserShape :targetSubjectsOf :approves

to the shapes graph gives us a complete constraint on the graph. In this case, our example
data graph conforms because all nodes that approve another node are indeed authorized
users. However, if we add the triple :user a :approves :user d to the data graph, it
would no longer conform, as :user a does not satisfy :authorizedUserShape.

1.2 Expressiveness 5

1.2 Expressiveness

Given the definition of SHACL as a constraint language, users are often interested in what
you can actually do with it; what shapes can you actually write? When a language is
defined, many criteria are postulated on what the language should be able to describe.
Often, these are then directly included in the language. A simple example is the class
constraint component in SHACL. This allows for writing shapes stating that the focus node
must be of a certain RDF class (or subclass thereof). It is easy to observe this feature
is technically redundant: if we would remove this constraint component from SHACL, the
expressive power would remain the same, because we can already express it using other
constraint components. For example, given an IRI <c> every shape of the form:

[a sh:NodeShape ;

sh:class <c>

]

can be written as the shape:

[a sh:PropertyShape ;

sh:path ([sh:zeroOrMorePath rdfs:subClassOf] rdf:type) ;

sh:hasValue <c>

]

Clearly, constraints about classes are useful, so it is included in the language. However, our
example shows that the complex path expressions are more fundamental to SHACL. We
have these, so we can already do class constraints.

This discussion of the class constraint component is quite clear cut; it is easy to see
that it is expressible by other features. Now, a natural question arises: does this also
happen for other constraint components? Can we, for example, express the equals constraint
component using other SHACL features? In this case it is not clear whether this is possible,
but how can you be certain that it is not expressible? These are the expressiveness questions
we investigate in this thesis (and to actually answer the question, no, you cannot express
equality with the other features).

To add to the relevance of this kind of investigation, the SHACL community is inter-
ested in extending SHACL with other constraint components called the DASH Constraint
Components [56]. It turns out that most of these constraint components are not easily (or
at all) expressible with SHACL as it is, but if we extend SHACL with a more powerful ver-
sion of the equality constraint component, the DASH extensions become expressible!3 As a
concrete example, DASH proposes a constraint dash:nonRecursive on property shapes that
states that there must not be a path (from sh:path) from the focus node, to the focus node.
In other words, there may not be a self-loop (following the path) in the data graph for the
focus node. This can be expressed with the shape:

:noLoop a sh:NodeShape

sh:not [a sh:PropertyShape ;

sh:path <path> ;

sh:equals [sh:zeroOrOnePath <path>]

] .

However, this shape is technically not a correct SHACL shape because the sh:equals

keyword may only have IRIs as their value, not blank nodes (and thus not paths). Never-
theless, the meaning is clear.

The point here is not to say that DASH is superfluous, rather, it is simply to give insight in
what is fundamentally happening when you add features to SHACL. It turns out that adding

3This has been described in this blog post: https://mjakubowski.info/posts/datashapes

https://mjakubowski.info/posts/datashapes

6 Introduction

full-path support to the equality feature lets us also express some other DASH constraints,
indicating that adding full equality to SHACL is useful. Furthermore, it may give insights to
developers implementing SHACL validators: not every added feature requires implementing
new algorithms to support that feature.

Lastly, questions of expressiveness also appear in other research on SHACL. Recently,
Ferranti et al. [40] investigated expressing the integrity constraints of Wikidata in SHACL,
indicating SHACL-core may not be able to express some of the constraints.

1.3 Semantics for recursion

A shape is said to be recursive if its definition refers back to itself. The W3C leaves recur-
sive shapes undefined and, in this section, we will explore possible semantics for such shapes.
Different semantics from the literature will be discussed [6,18,28,30], without defining them
formally. Formal definitions will be given and explored in Chapter 3. The proposed ap-
proaches to recursion are directly inspired from the logic programming literature and are
called: Supported Model Semantics, Well-Founded Semantics, Stable Model Semantics, and
Stratified Recursion [42,93,97].

Setting the stage

The running example will be the access control setting from the previous section, where users
can be authorized to access resources or not. The data graph will represent an overview of
an access control scheme where there are users and resources. Users can approve other users
to access files. There is a distinguished user, the administrator, who is authorized by default.

A SHACL shape graph describes what is a valid access control scheme, i.e., if a data
graph conforms to the SHACL shapes graph, it is a valid access control scheme.

Positive recursion A shape is said to be recursive if it references itself (directly, or
indirectly). Consider the following access control shapes graph:

:authorized a sh:NodeShape ;

sh:or (

[a sh:NodeShape ;

sh:hasValue :admin_user

] ;

[a sh:PropertyShape ;

sh:path [sh:inversePath :approves] ;

sh:qualifiedValueShape :authorized ;

sh:qualifiedMinCount 1

]

) .

:authorized sh:targetSubjectsOf :accesses .

In natural language, the :admin user node is :authorized and every node that is ap-
proved by an :authorized node is also :authorized. We target all nodes that access some-
thing. In essence, this shapes graph validates when all nodes that access a resource are
:authorized.

There are two things to note about this shape. First, it is clearly recursive, as it mentions
itself through the sh:qualifiedValueShape. Second, it mentions itself positively, that is, the
recursion does not happen through some kind of negation (like sh:not).

When talking about recursion, negation adds an extra layer of complexity to the discus-
sion. Almost all the differences between the proposed semantics are due to negation.

1.3 Semantics for recursion 7

Remark 1.1. The :authorized shape is very similar to :authorizedUserShape from the
previous section, but uses recursion. Indeed, also :authorized can be written without
recursion. However, it is possible to adjust :authorized in such a way that it is not easily
(or at all) expressible without recursion. For example, adding the triple (:authorized,
sh:class, :person) to the shape adds the constraint that every node on the path of inverse
:approves properties must be of RDF class :person.

Semantics for positive recursion We will start exploring the meaning of our :author-
ized shape. Consider the following data graph:

:admin_user :approves :user_a .

:user_b :approves :user_c .

:user_c :approves :user_b .

Let us focus first on deciding which users could actually be assigned the :authorized shape,
forgetting for a moment the targeting specified in our shapes graph. Which of the users
could be said to be :authorized? That is a question we can only answer when we have
defined recursive semantics for SHACL.

Stratified recursion, Well-Founded, and Stable Model semantics all agree that the set of
:authorized nodes needs to be only :admin user and :user a, as :admin user is authorized
by default and approves of :user a. Supported Model semantics, however, states that there
is an additional possible set of :authorized nodes: all of them!

The idea behind Supported Model semantics is that there exists a possible assignment
of shape names to nodes, such that all assigned nodes satisfy the shape. In this case, when
both :user b and :user c are assigned to be :authorized, then they also both satisfy
the :authorized shape. Indeed, :user b is approved by an authorized user (:user c) and
similarly for :user b. Clearly, this does not match our intention, since this would allow
every user to authorize themselves!

For the other semantics, the idea in this case is to have a minimal assignment of shape
names to nodes. This is commonly referred to as the minimal model semantics in logic
programming literature.

To complete our discussion on positive recursion, we will address the targeting mechanism
of SHACL. Consider the following addition to the data graph:

:user_b :accesses :resource1 .

Now, :user b is also targeted, and thus this data graph does not validate under Stratified,
Stable Model, and Well-Founded semantics. Arguably, no reasonable semantics would ever
assign :authorized to :user b.

The Supported Model semantics has two possible assignments, but which one do we
consider? There are two ways to look at this, according to the literature. First, brave
validation states that we will just require there to be just one assignment that assigns
:user b to be :authorized. The other, cautious validation states that we require all possible
assignments to assign :user b to be :authorized. Thus, to make this concrete, if we use
Supported Model semantics with cautious validation it will agree with the other semantics
and the data graph will not validate. Otherwise, with brave validation, Supported Model
semantics dictates that the data graph validates.

Adding negation

Consider the :potentialThreat shape defined in Listing 1.1. In natural language, this shape
states that a node is a :potentialThreat if it is not :authorized and accesses a resource.
All nodes that access a resource and are not :authorized are a :potentialThreat. We want
to ensure that all users that are a :BannedUser are a :potentialThreat.

8 Introduction

Listing 1.1: The :potentialThreat shape.

:potentialThreat a sh:NodeShape ;

sh:property [

sh:path :accesses ;

sh:minCount 1

] ;

sh:not :authorized .

:potentialThreat sh:targetClass :BannedUser .

Now, consider the following data graph:

:admin_user :approves :user_a .

:user_b :approves :user_c .

:user_c :approves :user_b .

:user_b :accesses :resource1 .

:user_c :accesses :resource1 .

:user_b a :BannedUser .

Which users would be assigned to be a :potentialThreat, and which ones would be assigned
to be :authorized? The idea of minimal assignments is not going to help us here. All users
will be assigned a label. They are either :authorized or a :potentialThreat.

Of course, the intuition is that :user b and :user c do not have any grounded reason to
be :authorized. They are only so in a self-supporting way. So, we would likely want them
to be a :potentialThreat.

One idea is to first resolve the positive recursion part of the shapes graph. So we would
apply minimal models on :authorized and afterward try to assign :potentialThreat. This
is exactly the idea behind Stratified Recursion. This only works when we look at the shapes
graph in “layers” where we first resolve the positive recursion and work our way up. Again,
Stable Model and Well-Founded semantics agree with this approach. Only Supported Model
semantics, like before, considers two possible assignments. The one where all users are
:authorized and the one where :user b and :user c are a :potentialThreat.

An interesting remark here is that with Supported Model semantics neither brave nor
cautious validation will always result in a satisfying validation result. Indeed, with cautious
validation :user b will not be marked a :potentialThreat because there is an assignment
where :user b is :authorized. With brave validation, we can do whatever we want. If
:user b is not banned, it would be fine, because there is an assignment where :user b is
:authorized!

We can not always stratify easily

It is not always possible to look at the validation process in a stratified manner. Consider a
new shapes graph redefining the :authorized shape, given in Listing 1.2. This shape is very
similar to the :authorized shape from before, only now, you can only be :authorized if you
are also never reported by an :authorized user. Note that this shape cannot be stratified
as we did with the :potentialThreat before. It directly references itself negatively. We
will next look at the following data graph scenario from Listing 1.3. It is easy to see that
all these users would be :authorized. There is nothing special going on as long as we do
not have anyone reporting anyone. We will add the following triple: (:user b, :reports,
:user c) Because :user c has been reported, they are no longer :authorized and neither is

1.3 Semantics for recursion 9

Listing 1.2: The non-stratified :authorized shape definition.

:authorized a sh:NodeShape ;

sh:or (

[a sh:NodeShape ;

sh:hasValue :admin_user

]

[sh:and (

[a sh:PropertyShape ;

sh:path [sh:inversePath :approves] ;

sh:qualifiedValueShape :authorized ;

sh:qualifiedMinCount 1

]

[sh:not [a sh:PropertyShape ;

sh:path [sh:inversePath :reports] ;

sh:qualifiedValueShape :authorized ;

sh:qualifiedMinCount 1

]

]

)

]

) .

:authorized sh:targetSubjectsOf :accesses .

Listing 1.3: A possible data graph scenario for the non-stratified setting.

:admin_user :approves :user_a ;

:approves :user_b .

:user_a :approves :user_c .

:user_c :approves :user_d .

10 Introduction

:user d, even though :user d has not been explicitly reported. All this the semantics agree
on. However, we can add the following triples to the data graph:

:user_a :reports :user_b .

:user_b :reports :user_a .

Now, it is unclear what the assignments should be exactly.

The Stable Model semantics will tell you there are two possible assignments: one where
:user a is :authorized and :user b is not, and one where the opposite is true. Again, to
know how to choose between these two assignments, we can apply the ideas of cautions and
brave validation.

The Well-Founded semantics will take a different approach. Unlike all the semantics
discussed before, it will not just assign shapes to nodes: in the Well-Founded semantics,
assignments are three-valued. Assignments are true, false, or unknown. In this example, it
will say the assignment of :authorized for :user a and :user b are unknown.

Short summary

First, Stratified Recursion is the only approach that somehow restricts the kinds of recur-
sion you can write. The other approaches are also nicely defined on all possible shapes
graphs. Second, Stable Model and Supported Model semantics consider multiple possible
assignments. In these two semantics, it is useful to then distinguish cautious and brave
validation. Third, the Well-Founded semantics considers three-valued assignments, but only
one assignment is defined for a shapes graph, disregarding the need for the cautious and
brave distinction. Finally, all semantics, except for Supported Model semantics, agree if we
only consider shape graphs with only positive recursion — even on Stratified shape graphs!

1.4 Provenance and SHACL

Until now, we have primarily discussed the fundamental semantics for SHACL. In this sec-
tion, we will explore another useful semantics: data provenance for SHACL.

Given a SHACL shapes graph and a data graph that conforms to that shapes graph, we
want to know what subset of the data graph is relevant to decide that it conforms. This
subset of the data is called the data provenance.

There are many intuitions of what data is relevant. The provenance could be seen as
the subset of the graph “traced out” by the shape by following the values of sh:path in
the property shapes. Another intuition is that we would like to have a subset of the graph
that the validator “looked at” while validating the data. These notions are useful but
imprecise, as will be demonstrated later in this section. Our approach is to at least take into
consideration the so-called sufficiency property of the provenance. The sufficiency property
states, informally, that the resulting provenance still conforms to the shapes graph. Or, at
the level of shapes (without targets), all nodes from the input data graph still satisfies the
same shapes in the provenance. Sufficiency tells us that our provenance is actually relevant
in a very precise way — clearly, data that contributes to conformance must be relevant.

Our discussion will focus on the provenance of a shape without target declarations. So,
given a data graph G, a shape s, and a node n from G that conforms to s, we will define the
provenance which we call the neighborhood of n in G according to s. This can then later be
generalized for shapes graphs (including target declarations) as opposed to just shapes.

Neighborhoods by example

We will use the following data graph for our examples:

1.4 Provenance and SHACL 11

:user_a a :Admin;

:accesses :resource1 .

:user_b a :Admin;

:accesses :resource1 ;

:accesses :resource2 .

:user_c a :User;

:accesses :resource1 ;

:accesses :resource2 .

:resource1 a :Resource .

:resource2 a :Resource .

Suppose we have a shape defining a standard resource as one that is accessed by at least
one user (or admin):

:standardResource a sh:NodeShape ;

sh:class :Resource ;

sh:property [

sh:path [sh:inversePath :accesses] ;

sh:minCount 1 ;

] .

Clearly, both :resource1 and :resource2 satisfy the shape. We will look at the neigh-
borhood of :resource1. Looking at the intuition behind neighborhoods, the triple stating
that :resource1 is a :Resource is definitely in the neighborhood, as well as at least one of
the triples stating that it is accessed by a user. However, there is no order on the triples
defined in RDF, so picking any of the three triples is somewhat arbitrary. We could define
provenance to be non-deterministic, and say that there are three neighborhoods. However,
our approach is to have a deterministic provenance definition and thus, we choose to define
the neighborhood as:

:resource1 a :Resource .

:user_a :accesses :resource1 .

:user_b :accesses :resource1 .

:user_c :accesses :resource1 .

Note that this does not follow the intuition that we want to have the subgraph that the
validator looks at. Any reasonable validator would only need to consider one :accesses

triple to know that :resource1 conforms to :standardResource.
We will continue with another example. Consider the shape defining unpopular resources

as resources that are accessed by at most two users:

:unpopularResource a sh:NodeShape ;

sh:class :resource ;

sh:property [

sh:path [sh:inversePath :accesses] ;

sh:maxCount 2 ;

] .

Only :resource2 satisfies this shape. There are multiple options again for what the
neighborhood could be. There are two deterministic options. Either the neighborhood
contains all :accesses triples or none! According to our intuition of wanting to “trace out”
the shape the former is the suiting definition. However, our definition will choose to not

12 Introduction

include any :accesses triples in this case. Our design philosophy here is that neighborhoods
should be somehow minimal. Choosing not to include any :accesses triples is minimal, and
still makes :resource2 conform to the shape. Although this may be counterintuitive, this
design choice makes sense in light of sufficiency. We will demonstrate a similar situation
with a slightly more complex shape containing the same ideas:

:specialResource a sh:NodeShape ;

sh:class :resource ;

sh:property [

sh:path [sh:inversePath :accesses]

sh:minCount 1 ;

sh:qualifiedValueShape [sh:not [sh:class :admin]] ;

sh:qualifiedMaxCount 1 ;

]

This shape consists out of three constraints. First, the node must be a resource. Second,
the resource must be accessed by at least one user. Finally, at most one user that accesses
this resource may not be an admin.

The resources described by this shape are special in the sense that they may only be
accessed by admins, with at most one exception.

It is clear from the previous discussion that the neighborhood at least includes the fol-
lowing:

:resource2 a :resource .

:user_b :accesses :resource2 .

:user_c :accesses :resource2 .

This is due to the first two constraints. However, what do we do with the qualified max
count? To include what is mentioned in the shape would result in adding the following triple
to the neighborhood:

:user_c a :user .

Indicating that :user c is not an :admin. However, this is exactly the opposite of the
information we need for conformance. What we do need is the triple stating that :user b

is indeed an :admin. The idea here is that we want to include in our provenance all data
proving that a certain node conforms to a shape. Furthermore, in a shape where only
the third constraint is specified, returning nothing also seems to be a possibility for the
definition of neighborhood. However, we designed our neighborhood to contain all necessary
information to decide conformance, even when other parts of the graph are added. Indeed,
adding the triples

:user_b :accesses :resource2 .

:user_c :accesses :resource2 .

would break this property. Having this property is technically necessary (the details are
discussed in Section 5.1.4) but also useful — it allows for neighborhood engines to be flexible
and add more to the provenance, while never breaking sufficiency.

This example illustrates the intricacies of defining provenance that is sufficient. Here, we
discussed the (qualified) cardinality constraint components, but defining neighborhoods for
all shapes requires thinking about every feature in SHACL and choosing a suitable definition
for each of them while keeping in mind sufficiency and our two design principles: determinism
and minimality.

1.5 Thesis outline 13

Shape Fragments

This definition of neighborhoods can be viewed as an additional semantics for SHACL defin-
ing a retrieval mechanism. We call these retrieval semantics shape fragments.

Given a shape and a data graph, the shape fragment is simply the neighborhood of all
nodes conforming to that shape. When there are targeting declarations, we only consider
the nodes that are targeted (and include the information that targets them). It can similarly
be defined for sets of shapes, or for shapes graphs.

One can imagine the usefulness of such a retrieval mechanism. When dealing with large
RDF graphs, a shapes graph may only describe part of it that is relevant to the intended
usage. Retrieving the shape fragment of the data graph then gives us a (possibly) smaller
RDF graph which is easier to process, and still satisfies the constraints while containing
relevant data.

1.5 Thesis outline

This thesis is structured as follows. In Chapter 2 we discuss our formalization of SHACL as
a logic and the relation between that logic with real SHACL. Chapter 3 builds on this logical
formalization and fills a gap in the SHACL specification by defining recursive semantics. We
compare our definitions with the ones proposed in the literature. We then continue with
Chapter 4 where we study the expressiveness of some of the non-standard SHACL features,
and also for some light extensions of equality and disjointness tests. In Chapter 5, we propose
provenance semantics for SHACL through our notion of neighborhoods. Then, we establish
the sufficiency property for it. Furthermore, we provide a translation for the provenance
semantics of SHACL to SPARQL and run experiments to argue the feasibility of such a
system. Finally, we conclude in Chapter 6.

1.6 Publications

The contents of this thesis are based on the following publications:

• Chapter 2 is based on

[20] Bart Bogaerts, Maxime Jakubowski, and Jan Van den Bussche. SHACL: A de-
scription logic in disguise. In G. Gottlob, D. Inclezan, and M. Maratea, editors,
Logic Programming and Nonmonotonic Reasoning, pages 75–88. Springer Inter-
national Publishing, 2022

• Chapter 3 is based on

[18] Bart Bogaerts and Maxime Jakubowski. Fixpoint semantics for recursive SHACL.
In A. Formisano, Y.A. Liu, et al., editors, Proceedings 37th International Confer-
ence on Logic Programming (Technical Communications), volume 345 of Elec-
tronic Proceedings in Theoretical Computer Science, pages 41–47, 2021

• Chapter 4 is based on

[19] Bart Bogaerts, Maxime Jakubowski, and Jan Van den Bussche. Expressiveness
of SHACL features and extensions for full equality and disjointness tests. Log.
Methods Comput. Sci., 20(1), 2024. doi:10.46298/LMCS-20(1:16)2024

• Chapter 5 is based on

https://doi.org/10.46298/LMCS-20(1:16)2024

14 Introduction

[33] Thomas Delva, Anastasia Dimou, Maxime Jakubowski, and Jan Van den Bussche.
Data provenance for SHACL. In J. Stoyanovich, J. Teubner, et al., editors, Pro-
ceedings 26th International Conference on Extending Database Technology, pages
285–297. openproceedings.org, 2023

Here, I want to acknowledge and thank my co-authors Thomas Delva for perform-
ing many of the early experiments, and Anastasia Dimou for the early discussions
and crystallizing the ideas of Shape Fragments.

The following publications and resources were also generated as part of this PhD research,
but do not fall within the scope of this thesis:

[98] Maarten Vandenbrande, Maxime Jakubowski, Pieter Bonte, Bart Buelens, Femke On-
genae, and Jan Van den Bussche. POD-QUERY: schema mapping and query rewriting
for solid pods. In Irini Fundulaki, Kouji Kozaki, Daniel Garijo, and José Manuél
Gómez-Pérez, editors, Proceedings of the ISWC 2023 Posters, Demos and Industry
Tracks, volume 3632 of CEUR Workshop Proceedings. CEUR-WS.org, 2023

[21] Bart Bogaerts, Maxime Jakubowski, and Jan Van den Bussche. Postulates for prove-
nance: Instance-based provenance for first-order logic, 2024. ACM Symposium on
Principles of Database Systems, June 2024, to appear

[54] Maxime Jakubowski. SPARQL RML Rewriter, January 2024. URL: https://github.
com/MaximeJakubowski/SRR, doi:10.5281/zenodo.10462628

[53] Maxime Jakubowski. SHACL Logical Syntax Parser, January 2024. URL: https:

//github.com/MaximeJakubowski/sls_project, doi:10.5281/zenodo.10462613

1.7 Funding acknowledgements

The work in this PhD was funded by the Flanders AI Research Program.

https://github.com/MaximeJakubowski/SRR
https://github.com/MaximeJakubowski/SRR
https://doi.org/10.5281/zenodo.10462628
https://github.com/MaximeJakubowski/sls_project
https://github.com/MaximeJakubowski/sls_project
https://doi.org/10.5281/zenodo.10462613

2
Formalization

In this chapter we discuss the formalization of SHACL, and argue that viewing SHACL as a
logic is natural. We build from the formalization of shapes in SHACL proposed by Corman,
Reutter and Savkovic [30]. That work has revealed striking similarities between shapes and
concept expressions from Description Logics (DLs) [12]. The similarities between SHACL
and DLs run even deeper when we account for shape names and targeting, which is the
actual mechanism to express constraints over RDF graphs. This connection will be further
discussed in Section 2.3.

Our formalization differs from existing work in a couple of small but important ways.
First, we explicitly make use of a first-order interpretation, rather than a graph. Second,
the semantics for SHACL we develop would be called a “natural” semantics in database
theory [2]: variables always range over the universe of all possible nodes. The use of the
natural semantics avoids some anomalies that crop up in the literature, where often an
“active-domain” semantics is adopted instead, in which variables range only over the set
of nodes actually occurring in the input graph. Unfortunately, such a semantics does not
work well with constants. The problem is that a constant mentioned in a shape may or
may not actually occur in the input graph. As a result, some semantics proposed in the
literature violate familiar logic laws like De Morgan’s law [39]. This is troublesome, since
automated tools (and humans!) that generate and manipulate logic formulas may reasonably
and unwittingly assume these laws to hold. Also other research papers (see Remark 2.9)
contain flaws related to not taking into account nodes that do not occur in the graph. This
highlights the importance of taking a logical perspective on SHACL.

Our design choices are grounded in real SHACL: with each of them we will provide
actual SHACL specifications that prove that SHACL validators indeed behave in the way we
expect. All our examples have been tested on three implementations: Apache Jena SHACL1

(using their Java library) TopBraid SHACL2 (using their Java library as well as their online
playground), and Zazuko3 (using their online playground).

Our SHACL examples will assume the following prefixes are defined:

@prefix : <https://www.mjakubowski.info/vocabulary/>

@prefix sh: <http://www.w3.org/ns/shacl#>

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

1https://jena.apache.org/documentation/shacl/index.html
2https://shacl.org/playground/
3https://shacl-playground.zazuko.com/

15

https://jena.apache.org/documentation/shacl/index.html
https://shacl.org/playground/
https://shacl-playground.zazuko.com/

16 Formalization

2.1 The logical perspective

In this section, we begin with the formal development of the logical core of SHACL, focusing
primarily on the structural constraints. Later, in Section 2.4, we will expand this formaliza-
tion into a version that corresponds fully with real SHACL on the conformance semantics.
We define shape expressions, shape schemas, and conformance. Our point of departure is
the treatment by Andreşel et al. [6], which we adapt and extend to our purposes.

From the outset we assume three disjoint, infinite universes N , S, and P of node names,
shape names, and property names, respectively.4

We define path expressions E and shapes φ by the following grammar:

E ::= id | p | E− | E1/E2 | E1 ∪ E2 | E∗

φ ::= ⊤ | hasShape(s) | hasValue(c) | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ |
≥nE.φ | eq(p,E) | disj (p,E) | closed(Q)

where p, s, and c stand for property names, shape names, and node names, respectively, n
stands for nonzero natural numbers, and Q stands for finite sets of property names. As we
will formalize below, every property name evaluates to a binary relation, as does each path
expression. In the path expressions, id represents the identity relation, p− represents the
inverse relation of p, E1/E2 represents composition of binary relations, and E∗ the reflexive-
transitive closure of E. We will often use the following abbreviations: E? for E ∪ id ; ⊥ for
¬⊤; ≤nE.φ for ¬≥n+1E.φ; ∀E.φ for ¬≥1E.¬φ; and ∃E.φ for ¬∀E.¬φ.

Remark 2.1. In our formalization, a path expression can be ‘id ’. Later, in Chapter 4, we
show in Lemma 4.3 that every path expression is equivalent to id , E′ ∪ id or E′, where
E′ does not use id . In real SHACL, it is possible to write E′ ∪ id using “zero-or-one”
path expressions. Explicitly writing id is not possible, but this poses no problem. Path
expressions can only appear in counting quantifiers, equality and disjointness shapes. The
shape ≥n id .φ is clearly equivalent to φ if n = 1, otherwise, it is equivalent to ¬⊤. The
shapes eq(E, p) or disj (E, p) where E is id are implicitly expressible in SHACL by writing
the equality or disjointness constraint in node shapes, rather than property shapes.

As we will see, shapes, which represent unary predicates, will evaluate to a subset of
the domain. The three last expressions are probably the least familiar. Equality (eq(p,E))
means that there are outgoing p-edges (edges labeled p) exactly to those nodes for which
there is a path satisfying the expression E (defined below). Disjointness (disj (p,E)) means
that there are no outgoing p-edges to which there is also a path satisfying E. Closedness is
also a typical SHACL feature: closed(Q) states that there are no outgoing edges about any
predicates other than those in Q.

A vocabulary Σ is a subset of N ∪ S ∪ P . A path expression or shape is said to be over
Σ if it only uses symbols from Σ. On the most general logical level, shapes are evaluated in
interpretations. We recall the familiar definition: An interpretation I over Σ consists of

1. a set ∆I , called the domain of I;

2. for each constant c ∈ Σ, an element JcKI ∈ ∆I ;

3. for each shape name s ∈ Σ, a subset JsKI of ∆I ; and

4. for each property name p ∈ Σ, a binary relation JpKI on ∆I .

On any interpretation I as above, every path expression E over Σ evaluates to a binary
relation JEKI on ∆I , and every shape φ over Σ evaluates to a subset of ∆I , as defined in

4In real SHACL, the disjointness assumption does not hold. However, it is only made for simplicity of
notation.

2.1 The logical perspective 17

Table 2.1: Semantics of a path expression E in an interpretation I over Σ.

E JEKI

id {(a, b) ∈ ∆I ×∆I | a = b}
p− {(a, b) ∈ ∆I ×∆I | (b, a) ∈ JpKI}
E1 ∪ E2 JE1KI ∪ JE2KI

E1/E2 {(a, b) ∈ ∆I ×∆I | ∃c : (a, c) ∈ JE1KI ∧ (c, b) ∈ JE2KI}
E∗ the reflexive-transitive closure of JEKI

Table 2.2: Semantics of a shape φ in an interpretation I over Σ. For a set X, we use ♯X
to denote its cardinality. For a binary relation R and an element a, we use R(a) to denote
the set {b ∈ ∆I | (a, b) ∈ R}.

φ JφKI

⊤ ∆I

hasShape(s) sI

hasValue(c) {cI}
φ1 ∧ φ2 Jφ1KI ∩ Jφ2KI

φ1 ∨ φ2 Jφ1KI ∪ Jφ2KI

¬φ1 ∆I \ Jφ1KI

≥nE.φ1 {a ∈ ∆I | ♯(Jφ1KI ∩ JEKI(a)) ≥ n}
eq(p,E) {a ∈ ∆I | JpKI(a) = JEKI(a)}
disj (p,E) {a ∈ ∆I | JpKI(a) ∩ JEKI(a) = ∅}
closed(Q) {a ∈ ∆I | JpKI(a) = ∅ for every p ∈ Σ \Q}

Tables 2.1 and 2.2. In Table 2.2 we use the notation JEKI(a) to denote the set {b | (a, b) ∈
JEKI}. Given an interpretation I, a node a ∈ ∆I and a shape φ, we sometimes write I, a |= φ
when a ∈ JφKI .

Example 2.2. We can write the examples from Section 1.1 in our formalization. For
example, :basicUserShape corresponds to the expression:

∃:accesses.⊤ ∧≤0 :creates.⊤

While :authorizedUserShape corresponds to the expression:

∃(:approves−)∗.∃rdf:type.hasValue(:Admin)

To see the difference in semantics, :altAuthorizedUserShape can be written as:

∃:approves−.⊤ ∧ ∀(:approves−)∗.∃rdf:type.hasValue(:Admin)

We define a shape schema S over Σ as a tuple (D,T) withD a finite set of shape definitions
s← φ with s ∈ S and φ a shape expression. For now, we only consider non-recursive shape
definitions where shapes are not defined in terms of themselves. In Chapter 3, we extend
our definition to include recursive shapes. Next, T is a finite set of inclusion statements,
or target declarations of the form τ ⊆ s with s ∈ S and where τ is a special kind of
shape expression we call a targeting query or target expression. The W3C recommendation
defines five types of target declarations that correspond to a shape expression. These will
be discussed in Section 2.4. For now, it suffices to know that these target declarations from
the recommendation can be viewed as shape expressions. Throughout this thesis, unless

18 Formalization

explicitly mentioned, we consider generalized shape schemas where τ can be any shape, not
just the ones allowed by the recommendation. Furthermore, we sometimes also write a shape
expression on the right-hand side of a target declaration, instead of only shape names.

Example 2.3. We can now write the example schema consisting of :authorizedUserShape
from Section 1.1 as follows. The set of definitions D consists of:

:authorizedUserShape← ∃(:approves−)∗.hasShape(:isAdminShape)

:isAdminShape← ∃rdf:type.hasValue(:Admin)

The target inclusion is:

∃:approves.⊤ ⊆ :authorizedUserShape

If S = (D,T) is a shape schema over Σ and I an interpretation over Σ \ S, then there
is a unique interpretation I ⋄ D that agrees with I outside of S and that satisfies D, i.e.,
such that for every expression s ← φ ∈ D, JsKI⋄D = JφKI⋄D. We say that I conforms to S,
denoted by I |= S, if JτKI⋄D is a subset of JsKI⋄D, for every statement τ ⊆ s in T . In other
words, I conforms to S if there exists an interpretation that satisfies D ∪ T that coincides
with I on N ∪ P .

Remark 2.4. There are some notable differences between real SHACL shapes graphs and our
shape schemas. First, for now, we take abstraction of some features of real SHACL, such as
checking data types like numbers and strings.

Second, in real SHACL not every shape name needs to occur in the left-hand side of a
defining rule. The default that is taken in real SHACL is that shapes without a definition
are always satisified. On the logical level, this means that for every shape s name that has
no explicit definition, a definition s← ⊤ is implicitly assumed. The following example that
illustrates that our chosen default indeed corresponds to actual SHACL.

Example 2.5. The following SHACL shape :trueShape states that all nodes with an :r-
edge must conform to the :noDef and :alsoNoDef shapes which we do not define.

:trueShape a sh:NodeShape ;

sh:and (:noDef :alsoNoDef) .

:trueShape sh:targetSubjectsOf :r .

In our formal notation, this shapes graph corresponds to the shape schema

:trueShape← hasShape(:noDef) ∧ hasShape(:alsoNoDef)

∃:r.⊤ ⊆ :trueShape

where the first line is the definition of :trueShape, and the second line its target.
When validating a graph containing only the triple :a :r :b (as we will show later,

this corresponds to an interpretation in which the property name :r has the interpretation
{(:a, :b)} and the interpretation of all other property names is empty), and thus targeting the
node :a, it validates without violation. This supports our observation that shapes without
an explicit definition are assumed to be satisfied by all nodes (i.e., are interpreted as ⊤).

To further strengthen this claim, if instead we consider the SHACL shapes graph

:trueShape a sh:NodeShape ;

sh:not :noDef .

:trueShape sh:targetSubjectsOf :r .

i.e., the shape schema

:trueShape← ¬hasShape(:noDef)

∃:r.⊤ ⊆ :trueShape

validation on the same graph yields the validation error that “node :a does not satisfy
:trueShape since it has shape :noDef”.

2.2 From graphs to interpretations 19

2.2 From graphs to interpretations

Up to this point, we have discussed the logical semantics of SHACL, i.e., how to evaluate a
SHACL expression in a standard first-order interpretation. However, in practice, SHACL is
not evaluated on interpretations but on RDF graphs. In this section, we show precisely and
unambiguously how to go from an RDF graph to a logical interpretation (in such a way that
the actual SHACL semantics coincides with what we described above). A graph is a finite
set of facts, where a fact is of the form p(a, b), with p a property name and a and b node
names. We refer to the node names appearing in a graph G simply as the nodes of G; the
set of nodes of G is denoted by NG. A pair (a, b) with p(a, b) ∈ G is referred to as an edge,
or a p-edge, in G. The set of p-edges in G is denoted by JpKG (this set might be empty).

We want to be able to evaluate any shape on any graph (independently of the vocabulary
the shape is over). Thereto, we will unambiguously associate, to any given graph G, an
interpretation I over N ∪ P as follows:

• ∆I equals N (the universe of all node names).

• JcKI equals c itself, for every node name c.

• JpKI equals JpKG, for every property name p.

If I is the interpretation associated to G, we use JEKG and JφKG to mean JEKI and JφKI ,
respectively.

RDF also has a model-theoretic semantics [80]. These semantics reflect the view of an
RDF graph as a basic ontology or logical theory, as opposed to the view of an RDF graph as
an interpretation. Since the latter view is the one followed by SHACL, it is thus remarkable
that SHACL effectively ignores the W3C-recommended semantics of RDF.

Remark 2.6. Andreşel et al. [6] define JφKG a bit differently. For a constant c, they define
JhasValue(c)KG = {c} like we do. For all other constructs, however, they define JφKG to
be JφKI , but with the domain of I taken to be NG, rather than N . In that approach,
if c /∈ NG, J¬¬hasValue(c)KG would be empty rather than {c} as one would expect. For
another illustration, still assuming c /∈ NG, J¬(¬φ ∧ ¬hasValue(c))KG would be JφKG rather
than JφKG ∪ {c}, so De Morgan’s law would fail. The next examples shows that actual
SHACL implementations indeed coincide with our semantics.

Example 2.7. The following SHACL shape :notnotShape states that it cannot be so that
the node :myNode is different from itself (i.e., that it must be equal to itself, but specified
with a double negation).

:notnotShape a sh:NodeShape ;

sh:not [sh:not [sh:hasValue :myNode]] .

:notnotShape sh:targetNode :myNode .

In our formal notation, this shapes graph corresponds to the shape schema

:notnotShape← ¬¬hasValue(:myNode)

hasValue(:myNode) ⊆ :notnotShape

Clearly, this shape should validate every graph, also graphs in which the node :myNode is not
present and it indeed does so in all SHACL implementations we tested. This supports our
choice of the natural semantics, rather than the active domain semantics from the literature
[6, 61]. Indeed, in that semantics, this shape will never validate any graph because the
right-hand side of the inclusion will be evaluated to be the empty set.

Example 2.8. Another example, to show that the natural semantics correctly formalizes
SHACL, is the one where previous semantics do not respect the De Morgan’s laws:

20 Formalization

:demorganShape a sh:NodeShape ;

sh:not [

sh:and (

[sh:not [

sh:path :r ;

sh:minCount 1]]

[sh:not [sh:hasValue :myNode]])] .

:demorganShape sh:targetNode :myNode .

This shapes graph corresponds to the shape schema

:demorganShape← ¬(¬∃:r.⊤ ∧ ¬hasShape(:myNode))

hasValue(:myNode) ⊆ :demorganShape

In the formalism of Andreşel et al. [6], this schema does not validate on graphs that do not
mention the node :myNode, but it does in all tested SHACL implementations.

Remark 2.9. The use of active domain semantics has also introduced some errors in previous
work. For instance, in the work by Leinberger et al. [61, Theorem 1] is factually incorrect.
The problem originates with their notion of faithful assignment, which was introduced by
Corman et al. This notion is defined in an active-domain fashion, only considering nodes
actually appearing in the graph. For a concrete counterexample to that theorem, consider
a single shape named s defined as ∃r.⊤, with target hasValue(b). In our terminology, this
means that

D = {s← ∃r.⊤}, and
T = {hasValue(b) ⊆ s}.

On a graph G in which b does not appear, we can assign {s} to all nodes from G with an
outgoing r-edge (meaning that all these nodes satisfy s and no other shape (names)), and
assign the empty set to all other nodes (meaning that all other nodes do not satisfy any
shape). According to the definition, this is a faithful assignment. However, the inclusion
hasValue(b) ⊆ s is not satisfied in the interpretation they construct from this assignment,
thus violating their Theorem 1.

The anomalies in previous work will only occur in corner cases where the shape schema
mentions nodes that not occur in the graph. However, simply disallowing these corner cases
is not a suitable solution. Indeed, shape schemas are designed to validate graphs not known
at design-time, and it should be possible to check conformance of any graph with respect
to any shape schema. As the following example shows, it makes sense that a graph should
conform to a schema in case a certain node does not occur in the graph (or does not occur
in a certain context), and that the natural semantics indeed coincides with the behaviour of
SHACL validators in such cases.

Example 2.10. Consider a schema S with D = ∅ and T consisting of a single inclusion

hasValue(MarcoMaratea) ⊆ ¬∃(author/venue).hasValue(LPNMR22),

which states that Marco Maratea (one of the LPNMR PC chairs) does not author any
LPNMR paper. If Marco Maratea does not occur in the list of of accepted papers, this list
should clearly5 conform to this schema. This example can be translated into actual SHACL,
as shown in Listing 2.1.

We simply give the name :notAnAuthorShape to the shape that holds for all nodes that
do not author any LPNMR paper and subsequently enforce that Marco Maratea satisfy this
shape. We see that indeed, in accordance with our proposed semantics, graphs without a
node :MarcoMaratea validate with respect to this SHACL specification.

2.3 SHACL, Description Logics, and OWL 21

Listing 2.1: The :notAnAuthorShape from Example 2.10 in real SHACL

:notAnAuthorShape a sh:NodeShape ;

sh:not [

sh:path (:author :venue) ;

sh:qualifiedValueShape [sh:hasValue :LPNMR22] ;

sh:qualifiedMinCount 1] .

ex:notAnAuthorShape sh:targetNode :MarcoMaratea .

The definition of I makes — completely independent of the actual language features of
SHACL — a couple of assumptions explicit:

• First of all, SHACL uses unique names assumptions (UNA): each constant is inter-
preted in I as a different domain element.

• Secondly, if p(a, b) does not occur in the graph, it is assumed to be false. However,
if a node c does not occur anywhere in the graph, it is not assumed to not exist: the
domain of I is infinite!

Rephrasing this: SHACL makes the Closed World Assumption (CWA) on predicates (for-
mally, JpKI = JpKG), but not on objects (formally, ∆I = N); the predicates are fixed by the
graph, while the objects can be any node from the domain.

Effective evaluation Since the interpretation defined from a graph has the infinite domain
N , it is not immediately clear that shapes can be effectively evaluated over graphs. As
indicated above, however, we can reduce to a finite interpretation. Let Σ ⊆ N ∪ P be a
finite vocabulary, let φ be a shape over Σ, and let G be a graph. From G we define the
interpretation I⋆ over Σ just like I above, except that the domain of I⋆ is not N but rather

NG ∪ (Σ ∩N) ∪ {⋆},

where ⋆ is an element not in N . We use JφKG⋆ to denote JφKI⋆ and find:

Theorem 2.11 (Adapted Theorem 5.6.1 from [2]). For every x ∈ NG ∪ (Σ ∩N), we have
x ∈ JφKG if and only if x ∈ JφKG⋆ . For all other node names x, we have x ∈ JφKG if and only
if ⋆ ∈ JφKG⋆ .

Hence, for any shape schema S, I conforms to S if and only if I⋆ does.

Theorem 2.11 shows that conformance can be performed by finite model checking.

2.3 SHACL, Description Logics, and OWL

The way we formalized SHACL in the previous section makes the correspondence to a de-
scription logic evident. A shape schema S = (D,T) can be seen as a TBox consisting of two
parts. First, the shape definitions D give us an acyclic TBox consisting of all the formulas

s ≡ φ

for each statement s← φ in D.
Similarly, each inclusion statement τ ⊆ s from the target declarations T gives us the

formulas:
τ ⊑ s

5Technically, the standard is slightly ambiguous with respect to nodes not occurring in the data graph.

22 Formalization

As such, in description logic terminology, a shape schema consists of two parts: an acyclic
TBox (defining the shapes in terms of the given input graph) and a general TBox (containing
the actual integrity constraints).

Despite the strong similarity between SHACL and DLs, and despite the fact that in a
couple of papers, SHACL has been formalized in a way that is extremely similar to description
logics [6,30,61], this connection is not recognized in the community. In fact, some important
stakeholders in SHACL even wrote the following in a blog post explaining why they use
SHACL, rather than OWL:

OWL was inspired by and designed to exploit 20+ years of research in Description
Logics (DL). This is a field of mathematics that made a lot of scientific progress
right before creation of OWL. I have no intention of belittling accomplishments of
researchers in this field. However, there is little connection between this research
and the practical data modeling needs of the common real world software systems.
[75]

thereby suggesting that SHACL and DLs are two completely separated worlds. On top of
that, SHACL is presented by some stakeholders [92] as an alternative to the Web ontology
language OWL [67], which is based on the description logic SROIQ [52].

This naturally begs the question: which misunderstanding is it that drives this wedge
between communities? How can we explain this discrepancy from a mathematical perspective
(thereby patently ignoring strategic, economic, social, and other aspects that play a role).

Our answer is that there are two important differences between OWL and SHACL that
deserve attention. These differences, however, do not contradict our central claim here,
which is that SHACL is a description logic.

1. The first difference is that in SHACL, the data graph (implicitly) represents a
first-order interpretation, while in OWL, it represents a first-order theory
(an ABox). Of course, viewing the same syntactic structure (an RDF graph) as an
interpretation is very different from viewing it as a theory. While this is a discrepancy
between OWL and SHACL, theories as well as interpretations exist in the world of
description logic and as such, this view is perfectly compatible with our central ar-
gument. There is, however, one caveat with this claim that deserves some attention,
and that is highlighted by the use of the world “implicitly”. Namely, to the best of
our knowledge, it is never mentioned that the data graph simply represents a standard
first-order interpretation, and it has not been made formal what exactly the interpreta-
tion is that is associated to a graph. We made this correspondence between graphs an
interpretations explicit in Section 2.2. However, in real SHACL, instead, the language
features are typically evaluated directly on the data graph. There are several reasons
why we believe it is important to make this translation of a graph into an interpretation
explicit.

• This translation makes the assumptions SHACL makes about the data explicit.
For instance, it is often informally stated that “SHACL uses closed-world assump-
tions” [55]; we will make this statement more precise: SHACL uses closed-world
assumptions with respect to the relations, but open-world assumptions on the
domain.

• Once the graph is eliminated, we are in familiar territory. In the field of description
logics a plethora of language features have been studied. It now becomes clear
how to add them to SHACL, if desired. The 20+ years of research mentioned in
[75] suddenly become directly applicable to SHACL.

2. The second difference, which closely relates to the first, is that OWL and SHACL
have a different (default) inference task: the standard inference task at hand

2.4 Correspondence with the recommendation 23

in OWL is deduction, while in SHACL, the main task is checking the conformance of
RDF graphs against shape schemas. In logical terminology, this is evaluating whether
a given interpretation satisfies a theory (TBox), i.e., this is the task of model checking.

Of course, the fact that a different inference task is typically associated with these
languages does not mean that their logical foundations are substantially different. Fur-
thermore, other researchers [61,69,70] have investigated tasks such as satisfiability and
containment (which are among the tasks typically studied in DLs) for SHACL, making
it all the more obvious that the field of description logics has something to offer for
studying properties of SHACL.

This connection with description logics can even inform us on the behaviour of SHACL.
While Theorem 2.11 shows that conformance can be performed by finite model checking,
other tasks typically studied in DLs are not decidable; this can be shown with a small
modification of the proof of undecidability of the description logic ALRC, as detailed by
Schmidt-Schauß [84].

Theorem 2.12. Consistency of a shape schema (i.e., the question whether or not some I
conforms to S) is undecidable.

Following description logic traditions, decidable fragments of SHACL have been studied
already; for instance Leinberger et al. [61] disallow equality, disjointness, and closedness in
shapes, as well as union and Kleene star in path expressions.

2.4 Correspondence with the recommendation

When we talk about SHACL and use a formalization, like our logic, it is important that
results about the logic translate back to the tool we are actually interested in. In some
sense, formalizing SHACL purely as a logic gives us the freedom to study it for its own sake
— the logic onto itself is interesting: a description logic with some unfamiliar features like
equality, disjointness and closedness. But in the other direction, it would be ideal to study
this logic and get results that are of interest to SHACL users. That is what this section is
about: pinpointing exactly how formal SHACL relates to real SHACL.

First, we start with undoing some of the simplifications we made in the previous sections.
We will go over the logic again, but now in such a way that it includes all details that are
relevant to practical conformance checking.

We partition the set of nodes N into three pairwise disjoint infinite sets I, L, and B of
IRIs, literals, and blank nodes, respectively. Literals may have a “language tag” [79]. We
abstract this by assuming an antireflexive relation ∼ on L, where l ∼ l′ represents that l and
l′ are distinct literals with the same language tag. Moreover, we need to introduce a strict
partial order < on N , where the focus is on comparing numeric values, strings, dateTime
values etc. This partial order is based on the one from the SPARQL recommendation for
comparing RDF terms. More information can be found there [50].

Now, we will define an RDF graph in more detail. The correspondence with interpreta-
tions is still straightforward. An RDF triple (s, p, o) is an element of (I ∪ B) × I ×N . We
refer to the elements of the triple as the subject s, the property p, and the object o. An
RDF graph G is a finite set of RDF triples.

SHACL can do many tests on individual nodes, such as testing whether a node is a literal,
or testing whether an IRI matches some regular expression. We abstract this by assuming a
set Ω of node tests; for any node test t and node a, we assume it is well-defined whether or
not a satisfies t.

The grammar of the shapes is slightly extended in features, but restricted in structure.
Most notably, path expressions don’t have an explicit id feature. It is hidden in the E?

24 Formalization

Table 2.3: Conditions for conformance of a node to a shape.

φ S, G, a |= φ if:

hasValue(c) a = c
test(t) a satisfies t
hasShape(s) S, G, a |= def (s,S)
≥nE.ψ ♯{b ∈ JEKG(a) | S, G, b |= ψ} ≥ n
≤nE.ψ ♯{b ∈ JEKG(a) | S, G, b |= ψ} ≤ n
∀E.ψ every b ∈ JEKG(a) satisfies S, G, b |= ψ
eq(F, p) the sets JF KG(a) and JpKG(a) are equal
disj (F, p) the sets JF KG(a) and JpKG(a) are disjoint
closed(P) for all triples (a, p, b) ∈ G we have p ∈ P
lessThan(E, p) b < c for all b ∈ JEKG(a) and c ∈ JpKG(a)
lessThanEq(E, p) b ≤ c for all b ∈ JEKG(a) and c ∈ JpKG(a)
uniqueLang(E) b ≁ c for all b ̸= c ∈ JEKG(a).

construct, which is defined as E ∪ id . Furthermore, id can only explicitly be used in the
equality and disjointness tests. The grammar is as follows:

E ::= p | E− | E1/E2 | E1 ∪ E2 | E? | E∗

F ::= id | E
φ ::= ⊤ | hasShape(s) | hasValue(c) | φ ∧ φ | φ ∨ φ | ¬φ

| ≥nE.φ | ≤nE.φ | ∀E.φ | eq(F, p) | disj (F, p) | closed(Q)

| lessThan(E, p) | lessThanEq(E, p) | uniqueLang(E) | test(t)

with s ∈ I ∪ B; t ∈ Ω; c ∈ N ; n a natural number; E a path expression; p ∈ I; and Q ⊆ I
finite.

The features common between the grammar here, and the grammar from Section 2.1 have
the same semantics as before. However, here, we do not work with first-order interpretations
but directly on RDF graphs. The added features make use of the details we added in this
section. In order to define the semantics of shapes and shape schemas, we first recall that
a path expression E evaluates on an RDF graph G to a binary relation on N , denoted by
JEKG and defined as follows:

• JpKG = {(a, b) | (a, p, b) ∈ G};

• JE−KG = {(b, a) | (a, b) ∈ JEKG};

• JE?KG = {(a, a) | a ∈ N} ∪ JEKG;

• JE1 ∪ E2KG = JE1KG ∪ JE2KG;

• JE1/E2KG = {(a, c) | ∃b : (a, b) ∈ JE1KG & (b, c) ∈ JE2KG}; and

• JE∗KG = the reflexive-transitive closure of JEKG.

Finally, we also define JidKG, for any G, to be simply the identity relation on N .
We define the semantics for when a node v satisfies a shape φ in graph G in context of

a schema S, denoted by S, G, v |= φ in Table 2.3. We use the notation def (s,S) to denote
the shape expression φ associated with the shape name s from the set of shape definitions.

Remark 2.13. Curiously, SHACL provides shapes lessThan and lessThanEq but not their
variants moreThan and moreThanEq (with the obvious meaning). Note that moreThan(E, p)
is not equivalent to ¬lessThanEq(E, p).

2.4 Correspondence with the recommendation 25

Furthermore, we have to restrict the allowed targeting queries to the ones actually allowed
by real SHACL. Given a parameter t ∈ N , these target declarations are:

Node targets which target a specific node in the graph. It corresponds to the shape
expression hasValue(t).

Class-based targets which targets all nodes in the graph of RDF-type t. It corresponds
to the shape expression ∃rdf:type/rdfs:subClassOf∗.hasValue(t).

Implicit class targets which targets all nodes in the graph that are of type s where s is
the name of the shape associated with the target declaration. This is expressible as a
class-based target declaration.

Subjects-of targets which targets all nodes in the graph that are the subject of triples
with predicate t. It corresponds to the shape expression ∃t.⊤.

Objects-of targets which targets all nodes in the graph that are the object of triples with
predicate t. It corresponds to the shape expression ∃t−.⊤.

We are now ready to state the main result of this section:

Theorem 2.14. Every formal SHACL schema can be written as a SHACL shapes graph,
and vise versa.

The proof of this Theorem will be given by two translations described in the following
sections. First, in Section 2.4.1 we give a translation from real SHACL to formal SHACL.
Then, in Section 2.4.2, we give a translation from formal SHACL to real SHACL.

2.4.1 Translating real SHACL to formal SHACL

In this section we define the function t which maps a SHACL shapes graph G to a schema
(D,T). It is inspired by a similar treatment by Corman et al. [30] who translate SHACL
into their formalization. Here, we try to amend some inaccuracies and be more complete
towards real SHACL.

We assume that:

1. The shapes graph is well-formed6; and

2. All shapes are explicitly declared to be a sh:NodeShape or sh:PropertyShape.

The first assumption simply states that the RDF graph actually represents a shapes graph.
The second one is for simplicity of the translation. In real SHACL, shapes do not need to
be explicitly declared a node or property shape. However, it can be inferred.7

Let the sets Gn, Gp and Gt respectively be the sets of node shape names, property shape
names and the names of shapes that have a target declaration associated with it. Let dx
denote the set of RDF triples in G with x as the subject. The set of shape definitions D
has a definition for every s ∈ Gn : s ← tnodeshape(ds) and a definition for every s ∈ Gp :
s ← tpropertyshape(ds). The set of target declarations has an inclusion statement for every
s ∈ Gt : ttarget(ds) ⊆ s. The three important functions tnodeshape(dx), tpropertyshape(dx), and
ttarget(dx) are defined in the paragraphs below.

Remark 2.15. We treat node shapes and property shapes separately. In particular, cardinal-
ity and unique language constraints are only treated below under property shapes. Strictly
speaking, however, these constraints may also be used in node shapes, where they are re-
dundant, as the count equals one in this case. For simplicity, we assume the shapes graph
does not contain such redundancies.

6https://www.w3.org/TR/shacl/#dfn-well-formed
7See paragraph 2.2 and 2.3 from the specification [86]

26 Formalization

Defining tnodeshape(dx)

This function translates SHACL node shapes to shapes in the formalization. We define
tnodeshape(dx) to be the following conjunction:

tshape(dx)∧ tlogic(dx)∧ ttests(dx)∧ tvalue(dx)∧ tin(dx)∧ tclosed(dx)∧ tpair (id , dx)∧ tlanguagein(dx)

where we define tshape(dx), tlogic(dx), ttests(dx), tvalue(dx), tin(dx), tclosed(dx), tlangin(dx) and
tpair (id , dx) in the following paragraphs.

Defining tshape(dx) This function translates the Shape-based Constraint Components8

from dx to shapes from the formalization. This function covers the SHACL keywords:
sh:node and sh:property.

We define tshape(dx) to be the conjunction:∧
(x,sh:node,y)∈dx

hasShape(y) ∧
∧

(x,sh:property,y)∈dx

hasShape(y)

Defining tlogic(dx) This function translates the Logical Constraint Components9 from dx
to shapes from the formalization. This function covers the SHACL keywords: sh:and, sh:or,
sh:not, sh:xone.

We define tlogic(dx) as follows:∧
(x,sh:not,y)∈dx

(¬hasShape(y)) ∧

∧
(x,sh:and,y)∈dx

(
∧
z∈y

hasShape(z)) ∧

∧
(x,sh:or,y)∈dx

(
∨
z∈y

hasShape(z)) ∧

∧
(x,sh:xone,y)∈dx

(
∨
a∈y

(a ∧
∧

b∈y−{a}

¬hasShape(b)))

where we note that the object y of the triples with the predicate sh:and, sh:or, or sh:xone
is a SHACL list.

Defining ttests(dx) This function translates the Value Type Constraint Components10,
Value Range Constraint Components11, and String-based Constraint Components12, with
exception to the sh:languageIn keyword which is handled separately with the function
tlanguagein , from dx to shapes from the formalization. This function covers the SHACL
keywords:

sh:class, sh:datatype, sh:nodeKind, sh:minExclusive, sh:maxExclusive,
sh:minLength, sh:maxLength, sh:pattern.

We define ttests(dx) as follows:

ttests′(dx) ∧
∧

(x,sh:class,y)∈dx

∃rdf:type/rdfs:subclassOf∗.hasValue(y)

8https://www.w3.org/TR/shacl/#core-components-shape
9https://www.w3.org/TR/shacl/#core-components-logical

10https://www.w3.org/TR/shacl/#core-components-value-type
11https://www.w3.org/TR/shacl/#core-components-range
12https://www.w3.org/TR/shacl/#core-components-string

2.4 Correspondence with the recommendation 27

where ttests′(dx) is defined next. Let Γ denote the set of keywords just mentioned above,
except for sh:class.

ttests′(dx) =
∧
c∈Γ

∧
(x,c,y)∈dx

test(ωc,y)

where ωc,y is the node test in Ω corresponding to the SHACL constraint component corre-
sponding to c with parameter y. For simplicity, we omit the sh:flags for sh:pattern.

Defining tpair (id , dx) This function translates the Property Pair Constraint Components13

when applied to a node shape from dx to shapes from the formalization. This function covers
the SHACL keywords: sh:equals, sh:disjoint, sh:lessThan. sh:lessThanOrEquals.

We define the function tpair(id , dx) as follows:

• If ∃p : (x, sh:lessThan, p) ∈ dx or (x, sh:lessThanEq, p) ∈ dx, then

tpair(id , dx) = ⊥

• Otherwise,

tpair(id , dx) =
∧

(x,sh:equals,p)∈dx

eq(id , p) ∧
∧

(x,sh:disjoint,p)∈dx

disj (id , p)

Defining tlanguagein(dx) This function translates the constraint component Language In
Constraint Component14 from dx to shapes from the formalization. This function covers the
SHACL keyword: sh:languageIn.

The function tlanguagein(E, dx) is defined as follows:

tlanguagein(E, dx) =
∧

(x,sh:languageIn,y)∈dx

∀E.
∨

lang∈y

test(ωlang)

where y is a SHACL list and ωlang is the element from Ω that corresponds to the test that
checks if the node is annotated with the language tag lang .

Defining other constraint components These functions translate the Other Constraint
Components15 from dx to shapes from the formalization. This function covers the SHACL
keywords: sh:closed, sh:ignoredProperties, sh:hasValue, sh:in.

We define the following functions:

tvalue(dx) =
∧

(x,sh:hasValue,y)∈dx

hasValue(y)

tin(dx) =
∧

(x,sh:in,y)∈dx

(
∨
a∈y

hasValue(a))

Let P be the set of all properties p ∈ I such that (y, sh:path, p) ∈ G where y is a property
shape such that (x, sh:property, y) ∈ dx union the set given by the SHACL list specified by
the sh:ignoredProperties parameter. Then, we define the function tclosed(dx) as follows:

tclosed(dx) =

{
⊤ if (x, sh:closed, true) ̸∈ dx
closed(P) otherwise

13https://www.w3.org/TR/shacl/#core-components-property-pairs
14https://www.w3.org/TR/shacl/#LanguageInConstraintComponent
15https://www.w3.org/TR/shacl/#core-components-others

28 Formalization

Defining tpath(pp)

In preparation of the next Subsection, this function translates the Property Paths to path
expressions. This part of the translation deals with the SHACL keywords:

sh:inversePath, sh:alternativePath, sh:zeroOrMorePath,
sh:oneOrMorePath, sh:zeroOrOnePath, sh:alternativePath.

For an IRI or blank node pp representing a property path, we define tpath(pp) as follows:

tpath(pp) =

pp if pp is an IRI

tpath(y)− if ∃y : (pp, sh:inversePath, y) ∈ G
tpath(y)∗ if ∃y : (pp, sh:zeroOrMorePath, y) ∈ G
tpath(y)/tpath(y)∗ if ∃y : (pp, sh:oneOrMorePath, y) ∈ G
tpath(y)? if ∃y : (pp, sh:zeroOrOnePath, y) ∈ G⋃

a∈y tpath(a)
if ∃y :(pp, sh:alternativePath, y) ∈ G and

y is a SHACL list

tpath(a1)/ . . . /tpath(an) if pp represents the SHACL list [a1, . . . , an]

Defining tpropertyshape(dx)

This function translates SHACL property shapes to shapes in the formalization. Let pp be
the property path associated with dx. Let E be tpath(pp). We define tpropertyshape(dx) as the
following conjunction:

tcard(E, dx) ∧ tpair (E, dx) ∧ tqual(E, dx) ∧ tall(E, dx) ∧ tuniquelang(E, dx)

where we define tcard , tpair , tqual , tall , and tuniquelang in the following subsections.

Defining tcard(E, dx) This function translates the Cardinality Constraint Components16.
from dx to shapes from the formalization. This function covers the SHACL keywords:
sh:minCount, sh:maxCount.

We define the function tcard(E, dx) as follows:∧
(x,sh:minCount,n)∈dx

≥n E.⊤ ∧
∧

(x,sh:maxCount,n)∈dx

≤n E.⊤

Defining tpair (E, dx) This function translates the Property Pair Constraint Components17

when applied to a property shape from dx to shapes from the formalization. This func-
tion covers the following SHACL keywords: sh:equals, sh:disjoint, sh:lessThan, and
sh:lessThanOrEquals.

We define the function tpair(E, dx) as follows:∧
(x,sh:equals,p)∈dx

eq(E, p) ∧

∧
(x,sh:disjoint,p)∈dx

disj (E, p) ∧

∧
(x,sh:lessThan,p)∈dx

lessThan(E, p) ∧

∧
(x,sh:lessThanOrEquals,p)∈dx

lessThanEq(E, p)

16https://www.w3.org/TR/shacl/#core-components-count
17https://www.w3.org/TR/shacl/#core-components-property-pairs

2.4 Correspondence with the recommendation 29

Defining tqual(E, dx) This function translates the Qualified Shape-based Constraint Com-
ponents18 from dx to shapes from the formalization. This function covers the SHACL key-
words:

sh:qualifiedValueShape, sh:qualifiedMinCount, sh:qualifiedMaxCount,
sh:qualifiedValueShapesDisjoint.

There are two cases: either sh:qualifiedValueShapesDisjoint is set to true or it is set
to false.

tqual(E, dx) =

{
tsibl(E, dx) if (x, sh:qualifiedValueShapesDisjoint, true) ∈ dx
tnosibl(E, dx) otherwise

where we define tsibl(E, dx) and tnosibl(E, dx) next. Let ps = {v | (v, sh:property, x) ∈ G}.
We define the set of sibling shapes

sibl = {w | ∃v ∈ ps ∃y(v, sh:property, y) ∈ G : (y, sh:qualifiedValueShape, w) ∈ G}.

We also define:

Q = {y | (x, sh:qualifiedValueShape, y) ∈ dx}
Qmin = {z | (x, sh:qualifiedMinCount, z) ∈ dx}
Qmax = {z | (x, sh:qualifiedMaxCount, z) ∈ dx}

We now define

tsibl(E, dx) =
∧
y∈Q

∧
z∈Qmin

≥z E.(hasShape(y) ∧
∧

s∈sibl

¬hasShape(s))

∧
∧
y∈Q

∧
z∈Qmax

≤z E.(hasShape(y) ∧
∧

s∈sibl

¬hasShape(s))

and

tnosibl(E, dx) =
∧
y∈Q

∧
z∈Qmin

≥z E.hasShape(y) ∧
∧
y∈Q

∧
z∈Qmax

≤z E.hasShape(y).

Defining tall(E, dx) This function translates the constraint components that are not spe-
cific to property shapes, but which are applied on property shapes.

We define the function tall(E, dx) to be:

∀E.(tshape(dx) ∧ tlogic(dx) ∧ ttests(dx) ∧ tin(dx) ∧ tclosed(dx) ∧ tlanguagein(dx)) ∧ tallvalue(E, dx)

where

tallvalue(E, dx) =

{
⊤ if ̸ ∃v : (x, sh:hasValue, v) ∈ dx
≥1E.tvalue(dx) otherwise

and tshape , tlogic , ttests , tvalue , tlanguagein , and tclosed are as defined earlier. Note the treatment
of the sh:hasValue parameter when used in a property shape. Unlike the other definitions,
it is not universally quantified over the value nodes given by E.

18https://www.w3.org/TR/shacl/#QualifiedValueShapeConstraintComponent

https://www.w3.org/TR/shacl/#dfn-sibling-shapes

30 Formalization

Defining tuniquelang(E, dx) This function translates the constraint component Unique Lang
Constraint Component19 from dx to shapes from the formalization. This function covers the
SHACL keyword: sh:uniqueLang.

The function tuniquelang(E, dx) is defined as follows:

tuniquelang(E, dx) =

{
uniqueLang(E) if (x, sh:uniqueLang, true) ∈ dx
⊤ otherwise

Defining ttarget(dx)

This function translates the Target declarations to shapes from the formalization. This
function covers the SHACL keywords:

sh:targetNode, sh:targetClass, sh:targetSubjectsOf, sh:targetObjectsOf.

We define the function as follows:

ttarget(dx) =
∨

(x,sh:targetNode,y)∈dx

hasValue(y) ∨

∨
(x,sh:targetClass,y)∈dx

∃rdf:type/rdf:subclassOf∗.hasValue(y) ∨

∨
(x,sh:targetSubjectsOf,y)∈dx

∃y.⊤ ∨

∨
(x,sh:targetObjectsOf,y)∈dx

∃y−.⊤

If none of these triples are in dx we define ttarget(dx) = ⊥

2.4.2 Translating formal SHACL to real SHACL

Every shape schema in formal SHACL can be viewed as a shapes graph if the target dec-
larations correspond to the ones supported by real SHACL. We will assume this is the case
for this section.

Remark 2.16. This requirement on the target declarations is not as strict as it seems. In
Chapter 4, Theorem 4.20, we show that we can translate any SHACL schema that does not
use closure constraints (or recursion) to a schema that uses only target declarations present
in real SHACL.

The translation will be given in two parts. First, given a shape definition s← φ we define
the function gd(s, φ) that gives us the corresponding (partial) shapes graph defining shape
s. Then, given a targeting declaration τ ⊆ s we define the function gt(s, τ) which returns
the triple representing the real SHACL target declaration corresponding to the inclusion
statement τ ⊆ s.

The general translation is as follows: given a shape schema (D,T), the shapes graph is
given by: ⋃

s←φ∈D

gd(s, φ) ∪
⋃

τ⊆s∈T

gt(s, τ)

19https://www.w3.org/TR/shacl/#UniqueLangConstraintComponent

2.4 Correspondence with the recommendation 31

Defining gt(s, τ)

This function assumes τ is one of the allowed target expressions discussed at the beginning
of this section. For every one of these cases, gt(τ, s) gives us a singleton graph containing
one triple expressing the target expression. We will go over the possible cases for τ :

• gt(s, hasValue(t)) = {(s, sh:targetNode, t)}

• gt(s,∃rdf:type/rdfs:subClassOf.hasValue(t)) = {(s, sh:targetClass, t)}

• gt(s,∃t.⊤) = {(s, sh:targetSubjectsOf, t)}

• gt(s,∃t−.⊤) = {(s, sh:targetObjectsOf, t)}

Defining gp(b, E)

Before we start defining gd(s, φ) we have to define a function gp(b, E) that translates a path
expression E to a RDF graph that represents the path expression according to the SHACL
specification and where b ∈ B is the blank node that represents that path expression.

Note that according to the SHACL specification, path expressions are blank nodes, except
when it is simply a property. For simplification of notation, we assume it will always be a
blank node (and we will translate E = p to the immediate equivalent: p∪ p). We define the
function for every possible E:

• gp(b, p) = gp(b, p ∪ p)

• gp(b, E−1) =
{
b sh:inversePath b1 .

}
∪ gp(b1, E1)

• gp(b, E1/E2) =

{ b rdf:first b1 ;

rdf:next [rdf:first b2 ;

rdf:rest rdf:nil] .

}
∪ gp(b1, E1) ∪ gp(b2, E2)

• gp(b, E1 ∪ E2) =
{
b sh:alternativePath (b1 b2) .

}
∪ gp(b1, E1) ∪ gp(b2, E2)

• gp(b, E1?) =
{
b sh:zeroOrOnePath b1 .

}
∪ gp(b1, E1)

• gp(b, E∗1) =
{
b sh:zeroOrMorePath b1 .

}
∪ gp(b1, E1)

Defining gd(s, φ)

We will give a description of the output of gd(s, φ) for every possible value of φ.

• gd(s,⊤) =

{
s a sh:NodeShape ;

sh:node [] .

}

• gd(s, hasShape(s′)) =

{
s a sh:NodeShape ;

sh:node s′ .

}

• gd(s, hasValue(c)) =

{
s a sh:NodeShape ;

sh:in (c) .

}

• gd(s, φ1 ∧ φ2) =

{
s a sh:NodeShape ;

sh:and (b1 b2) .

}
∪ gd(b1, φ1) ∪ gd(b2, φ2)

• gd(s, φ1 ∨ φ2) =

{
s a sh:NodeShape ;

sh:or (b1 b2) .

}
∪ gd(b1, φ1) ∪ gd(b2, φ2)

32 Formalization

• gd(s,¬φ1) =

{
s a sh:NodeShape ;

sh:not b1 .

}
∪ gd(b1, φ1)

• gd(s,≥nE.φ1) =

{ s a sh:PropertyShape ;

sh:path bE ;

sh:qualifiedMinCount n ;

sh:qualifiedValueShape b1 .

}
∪ gp(bE , E) ∪ gd(b1, φ1)

• gd(s,≤nE.φ1) =

{ s a sh:PropertyShape ;

sh:path bE ;

sh:qualifiedMaxCount n ;

sh:qualifiedValueShape b1 .

}
∪ gp(bE , E) ∪ gd(b1, φ1)

• gd(s,∀Eφ1) =

{ s a sh:PropertyShape ;

sh:path bE ;

sh:node b1 .

}
∪ gp(bE , E) ∪ gd(b1, φ1)

• gd(s, eq(p, id)) =

{
s a sh:NodeShape ;

sh:equals p .

}

• gd(s, eq(p,E)) =

{ s a sh:PropertyShape ;

sh:path bE ;

sh:equals p .

}
∪ gp(bE , E)

• gd(s, disj (p, id)) =

{
s a sh:NodeShape ;

sh:disjoint p .

}

• gd(s, disj (p,E)) =

{ s a sh:PropertyShape ;

sh:path bE ;

sh:disjoint p .

}
∪ gp(bE , E)

• gd(s, closed(Q)) =

{ s a sh:NodeShape ;

sh:closed true ;

sh:ignoredProperties Q .

}

• gd(s, lessThan(p,E)) =

{ s a sh:PropertyShape ;

sh:path bE ;

sh:lessThan p .

}
∪ gp(bE , E)

• gd(s, lessThanEq(p,E)) =

{ s a sh:PropertyShape ;

sh:path bE ;

sh:lessThanEq p .

}
∪ gp(bE , E)

• gd(s, uniqueLang(E)) =

{ s a sh:PropertyShape ;

sh:path bE ;

sh:uniquelang true .

}
∪ gp(bE , E)

• gd(s, test(t)) is dependent on the test that t represents.

3
Recursion

In Chapter 1, we went over some of the ideas for what recursion for SHACL should look
like, based on different semantics from the literature [6,28,30]. In this chapter, we formalize
these ideas within the framework laid out in Chapter 2 and compare them with established
notions of recursion from the knowledge representation literature.

We put forward a principled way to define semantics of recursive SHACL, building on
Approximation Fixpoint Theory (AFT), an abstract lattice-theoretic framework originally
designed to unify semantics of non-monotonic logics [34] with applications, among others,
in logic programming, autoepistemic logic, default logic, abstract argumentation, and active
integrity constraints [16,26,35,62,72,90].

There are several advantages to defining semantics of SHACL in this way:

• It is simple and straightforward : the power of AFT, comes largely from the fact that
all that is required to apply it, is to define a (three-valued) semantic operator (sim-
ilar to Fitting’s immediate consequence operator for logic programs [42]). In many
domains (including SHACL), there is a natural choice for such an operator; AFT then
immediately induces all major classes of semantics.

• It provides confidence: AFT guarantees that the developed semantics follow well-
established principles in non-monotonic reasoning, rather than ad-hoc solutions in
which one can encounter issues that have been solved many times before, for instance
that stable semantics respect principles such as groundedness [22]. All the application-
specific work that needs to be done is to define a suitable lattice of “interpretations”,
and a suitable three-valued operator on this lattice. Defining such an operator is often
significantly easier than directly defining a semantics. Even in case semantics are
already defined, applying AFT can be a sanity check.

• It provides access to a large body of theoretical results, including theorems on stratifi-
cation [17,99], predicate introduction [100], and strong equivalence [94], thereby elimi-
nating the need to “reinvent the wheel” by rediscovering these results for SHACL.

In a nutshell, our main contribution is establishing formal foundations for the study of
recursive SHACL.

3.1 Preliminaries: Approximation Fixpoint Theory

A complete lattice ⟨L,≤⟩ is a set L equipped with a partial order ≤, such that every set
S ⊆ L has a least upper bound and a greatest lower bound. A complete lattice also has a

33

34 Recursion

least element ⊥ and a greatest element ⊤. A function O : L→ L will be called an operator
here. We say O is ≤-monotone if x ≤ y implies that O(x) ≤ O(y). An element x ∈ L is
a fixpoint of O if O(x) = x. Every monotone operator O in a complete lattice has a least
fixpoint, denoted lfp(O).

Given a lattice L, AFT uses a bilattice L2. We define projections for pairs (x, y) ∈ L2

as: (x, y)1 = x and (x, y)2 = y. These pairs are used to approximate elements in the interval
[x, y] = {z | x ≤ z ∧ z ≤ y}. We call (x, y) ∈ L2 consistent if x ≤ y, that is, if [x, y] is
non-empty. We use Lc to denote the set of consistent elements.

The precision order on L2 is defined as (x, y) ≤p (u, v) if x ≤ u and v ≤ y. If (u, v) is
consistent, this means that (x, y) approximates all elements approximated by (u, v).

In its original form, AFT makes use of approximators, which are operators on L2, but
[36] showed that all the consistent fixpoints studied in AFT are uniquely determined by an
approximator’s restriction to Lc and developed a theory of consistent approximators.

An operator A : Lc → Lc is a consistent approximator of O if it is ≤p-monotone and
coincides with O on L, meaning A(x, x) = (O(x), O(x)) for all x ∈ L.

AFT studies fixpoints of O using fixpoints of A. Some fixpoints of interest are the
following:

• The A-Kripke-Kleene fixpoint is the ≤p-least fixpoint of A; it approximates all fixpoints
of O.

• A partial A-stable fixpoint is a pair (x, y) such that x = lfp(A(·, y)1) and y = lfp(A(x, ·)2),
where A(·, y)1 : L→ L maps z to A(z, y)1 and similarly for A(x, ·)2.

• The A-well-founded fixpoint is the least precise (≤p-least) partial A-stable fixpoint.

• An A-stable fixpoint of O is a fixpoint x of O such that (x, x) is a partial A-stable
fixpoint.

These definitions allow reconstructing all major equally-named logic programming seman-
tics by taking for O the immediate consequence operator TP from van Emden and Kowalski
[96]; for A we take Fitting’s three- (or four-) valued extension ΨP [42].

3.2 Fixpoint Semantics for Recursive SHACL

For the rest of this Chapter, we use the formalization from Section 2.1 and fix a SHACL
schema S = (D,T) and a graph-interpretation I.

In Section 2.1, we mentioned that if D is non-recursive, it uniquely induces a complete
interpretation I ′ := I⋄D in which all constraints in T are to be verified. When D is recursive,
however, the situation becomes more complex. On the one hand, there is a range of possible
semantics dealing with recursion. On the other hand, some of the semantics yield not a
single interpretation I ′, but either a set of them, or a three-valued interpretation. This will
give us a choice between brave and cautious validation; the focus of this chapter is on the
treatment of negation, but we briefly discuss brave and cautious validation below.

To apply AFT, the first step is to determine a suitable lattice. In our case, the obvious
candidate is the lattice LI (from now on, denoted L) of all interpretations I ′ with domain
∆I that agree with I on N ∪ P , or in other words, the set of interpretations that expand I.
This set is equipped with the standard truth order, I1 ≤t I2 if JsKI1 ⊆ JsKI2 for all s ∈ S.

Next, we need a semantic operator TD. The role of the semantic operator is to update the
value of the interpretation of the shapes. In analogy with logic programming, its definition
is straightforward: it maps the interpretation I ′ to TD(I ′) such that for each shape name s

with defining rule s← φ, we define the truth value for s in I ′ as TD(I ′)(s) = JφKI
′
.

3.2 Fixpoint Semantics for Recursive SHACL 35

Table 3.1: Three-valued semantics of shapes.

φ JφKI(a)

⊤ t

hasValue(c)

{
t if a = c

f otherwise

hasShape(s) JsKI(a)
¬φ1 ¬Jφ1KI(a)
φ1 ∧ φ2 min≤t(Jφ1KI(a), Jφ2KI(a))
φ1 ∨ φ2 max≤t(Jφ1KI(a), Jφ2KI(a))

≥nE.φ1

t if ♯{b ∈ JEKI(a) | Jφ1KI(b) = t} ≥ n,
f if ♯{b ∈ JEKI(a) | Jφ1KI(b) ≥t u} < n,

u otherwise

eq(p,E)

{
t if a ∈ Jeq(p,E)KI

f otherwise

disj (p,E)

{
t if a ∈ Jdisj (p,E)KI

f otherwise

closed(Q)

{
t if JpKI(a) = ∅ for all p ∈ P \Q
f otherwise

With the lattice ⟨L,≤t⟩, elements of Lc are pairs I = (I1, I2) of two interpretations with
I1 ≤t I2; such pairs correspond one-to-one to three-valued interpretations that assign each
s ∈ S a function ∆ → {t, f ,u}, mapping a to t if a in JsKI1 , to f if a ̸∈ JsKI2 and to u
otherwise (in other words, I1 represents what is certainly true and I2 what is possibly true).
From now on, we simply refer to elements of Lc as three-valued interpretations.

We can evaluate a shape φ in a three-valued interpretation I with a straightforward
extension of Kleene’s truth tables, as also used in previous studies of recursive SHACL
[6, 30]. For a node a ∈ N , we write JφKI(a) to denote three valued evaluation of a for φ in
I. Table 3.1 gives the three-valued evaluation of a shape. This table makes use of the truth
order ≤t on truth values defined as f ≤t u ≤t t, and the negation on truth values defined as
usual: ¬t = f ;¬f = t;¬u = u.

Once a three-valued evaluation of shapes is defined, an approximator is obtained directly.
Like the operator, the approximator updates the value of each shape symbol according to
its defining rule: it maps I to ΨD(I) where for each shape s ∈ S defined by the rule s← φ,
ΨD(I)(s) = JφKI .

Theorem 3.1. ΨD is a consistent approximator of TD.

Proof. The fact that ΨD is ≤p-monotonic follows directy from the fact that the three-valued
truth evaluation is ≤p-monotonic: given two three-valued interpretations I and I′, when
I ≤p I′, it is easily verified using the definition from Table 3.1 that ΨD(I) ≤p ΨD(I′).
Furthermore, it is easy to verify that on I = (I1, I2) with I1 = I2, the two-valued evaluation
of Table 2.2 and the three-valued evaluation of Table 3.1 coincide. From that it follows that
ΨD indeed agrees with TD on L.

At this point, AFT dictates what the supported models (fixpoints of TD), (partial) stable
models (ΨD-stable fixpoints), well-founded model (ΨD-well-founded fixpoint), and Kripke-
Kleene model (ΨD-KK fixpoint) of D are. It is worth stressing that to arrive to this point,
we made two choices:

36 Recursion

Figure 3.1: Visual representation of the example interpretation.

a

c

b

Pfizer

cl
os
eT
o closeT

o

closeTo

vaccinated

e

d

f

Cough

closeTo

cl
os
eT
o closeT

o

hasSymptoms

• The first was our choice of order on the lattice. We opted here for the truth order, but
its inverse would also have been a possible choice. Several of the semantics induced
by AFT aim to minimize models in the chosen order for reasons of groundedness [22],
e.g., if s has s ← s as defining rule, in stable and well-founded semantics, our chosen
order would result in no nodes satisfying s.

• The second choice we made is which three-valued truth evaluation to use; we opted
for the most obvious choice: a direct extension of Kleene’s three-valued truth tables,
which was used in other studies of recursive SHACL as well [6, 30].

Given these choices, models of the different types, like stable- and well-founded models,
are defined by AFT, and hence semantics for brave and cautious validation under of each
semantics are established as well.

Definition 3.2. Let σ ∈ {KK ,WF} and let I be the σ-model. We say that I cautiously
(resp. bravely) σ-validates with respect to (D,T) if Jφ ∧ ¬hasShape(s)KI = f (resp. Jφ ∧
¬hasShape(s)KI ≤t u) for every φ ⊆ s in T .

Let σ ∈ {St ,Sup} and let M be the set of σ-models. We say that I cautiously (resp.

bravely) σ-validates with respect to (D,T) if Jφ∧¬hasShape(s)KI
′

= f for all (resp. for some)
I ′ ∈M for every φ ⊆ s in T .

Let us illustrate the differences between the various types of models on a small example.

Example 3.3. Consider binary predicates closeTo, hasSymptoms, and vaccinated and an
interpretation I with domain {a, b, c, d, e, f,Pfizer ,Cough}, where a, . . . , f represent people
(divided in two cliques of three “close” friends); one person (c) is vaccinated and one person
(d) shows Covid symptoms. This interpretation is visually depicted in 3.1.

We define two shapes: the shape of people at risk (those who (1) are not vaccinated and
(2) have symptoms or are close to someone at risk) and the shape of people who can go to
office (those who are not at risk), as formalized below:

atRisk ← ¬∃vaccinated .⊤ ∧ (∃hasSymptoms.⊤ ∨ ∃closeTo.hasShape(atRisk))

canWork ← ¬hasShape(atRisk)

These shape definitions can be written in real SHACL, as shown in Listing 3.1. For this set
of shape definitions, the unique stable model equals the well-founded model and states that
d, e, and f are at risk, while a, b, and c can work. In the Kripke-Kleene model, d, e, and
f are again at risk, c is not at risk (and hence can work), but for a and b it is unknown
whether they are at risk. There are two supported models: the stable model and one in
which everyone except for c is at risk.

3.3 Comparison with Existing Semantics

Corman et al. [30] already defined a supported semantics, Andreşel et al. [6] a stable seman-
tics, and later Chmuroviĉ and Šimkus [28] defined the well-founded semantics directly for

3.3 Comparison with Existing Semantics 37

Listing 3.1: The atRist and canWork shapes from Example 3.3 written in real SHACL

:atRisk a sh:NodeShape ;

sh:not [

sh:path :vaccinated ;

sh:minCount 1 ;

] ;

sh:or (

[sh:path :hasSymptoms ;

sh:minCount 1 ;

]

[sh:path :closeTo ;

sh:qualifiedValueShape :atRisk ;

sh:qualifiedMinCount 1 ;

]

) .

:canWork a sh:NodeShape ;

sh:not :atRisk .

SHACL. For clarity, we refer to the first two semantics as CRS-supported, and ACORSS-
stable semantics respectively, and to the semantics induced by AFT, e.g., as AFT-stable.
Both Corman et al. and Andresel et al. focus on brave validation, but Andreşel et al. also
mention the possibility of cautious validation. The main results on correspondence between
the semantics are summarized in this Section.

Interestingly, Corman et al. [30, Definition 5] already defined the three-valued immediate
consequence operator ΨD (there denoted T). While the focus of that work was on supported
semantics, we now showed that in fact, by defining the approximator ΨD, they had everything
at hand to define the full. Since Corman et al. also characterized supported models as
fixpoints of ΨD (in their Definition 17), our semantics and theirs coincide.

Theorem 3.4. I CRS-validates (D,T) if and only if I bravely Sup-validates (D,T).

Proof. This follows directly from the fact Corman et al. [30] also defined an “Immediate
evaluation operator T”, which coincides with our operator TD and their supported models
(there called faithful assignments), are simply fixpoints of T .

The situation is somewhat different for stable semantics, which Andreşel et al. [6] defined
in terms of level mappings.

Definition 3.5 ([6]). Let I ′ be an interpretation. A level assignment for I ′ is a function

level that maps tuples in {(φ, a) | JφKI
′
(a) = t} to integers and satisfies

1. level(φ1 ∧ φ2, a) = max{level(φ1, a), level(φ2, a)},

2. level(φ1 ∨ φ2, a) = min{level(φi, a) | i ∈ {1, 2} ∧ JφiKI
′
(a) = t},

3. level(≥nE.φ) is the smallest k ≥ 0 for which there are n elements b1, . . . bn ∈ ∆I′ such

that level(φ, bi) ≤ k, (a, bi) ∈ JEKI
′
, and JφKI

′
(bi) = t, and

4. level(∀E.φ, a) = max({level(φ, b) | (a, b) ∈ JEKI
′
∧ JφKI

′
(b) = t}.

A supported model I ′ is an ARCOSS-stable model if there exists a level assignment for
I ′ such that level(s, a) > level(φ, a) for each rule s← φ in D and each a with JsKI

′
(a) = t.

38 Recursion

We recall the definition of “shape normal form” of Andreşel et al. [6]:

Definition 3.6. D is in shape normal form if all rules in D have one of the following forms:

s← ⊤ s← hasValue(c) s← hasShape(s′) ∧ hasShape(s′′)
s← disj (p,E′) s← ¬hasShape(s′) s← hasShape(s′) ∨ hasShape(s′′)
s← eq(p,E′) s← ∀E.hasShape(s′) s← ≥nE.hasShape(s′)

Theorem 3.7. If I ′ is an AFT-stable model of D, then it is also an ACORSS-stable model.
If D is in shape normal form, the converse also holds.

We will show both directions separately in the following propositions.

Proposition 3.8. Let D be a set of shape definitions. LetM be a (two-valued) Σ-interpretation.
If M is an ΨD-stable model, then M is also an ACORSS-stable model for D.

All interpretations are assumed to agree on Σ∩ (N ∪P), i.e., the only differ on the shape
symbols. When constructing interpretations, their value of the agreed upon symbols will not
be mentioned explicitly here.

Proof. We define the sequence of (two-valued) Σ-interpretations (Ii)i∈N with n ∈ N as follows:

• I0 = the interpretation such that JsKI0 = ∅ for all s ∈ S,

• Ii = ΨD(Ii−1,M)1,

• In = lfp(ΨD(·,M)1).

Even though there are an infinite number of possible interpretations, our sequence is always
finite. This is because there is a finite number of elements from the domain that are relevant
to the interpretation (the ones actually used in the interpretation of predicates, and the ones
mentioned in the shape). As ΨD is ≤p-monotone, and there are a finite number of possible
interpretations, this sequence will reach a fixed-point.

We construct a level mapping level as follows.

• For all formulas φ of the form ⊤, hasValue(c), ¬ψ, eq(p,E) or disj (p,E), if a ∈ JφKM ,
then level(φ, a) = 0.

• Next, for every a ∈ JsKIi : level(s, a) is the smallest j such that a ∈ JsKIj .

• Now, the rest of the definition of level follows from these assignments together with
the definition of a level assignment.

To show that M is indeed an ACORSS-stable model, we show that if level(φ, a) = i,
then level(s, a) ≥ i+ 1 with s← φ ∈ D.

Before we can prove this claim, we show that for all i ∈ N : JφK(Ii,M)(a) = t ⇐⇒
level(φ, a) ≤ i.

This is proven by induction on the structure of φ. First, consider the case for φ is
⊤, hasValue(c), ¬ψ, eq(p,E) or disj (p,E). Since all considered interpretations agree on
constants and predicate symbols, this means that if JφK(Ii,M)(a) = t, then level(φ, a) ≤ i
as level(φ, a) = 0. The converse clearly holds as well. We consider the following inductive
cases:

When φ is of the form hasShape(s), assume JsK(Ii,M)(a) = t. Then, we have defined
level(s, a) to be the smallest j such that JsKIj (a) = t, clearly j ≤ i, therefore level(s, a) ≤ i.
For the other direction assume level(s, a) ≤ i, therefore, by our definition from before and
the definition of the sequence (Ii)i∈N, JsKIi(a) = t.

When φ is of the form φ1 ∧ φ2, assume JφK(Ii,M)(a) = t. Then, Jφ1K(Ii,M)(a) = t and
Jφ2K(Ii,M)(a) = t. By induction, level(φ1, a) ≤ i and level(φ2, a) ≤ i. By definition of a

3.3 Comparison with Existing Semantics 39

level assignment, level(φ, a) = level(φ1 ∧φ2, a) = max(level(φ1, a), level(φ2, a)) ≤ i. For the
other direction, assume level(φ, a) ≤ i, therefore level(φ1, a) ≤ i and level(φ2, a) ≤ i. By
induction, Jφ1K(Ii,M)(a) = t and Jφ2K(Ii,M)(a) = t. By definition of three-valued evaluation
JφK(Ii,M)(a) = t.

When φ is of the form φ1∨φ2, assume JφK(Ii,M)(a) = t. Then at least Jφ1K(Ii,M)(a) = t or
Jφ2K(Ii,M)(a) = t. Assume w.l.o.g. Jφ1K(Ii,M)(a) = t. Then, by induction level(φ1, a) ≤ i,
so by definition of a level assignment level(φ1, a) ≤ i. For the other direction, assume
level(φ, a) ≤ i, therefore at least one of level(φ1, a) ≤ i or level(φ2, a) ≤ i. Thus, by
induction, Jφ1 ∨ φ2K(Ii,M)(a) = t.

When φ is ≥nE.φ1, assume JφK(Ii,M)(a) = t. Thus, there exist n elements b1, . . . , bn
such that (a, bk) ∈ JEKM , furthermore Jφ1K(Ii,M)(bk) = t with 1 ≤ k ≤ n. By induction
level(φ1, bk) ≤ i. By definition of level assignments, level(φ, a) ≤ i. For the other direction,
assume level(φ, a) ≤ i, therefore there exist n elements b1, . . . , bk such that (a, bk) ∈ JEKM

and level(φ1, bk) ≤ i. By induction Jφ1K(Ii,M)(bk) = t and thus, by definition of three-valued
evaluation, JφK(Ii,M)(a) = t.

Finally, now we can show our Proposition. For every shape rule s ← φ. We know that
level(s, a) is the smallest i such that a ∈ JsKIi . By the definition of the sequence (Ii)i∈N
we have JφK(Ii−1,M)(a) = t. Given our claim proven above, level(φ, a) ≤ i − 1 < i =
level(s, a).

Proposition 3.9. Let D be a set of shape definitions in normal form. Let M be a (two-
valued) Σ-interpretation. IfM is an ACORSS-stable model for D, thenM is also a ΨD-stable
model.

Proof. Let level be the level mapping for the ACORSS-stable model M . Let m be the
maximal level mapping level from level . We define the sequence (Ii)i≤m of Σ-interpretations
as follows:

JsKIi = {a | level(s, a) ≤ i} for all s ∈ S, i ≤ m

In particular, it holds that JsKI0 = ∅ for all s and that Im = M (by the definition of a level
mapping). We also define a sequence of S-interpretations (Ji)i≤m as follows:

• J0 = the interpretation such that JsKJ0 = ∅ for all s ∈ S,

• Ji = ΨD(Ji−1,M)1,

• J∞ = lfp(ΨD(·,M)1).

Even though there are an infinite number of possible interpretations, our sequence is always
finite. This is because there is a finite number of elements from the domain that are relevant
to the interpretation (the ones actually used in the interpretation of predicates, and the ones
mentioned in the shape). As ΨD is ≤p-monotone, and there are a finite number of possible
interpretations, this sequence will reach a fixed-point.

We show that for every 0 ≤ i ≤ m : Ii ⊆ Ji. The claim holds for I0 = J0 = ∅. Assume
the claim holds for i− 1, we show the claim holds for i. Let s(a) ∈ Ii and s← φ, and note
that level(s, a) > level(φ, a). We show Ii ⊆ Ji through the following cases for φ.

When φ is of the form ⊤, hasValue(c), eq(p,E) or disj (p,E): since the truth value does
not depend on the S-interpretations and s(a) ∈ Ii, we know that s(a) ∈ Ji.

When φ is of the form ¬hasShape(s1): as s(a) ∈ Ii, we have s1(a) ̸∈ Ii therefore, by
definition of three-valued evaluation, s1(S) ̸∈ Ji and s(a) ∈ Ji.

When φ is of the form hasShape(s1) ∧ hasShape(s2): by definition of ACORSS-stable
models: i > max(level(s1, a), level(s2, a)). Therefore, by induction s1(a), s2(a) ∈ Ji−1. By
the definition of three-valued truth evaluation we have s(a) ∈ Ji.

40 Recursion

Listing 3.2: The safe shape from Example 3.10 written in real SHACL

:safe a sh:NodeShape ;

sh:or (

[sh:path :vaccinated ;

sh:minCount 1 ;

]

[sh:path :closeTo ;

sh:qualifiedValueShape [sh:not :safe] ;

sh:qualifiedMaxCount 1 ;

]

) .

When φ is of the form hasShape(s1)∨ hasShape(s2): we know by definition of ACORSS-
stable models: i > min(level(s1, a), level(s2, a)). Therefore, by induction at least one of
s1(a), s2(a) is in Ji−1. By the definition of three-valued evaluation we have s(a) ∈ Ji.

When φ is of the form ≥nE.hasShape(s1): we know by definition that there are n nodes
b1, . . . , bn such that for all 1 ≤ j ≤ n : (a, bj) ∈ JEKM Also, by definition of the level mapping:
for every bj there exists an m < i such that s1(bj) ∈ Im. By induction s1(bj) ∈ Jm and thus
s(a) ∈ Ji.

From the claim follows that M = Im ⊆ Jm. By the construction of Jm, we have Jm ≤
lfp(ΨD(·, I))1. Now since M is a fixpoint of this operator, it must be that Im = M and
hence that M is an ΨD-stable model.

The difference between our stable semantics and the ACORSS-stable semantics is a se-
mantic (in terms of the standard three-valued truth evaluation) versus a syntactic (the level
mappings are defined in terms of the syntactic structure of the shapes) treatment of negation
and is illustrated in the next example.

Example 3.10 (Example 3.3 continued). Suppose that in our same interpretation, we wish
to define a shape that identifies possible superspreaders. To do this, we say that a person
is “safe” if they are vaccinated, or in contact with at most 1 non-safe person. This can be
formalized as:

safe ← ∃vaccinated .⊤ ∨ ≤1 closeTo.¬hasShape(safe),

Where ≤1 is an abbreviation for ¬ ≥2. This shape definition can be written in real SHACL,
as shown in Listing 3.2. With the interpretation described in Example 3.3, there is a single
AFT-stable model in which a, b, and c are safe, but d, e, and f are not.

However, there are two ACROSS-stable models: the one mentioned above, and one in
which everyone is safe, including the three-clique of non-vaccinated people.

Finally, the work by Chmuroviĉ and Šimkus [28] proposes the Well-founded semantics for
SHACL. Their definition corresponds closely to the definition for logic programs due to Van
Gelder et al. [97], which is known to correspond to the Well-founded semantics given through
AFT. To see their semantics corresponds to ours, we only need to verify their three-valued
evaluation of shape expressions corresponds to ours, which is the case.

4
Expressiveness

When a complicated but influential new tool is proposed in the community, in our case
SHACL, we feel it is important to have a solid understanding of its design. The task we are
focusing on in this chapter is checking conformance of RDF graphs against shape schemas.
Every shape schema S defines a decision problem: given an RDF graph G, check whether G
conforms to S. In database terms, we are processing a boolean query on a graph database. In
description logic terms, this amounts to model checking of a TBox: given an interpretation,
check whether it satisfies the TBox.

Some of the constructs from SHACL are well known concept constructors from expressive
description logics [25]: the boolean connectives; constants; qualified number restriction (a
combination of existential quantification and counting); and regular path expressions with
inverse. However, SHACL also has three specific logical features that are less common:
equality, disjointness, and closure constraints.

Our goal in this Chapter is to clarify the impact of these uncommon features of SHACL
on its expressiveness as a language for boolean queries on graph databases. Thereto, we offer
the following contributions.

• We show that each of the three features is primitive in a strong sense. Specifically,
for each feature, we exhibit a boolean query Q such that Q is expressible by a single
target–shape pair, using only the feature and the basic constructs; however, Q is not
expressible by any generalized shape schema when the feature is disallowed.

• We also clarify the significance of the restriction that SHACL puts on allowed targets.
We observe that as long as closure constraints are not used, the restriction is actually
insignificant. Any generalized shape schema, allowing arbitrary but closure-free shapes
on the left-hand sides of the inclusion statements, can be equivalently written as a shape
schema with only targets on the left-hand sides. However, allowing closure constraints
on the left-hand side strictly adds expressive power.

• We additionally show that “full” variants of equality tests or disjointness tests result
in strictly more expressive languages. This result anticipates planned extensions of
SHACL [56].

• Our results continue to hold when the definition of recursive shapes is allowed, provided
that recursion through negation is stratified.

41

42 Expressiveness

This Chapter is organized as follows. Section 4.1 and Section 4.2 present our results, and
Section 4.3 extends our result for “full” equality and disjointness tests. Section 4.4 presents
the extension to stratified recursion.

4.1 Expressiveness of SHACL features

Throughout this Chapter, we use the formalization of the logical core of SHACL described in
Section 2.1, except, the treatment here omits shape names. Shape names are redundant as far
as expressive power is concerned, as long as we are in a non-recursive setting, because shape
definitions can then always be unfolded. Indeed, for clarity of exposition, we have chosen
to work first with non-recursive shape schemas. Section 4.4 then presents the extension to
(stratified) recursion (and introduces shape names in the process).

We now recall the definition of a generalized shape schema (or shape schema for short)
as a finite set of inclusion statements, where an inclusion statement is of the form φ1 ⊆ φ2,
with φ1 and φ2 shapes. A target-based shape schema is a shape schema that only uses targets
allowed by real SHACL on the left-hand sides of its inclusion statements.

Recall that a graph G conforms to a shape schema S, denoted by G |= S, if Jφ1KG is a
subset of Jφ2KG, for every statement φ1 ⊆ φ2 in S.

Thus, any shape schema S defines the class of graphs that conform to it. We denote this
class of graphs by

JSK := {graph G | G |= S}.

Accordingly, two shape schemas S1 and S2 are said to be equivalent if JS1K = JS2K.

Methodology. A feature set F is a subset of {eq , disj , closed}. The set of all shape schemas
using only features from F , besides the standard constructs, is denoted by L(F). In partic-
ular, shape schemas in L(∅) use only the standard constructs and none of the three features.
Specifically, they only involve shapes built from boolean connectives, constants, and qualified
number restrictions, with path expressions built from property names, id and the standard
operators union, composition, and Kleene star.

We say that feature set F1 is subsumed by feature set F2, denoted by F1 ⪯ F2, if every
shape schema in L(F1) is equivalent to some shape schema in L(F2). As it will turn out,

F1 ⪯ F2 ⇔ F1 ⊆ F2, (∗)

or intuitively, “every feature counts.” Note that the implication from right to left is trivial,
but the other direction is by no means clear from the outset.

More specifically, for every feature, we introduce a class of graphs, as follows. In what
follows we fix some property name r. We say a class of graphs is definable by L(F) if there
exists a shape schema in L(F) that defines it.

Equality Qeq is the class of graphs where all r-edges are symmetric. Note that Qeq is
definable in L(eq) by the single, target-based, inclusion statement ∃r.⊤ ⊆ eq(r−, r).

Disjointness Qdisj is the class of graphs where all nodes with an outgoing r-edge have at
least one symmetric r-edge. This time, Qdisj is definable in L(disj), by the single,
target-based, inclusion statement ∃r.⊤ ⊆ ¬disj (r−, r).

Closure Qclosed is the class of graphs where for all nodes with an outgoing r-edge, all
outgoing edges have label r. Again Qclosed is definable in L(closed) by the single,
target-based, inclusion statement ∃r.⊤ ⊆ closed(r).

4.1 Expressiveness of SHACL features 43

Listing 4.1: The four shapes used to express the classes of graphs Qeq , Qdisj , and Qclosed

in real SHACL

:equality a sh:PropertyShape ;

sh:targetObjectsOf :r ;

sh:path [sh:inversePath :r] ;

sh:equals :r .

:disjointness a sh:Nodeshape ;

sh:targetObjectsOf :r ;

sh:not [sh:path [sh:inversePath :r] ;

sh:disjoint :r] .

:closedness a sh:NodeShape ;

sh:targetObjectsOf :r ;

sh:closed true ;

sh:ignoredProperties (:r) .

To show the connection to real SHACL, the constraints described above can be written in
real SHACL as shown in Listing 4.1.

We establish the following theorem, from which the above equivalence (∗) immediately
follows:

Theorem 4.1. Let X ∈ {eq , disj , closed} and let F be a feature set with X /∈ F . Then QX

is not definable in L(F).

For X = closed , Theorem 4.1 is proven differently than for the other two features. First,
we deal with the remaining features through the following concrete result, illustrated in
Figure 4.1. The formal definition of the graphs illustrated in Figure 4.1 for X = disj will be
provided in Definition 4.9.

Proposition 4.2. Let X = disj or eq. Let Σ be a finite vocabulary including r, and let m
be a nonzero natural number. There exist two graphs G and G′ with the following properties:

1. G′ belongs to QX , but G does not.

2. For every shape φ over Σ such that φ does not use X, and φ counts to at most m, we
have

JφKG = JφKG
′
.

Here, “counting to at most m” means that all quantifiers ≥n used in φ satisfy n ≤ m.
For X = eq , this proposition is reformulated as Proposition 4.13, and for X = disj , this
proposition is reformulated as Proposition 4.16.

To see that Proposition 4.2 indeed establishes Theorem 4.1 for the three features under
consideration, we use the notion of validation shape of a shape schema. This shape evaluates
to the set of all nodes that violate the schema. Thus, the validation shape is an abstraction
of the “validation report” in SHACL [86]: a graph conforms to a schema if and only if
the validation shape evaluates to the empty set. The validation shape can be formally
constructed as the disjunction of φ1 ∧ ¬φ2 for all statements φ1 ⊆ φ2 in the schema.

Now consider a shape schema S not using feature X. Let m be the maximum count used
in shapes in S, and let Σ′ be the set of constants and property names mentioned in S. Now
given Σ = Σ′ ∪ {r} and m, let G and G′ be the two graphs exhibited by the Proposition,
and let φ be the validation shape for S. Then φ will evaluate to the same result on G and

44 Expressiveness

X G G′

eq ✖	

disj

Figure 4.1: Graphs used to prove Proposition 4.2. The nodes are taken outside Σ. For
X = eq , the cloud shown for G′ represents a complete directed graph on m+ 1 nodes, with
self-loops, and G is the same graph with one directed edge removed. For X = disj , in the
picture for G, each cloud again stands for a complete graph, but this time on M = max(m, 3)
nodes, and without the self-loops. Each oval stands for a set of M separate nodes. An arrow
from one blob to the next means that every node of the first blob has a directed edge to
every node of the next blob. So, G is a directed 4-cycle of alternating clouds and ovals, and
G′ is a directed 4-cycle of clouds.

G′. However, for S to define QX , validation would have to return the empty set on G′ but
a nonempty set on G. We conclude that S does not define QX .

We will prove Proposition 4.2 for X = disj in Section 4.1.2, and X = eq in Section 4.1.3.
We will show Theorem 4.1 for X = closed in Section 4.1.4. However, we first need to establish
some preliminaries on path expressions.

4.1.1 Preliminaries on path expressions

We call a path expression E equivalent to a path expression E′ when for every graph G,
JEKG = JE′KG. We call a path expression E id-free whenever id is not present in the
expression.

Lemma 4.3. Every path expression E is equivalent to: id, or E′ ∪ id, or E′ where E′ is an
id-free path expression.

Proof. The proof is by induction on the structure of E. When E is id-free or id , the claim
directly follows. We consider the following inductive cases:

• E is E1/E2. By induction, we consider nine cases. When both E1 and E2 are id-free,
E is id-free. Whenever E1 is id , clearly E is equivalent to E2. Analogously, whenever
E2 is id , E is equivalent to E1.

Consider the two cases where E1 is E′1 ∪ id with E′1 an id-free path expression. First,
when E2 is E′2∪ id with E′2 an id-free path expression, then E is equivalent to E′1/E

′
2∪

E′1 ∪E′2 ∪ id which is of the form E′ ∪ id with E′ the id-free path expression E′1/E
′
2 ∪

E′1 ∪ E′2. Second, when E2 is id-free, E is equivalent to E′1/E2 ∪ E2 which is id-free.

Finally, consider the two case where E1 is id-free and E2 is E′2 ∪ id with E′2 an id-free
path expression, then E is equivalent to E1/E

′
2 ∪ E1 which is id-free.

4.1 Expressiveness of SHACL features 45

• E is E1 ∪ E2. This case follows immediately by induction.

• E is E∗1 . There are three cases. When E1 is id , E is equivalent to id . When E1 is
E′1 ∪ id with E′1 an id-free path expression, then E is equivalent to E′∗1 and clearly E′∗1
is id-free. Lastly, when E1 is id-free, clearly E is as well.

We also need the notion of “safe” path expressions together with the following Lemma,
detailing how path expressions can behave on the nodes outside a graph. One can divide all
path expressions into the “safe” and the “unsafe” ones.

Definition 4.4 (Safety). A path expression is safe if one of the following conditions holds:

• E is p or p− with p a property name

• E is E1 ∪ E2 and both E1 and E2 are safe

• E is E1/E2 and at least one of E1 or E2 is safe

Otherwise, E is unsafe.

Lemma 4.5. Let E be an id-free path expression and let G be a graph.

• If E is safe, then JEKG ⊆ NG ×NG.

• If E is unsafe, then JEKG = (JEKG ∩NG ×NG) ∪ {(a, a) | a ∈ N −NG}.

Proof. By induction. If E is a property name or its inverse, then the claim clearly holds.
Now assume E is of the form E1 ∪ E2. The cases where both E1 and E2 are safe, or both
are unsafe, are clear by induction. If E1 is safe but E2 is not, then JEKG = JE1KG ∪ JE2KG =
(JE1KG∩NG×NG)∪(JE2KG∩NG×NG)∪{(a, a) | a ∈ N−NG} = JEKG∩(NG×NG)∪{(a, a) |
a ∈ N −NG}. The same reasoning can be used when E2 is safe but E1 is not.

Next, assume E is of the form E1/E2. Furthermore assume E1 is safe, so that E is safe.
Let (x, y) ∈ JEKG. Then there exists z such that (x, z) ∈ JE1KG and (z, y) ∈ JE2KG. Since E1

is safe, x and z are in NG. Now regardless of whether E2 is safe or not, since (z, y) ∈ JE2KG

and z ∈ NG, we get y ∈ NG as desired. The same reasoning can be used when E2 is safe.
If E is not safe, we verify that JEKG = (JEKG ∩ NG × NG) ∪ {(a, a) | a ∈ N − NG}.

For the inclusion from left to right, take (x, y) ∈ JEKG. Then there exists z such that
(x, z) ∈ JE1KG and (z, y) ∈ JE2KG. By induction, there are four cases. If both (x, z) and
(z, y) are in NG × NG, then clearly (x, y) ∈ JEKG ∩ NG × NG. If both (x, z), (z, y) are in
{(a, a) | a ∈ N −NG} clearly (x, y) ∈ {(a, a) | a ∈ N −NG}. Lastly, the two cases where one
of (x, z) and (z, y) is in NG ×NG and the other in {(a, a) | a ∈ N −NG}, are not possible.

For the inclusion from right to left, take (x, y) ∈ JEKG ∩ (NG × NG) ∪ {(a, a) | a ∈
N − NG}. If (x, y) ∈ JEKG ∩ NG × NG then (x, y) ∈ JEKG. Otherwise, (x, y) = (a, a) for
some a ∈ N − NG. Then (a, a) ∈ JE1KG and (a, a) ∈ JE2KG since E1 and E2 are not safe.
We conclude (a, a) ∈ JE1/E2KG as desired.

Next, assume E is of the form E∗1 . Note that E is unsafe. By definition of Kleene star,
we only need to verify that JEKG ⊆ (JEKG ∩ NG × NG) ∪ {(a, a) | a ∈ N − NG}. Let
(x, y) ∈ JEKG. If x = y, the claim clearly holds. Otherwise, we consider two cases:

• If E1 is safe, we know JE1KG ⊆ NG × NG. Clearly the reflexive-transitive closure of
a subset of NG × NG is also a subset of NG × NG. Therefore, (x, y) ∈ NG × NG as
desired.

• If E1 is unsafe, then by induction JE1KG = (JE1KG∩NG×NG)∪{(a, a) | a ∈ N−NG}.
As x ̸= y we know (x, y) is in the reflexive-transitive closure of JE1KG∩NG×NG which
is a subset of NG ×NG.

46 Expressiveness

Lastly, we define the notion of a string, together with the following Lemma, detailing a
convenient property of path expressions.

Definition 4.6. A string s is a path expression of the form: id , or s′/p or s′/p− where s′

is a string and p is a property name.

Lemma 4.7. For every path expression E and every natural number n, there exists a finite
non-empty set of strings U s.t. for every graph G with at most n nodes we have JEKG =⋃

s∈U JsKG.

Before we proceed with the proof, we first state an auxiliary lemma:

Lemma 4.8. Let V be a finite set of n elements, and let R ⊆ V × V be a binary relation
over V . We have R∗ = R0 ∪R1 ∪ · · · ∪Rn−1.

Proof. R∗ is defined as R0 ∪R1 ∪ . . . however, we will show that if (a, b) ∈ Rm, with m ≥ n,
then there exists a k < m such that (a, b) ∈ Rk.

We call a sequence of elements x1, . . . , xh an R-path if (xl, xl+1) ∈ R for 1 ≤ l ≤ h.
If (a, b) ∈ Rm, then there exists an R-path x1, . . . , xm+1 with x1 = a and xm+1 = b. As

there are only n total elements, there exists i, j with 1 ≤ i < j ≤ m + 1 such that xi = xj .
Therefore, x1, . . . , xi−1, xj , . . . , xm+1 is also an R-path. We conclude that (a, b) ∈ Rm−(j−i),
as desired.

Proof of Lemma 4.7. The proof is by induction on the structure of E. Clearly for the base
case E = p, we have the set U = {p} and similarly for E = p− we have U = {p−}. When
E = id , clearly U = {id}. Next, we consider the inductive cases. When E = E1 ∪ E2, we
know by induction there exists a set of strings U1 for E1, and U2 for E2. We then have
U = U1 ∪ U2. When E = E1/E2, we again know by induction there exists a set of strings
U1 for E1, and U2 for E2. We have U = {s1/s2 | s1 ∈ U1 and s2 ∈ U2}. Finally, when
E = E′∗, we know by induction there exists a set of strings U ′ for E′. Let W be a set
of strings, we define W 1 := W , and for a natural number m > 1, Wm := {s1/s2 | s1 ∈
W, s2 ∈Wm−1}. We also use the shorthand notation Em, with m > 0 a natural number, to
denote m compositions of the path expression E. For example, E3 is E/E/E. By definition,
JE′∗KG = JidKG ∪ JE′KG ∪ JE′2KG ∪ By Lemma 4.8 we know that this is the same as
JE′∗KG = JidKG ∪ JE′KG ∪ JE′2KG ∪ · · · ∪ JE′n−1KG for graphs with at most n nodes. It then
follows that U = {id} ∪ U ′ ∪ U ′2 ∪ · · · ∪ U ′n−1.

4.1.2 Disjointness

We present here the proof for X = disj . The general strategy is to first characterize the
behavior of path expressions on G and G′. Then the Proposition is proven with a stronger
induction hypothesis, to allow the induction to carry through. A similar strategy is followed
in the proof for X = eq .

We begin by defining the graphs G and G′ more formally.

Definition 4.9 (Gdisj (Σ,m)). Let Σ be a finite vocabulary including r, and let m be a
natural number. We define the graph Gdisj (Σ,m) over the set of property names in Σ as
follows. Let M = max(m, 3). There are 4M nodes in the graph, which are chosen outside of
Σ. We denote these nodes by xji for i = 1, 2, 3, 4 and j = 1, . . . ,M . (In the description that
follows, subscripts range from 1 to 4 and superscripts range from 1 to M .) For each property
name p in Σ, the graph has the same set of p-edges. We describe these edges next. There is

an edge from xji to xj
′

i mod 4+1 for every i, j and j′. Moreover, if i is 2 or 4, there is an edge

from xji to xj
′

i for all j ̸= j′. So, formally, we have: Gdisj (Σ,m) := {(xji , p, x
j′

i mod 4+1) | i ∈
{1, . . . , 4} and j, j′ ∈ {1, . . . ,M} and p ∈ Σ ∩ P} ∪ {(xji , p, x

j′

i) | i ∈ {1, . . . , 4} and j, j′ ∈
{1, . . . ,M} and j ̸= j′ and p ∈ Σ ∩ P}.

4.1 Expressiveness of SHACL features 47

Thus, in Figure 4.1, bottom left, one can think of the left oval as the set of nodes xj1;
the top cloud as the set of nodes xj2; and so on. We call the nodes xji with i = 2, 4 the even
nodes, and the nodes xji with i = 1, 3 the odd nodes.

Definition 4.10 (G′disj (Σ,m)). We define the graphG′disj (Σ,m) in the same way asGdisj (Σ,m)

except that there is an edge from xji to xj
′

i for all i and j ̸= j′ (not only for even i values).

We characterize the behavior of path expressions on the graph Gdisj (Σ,m) as follows.

Lemma 4.11. Let G be Gdisj (Σ,m). Call a path expression simple if it is a union of
expressions of the form s1/ . . . /sn, where n ≥ 1 and one of the si is a property name while
the other si are “id”. Let E be a non-simple, id-free path expression over Σ. The following
three statements hold:

1. (A) for all even nodes v of G, we have JEKG(v) ⊇ JrKG(v); or

(B) for all even nodes v of G, we have JEKG(v) ⊇ Jr−KG(v).

2. (C) for all odd nodes v of G, we have JEKG(v) ⊇ JrKG(v); or

(D) for all odd nodes v of G, we have JEKG(v) ⊇ Jr−KG(v).

3. For all nodes v of G, we have JEKG(v)− JrKG(v) ̸= ∅.

Proof. For i = 1, 2, 3, 4, define the i-th blob of nodes to be the set Xi = {x1i , . . . , xMi } (see
Figure 4.1). We also use the notations next(1) = 2; next(2) = 3; next(3) = 4; next(4) = 1;
prev(4) = 3; prev(3) = 2; prev(2) = 1; prev(1) = 4. Thus next(i) indicates the next blob in
the cycle, and prev(i) the previous.

The proof is by induction on the structure of E. If E is a property name, E is simple
so the claim is trivial. If E is of the form p−, cases B and D are clear and we only need to
verify the third statement. That holds because for any i, if v ∈ Xi, then Jp−KG(v) ⊇ Xprev(i)

and clearly Xprev(i) − JrKG(v) ̸= ∅. We next consider the inductive cases.
First, assume E is of the form E1∪E2. When at least one of E1 and E2 is not simple, the

three statements immediately follow by induction, since JEKG ⊇ JE1KG and JEKG ⊇ JE2KG.
If E1 and E2 are simple, then E is simple and the claim is trivial.

Next, assume E is of the form E∗1 . If E1 is not simple, the three statements follow
immediately by induction, since JEKG ⊇ JE1KG. If E1 is simple, cases A and C clearly hold
for E, so we only need to verify the third statement. That holds because, by the form of E,
every node v is in JEKG(v), but not in JrKG(v), as G does not have any self-loops.

Finally, assume E is of the form E1/E2. Note that if E1 or E2 is simple, clearly cases A
and C apply to them. The argument that follows will therefore also apply when E1 or E2 is
simple. We will be careful not to apply the induction hypothesis for the third statement to
E1 and E2.

We first focus on the even nodes, and show the first and the third statement. We
distinguish two cases.

• If case A applies to E2, then we show that case A also applies to E. Let v ∈ Xi be an
even node. We verify the following two inclusions:

– JEKG(v) ⊇ Xi. Let u ∈ Xi. If u ̸= v, choose a third node w ∈ Xi. Since Xi is a
clique, (v, w) ∈ JE1KG regardless of whether case A or B applies to E1. By case A
for E2, we also have (w, u) ∈ JE2KG, whence u ∈ JEKG(v) as desired. If u = v, we
similarly have (v, w) ∈ JE1KG and (w, u) ∈ JE2KG as desired.

– JEKG(v) ⊇ Xnext(i). Let u ∈ Xnext(i) and choose w ̸= v ∈ Xi. Regardless of
whether case A or B applies to E1, we have (v, w) ∈ JE1KG. By case A for E2, we
also have (w, u) ∈ JE2KG, whence u ∈ JEKG(v) as desired.

48 Expressiveness

We conclude that JEKG(v) ⊇ Xi ∪Xnext(i) ⊇ JrKG as desired.

• If case B applies to E2, then we show that case B also applies to E. This is analogous
to the previous case, now verifying that JEKG(v) ⊇ Xi ∪Xprev(i).

In both cases, the third statement now follows for even nodes v. Indeed, v ∈ Xi ⊆
JEKG(v) but v /∈ JrKG(v).

We next focus on the odd nodes, and show the second and the third statement. We again
consider two cases.

• If case C applies to E1, then we show that case C also applies to E. Let v ∈ Xi be
an odd node. Note that JrKG(v) = Xnext(i). To verify that JEKG(v) ⊇ Xnext(i), let
u ∈ Xnext(i). Then u is even. Choose w ̸= u ∈ Xnext(i). Since case C applies to E1, we
have (v, w) ∈ JE1KG. Moreover, since Xnext(i) is a clique, (w, u) ∈ JE2KG regardless of
whether case A or B applies to E2. We obtain (v, u) ∈ JEKG as desired.

We also verify the third statement for odd nodes in this case. We distinguish two
further cases.

– If case A applies to E2, any node u ∈ Xnext(next(i)) belongs to JEKG(v), and clearly
these u are not in Xnext(i) = JrKG(v).

– If case B applies to E2, then, since Xi is a clique, any node u ∈ Xi belongs to
JEKG(v), and again these u are not in Xnext(i).

• If case D applies to E1, then we show that case D also applies to E. This is analogous
to the previous case, now verifying that JEKG(v) ⊇ Xprev(i). In this case the third
statement for odd nodes is clear, as clearly Xprev(i) −Xnext(i) ̸= ∅.

We similarly characterize the behavior of path expressions on the other graph.

Lemma 4.12. Let G′ be G′disj (Σ,m) and let E be a non-simple, id-free path expression over
Σ. The following statements hold:

1. JEKG
′
⊇ JrKG

′
or JEKG

′
⊇ Jr−KG

′
.

2. For all nodes v of G′, we have JEKG
′
(v)− JrKG

′
(v) ̸= ∅.

Proof. For i = 1, 2, 3, 4, define the i-th blob of nodes to be the set Xi = {x1i , . . . , xMi } (see
Figure 4.1). We also use the notations next(1) = 2; next(2) = 3; next(3) = 4; next(4) = 1;
prev(4) = 3; prev(3) = 2; prev(2) = 1; prev(1) = 4. Thus next(i) indicates the next blob in
the cycle, and prev(i) the previous.

The proof is by induction on the structure of E. If E is a property name, E is simple so
the claim is trivial. If E is of the form p−, the first claim is clear because Jr−KG

′
⊆ JEKG

′
,

and we only need to verify the second one. That holds because for any i, if v ∈ Xi, then
Jp−KG

′
(v) ⊇ Xprev(i) and clearly Xprev(i) − JrKG

′
(v) ̸= ∅. We next consider the inductive

cases.
First, assume E is of the form E1 ∪ E2. When at least one of E1 and E2 is not simple,

the two claims immediately follow by induction, since JEKG
′
⊇ JE1KG

′
and JEKG

′
⊇ JE2KG

′
.

If E1 and E2 are simple, then E is simple and the claim is trivial.
Next, assume E is of the form E∗1 . If E1 is not simple, the two claims follow immediately

by induction, since JEKG
′
⊇ JE1KG

′
. If E1 is simple, the first claim clearly hold for E, so we

only need to verify the second claim. That holds because, by the form of E, every node v is
in JEKG

′
(v), but not in JrKG

′
(v), as G does not have any self-loops.

4.1 Expressiveness of SHACL features 49

Finally, assume E is of the form E1/E2. Note that if E1 or E2 is simple, clearly claim

one holds because JrKG
′
⊆ JEKG

′
. The argument that follows will therefore also apply when

E1 or E2 is simple. We will be careful not to apply the induction hypothesis for the second
statement to E1 and E2.

We distinguish two cases.

• If JrKG
′
⊆ JE2KG

′
, then we show that JrKG

′
⊆ JEKG

′
. Let v ∈ Xi. We verify the

following two inclusions:

– JEKG(v) ⊇ Xi. Let u ∈ Xi. If u ̸= v, choose a third node w ∈ Xi. Since Xi is a

clique, (v, w) ∈ JE1KG because the first claim holds for E1. By JrKG
′
⊆ JE2KG

′
, we

also have (w, u) ∈ JE2KG
′
, whence u ∈ JEKG

′
(v) as desired. If u = v, we similarly

have (v, w) ∈ JE1KG
′

and (w, u) ∈ JE2KG
′

as desired.

– JEKG(v) ⊇ Xnext(i). Let u ∈ Xnext(i) and choose w ̸= v ∈ Xi. Because the first

claim holds for E1, we have (v, w) ∈ JE1KG. By JrKG
′
⊆ JE2KG

′
, we also have

(w, u) ∈ JE2KG
′
, whence u ∈ JEKG

′
(v) as desired.

We conclude that JEKG
′
(v) ⊇ Xi ∪Xnext(i) ⊇ JrKG

′
as desired.

• If Jr−KG
′
⊆ JE2KG

′
, then we show that Jr−KG

′
⊆ JEKG

′
. This is analogous to the

previous case, now verifying that JEKG(v) ⊇ Xi ∪Xprev(i).

In both cases, the second statement now follows for every node v. Indeed, v ∈ Xi ⊆
JEKG

′
(v) but v /∈ JrKG

′
(v).

We are now ready to prove the non-obvious part of Proposition 4.2 where X = disj . We
use the following version of the proposition.

Proposition 4.13. Let V be the common set of nodes of the graphs G = Gdisj (Σ,m) and
G′ = G′disj (Σ,m). Let φ be a shape over Σ that does not use disj , and that counts to at most

m. Then either JφKG ∩ V = ∅ or JφKG ⊇ V . Moreover, JφKG = JφKG
′
.

Proof. This is proven by induction on the structure of φ. Let H be G or G′. If φ is ⊤, then
J⊤KH = N ⊇ V . If φ is hasValue(c), then JhasValue(c)KH = {c} ⊆ Σ and we know that
Σ ∩ V = ∅. Next assume φ is of the form eq(E, p). Using Lemma 4.3, we distinguish four
different cases for E.

• E is id . According to Lemma 4.11 and Lemma 4.12 JEKH will always contain either
JpKH or Jp−KH . In both cases, JEKH(v) clearly never equals JidKH(v) = {v}. Therefore,
JφKH ∩ V = ∅.

• E is E′ ∪ id where E′ is id-free or E itself is id-free and non-simple. Lemmas 4.11
and 4.12 tell us that JEKH(v)− JrKH(v) ̸= ∅ for every v ∈ V . Since JrKH = JpKH , this
means H, v ⊭ φ for v ∈ V , or, equivalently, JφKG ∩ V = ∅. To see that, moreover,

JφKG = JφKG
′
, it remains to show that G, v |= φ iff G′, v |= φ for all node names v /∈ V .

• E is id-free and simple. Then JEKH = JpKH , so clearly JφKH = N ⊇ V .

We still need to show JφKG = JφKG
′
. Clearly, JpKG(v) = JpKG

′
(v) = ∅. Now by Lemma 4.5,

if E is safe, then also JEKG(v) = JEKG
′
(v) = ∅, so G, v |= φ and G′, v |= φ. On the other

hand, if E is unsafe, then by the same Lemma JEKG(v) = JEKG
′
(v) = {v} ≠ ∅, so G, v ⊭ φ

and G′, v ⊭ φ, as desired.
As the final base case, assume φ is of the form closed(R). If Σ contains a property name

p not in R, then JφKH ∩ V = ∅, since every node in H has an outgoing p-edge. Otherwise,

50 Expressiveness

i.e., if Σ ⊆ R, we have JφKH ⊇ V , since every node in H has only outgoing edges labeled

by property names in Σ. To see that, moreover, JφKG = JφKG
′
, it suffices to observe that

trivially H, v |= φ for all node names v /∈ V .
We next consider the inductive cases. The cases for the boolean connectives follow

readily by induction. Finally, assume φ is of the form ≥nE.φ1. By induction, there are two
possibilities for φ1:

• If Jφ1KH ∩ V = ∅, then also JφKH ∩ V = ∅ since path expressions can only reach nodes
in some graph from nodes in that graph.

• If Jφ1KH ⊇ V , we distinguish three cases using Lemma 4.3. First, when E is id , then
if n = 1, JφKH ⊇ V . Otherwise, if n ̸= 1, then JφKH = ∅. Next, when E is id-free
or E′ ∪ id with E′ an id-free path expression, it suffices to show that ♯JE′KH(v) ≥ n
for all v ∈ V . By Lemmas 4.11 and 4.12 we know that JE1KH(v) contains JrKH(v) or
Jr−KH(v). Inspecting H, we see that each of these sets has at least max(3,m) ≥ n
elements, as desired. Finally, when E is equivalent to an id-free path expression or
whenever E simply does not use id , the argument is analogous to the previous case.

In both cases we still need to show that JφKG = JφKG
′
. We already showed that JφKG ⊇ V

and JφKG
′
⊇ V , or JφKG ∩ V = ∅ and JφKG

′
∩ V = ∅. Therefore, towards a proof of the

equality, we only need to consider the node names not in V .
For the inclusion from left to right, take x ∈ JφKG − V . Since G, x |= φ, there exist y1,

. . . , yn such that (x, yi) ∈ JEKG and G, yi |= φ1 for i = 1, . . . , n. However, since x /∈ V ,
by Lemma 4.5, all yi must equal x. Hence, n = 1 and (x, x) ∈ JEKG and G, x |= φ1. Then

again by the same Lemma, (x, x) ∈ JEKG
′
, since G and G′ have the same set of nodes V .

Moreover, by induction, G′, x |= φ1. We conclude that G′, x |= φ as desired. The inclusion
from right to left is argued symmetrically.

4.1.3 Equality

Next, we turn our attention to Proposition 4.2 for X = eq . We define the graphs from
Figure 4.1 formally.

Definition 4.14. Let Σ be a finite vocabulary including r, and let m be a natural number.
Choose a set V of node names outside Σ, of cardinality M := max(3,m + 1). Fix two
arbitrary nodes a and b from V . We define the graph Geq(Σ) over the set of property names
from Σ as follows. For each property name p in Σ, the set of p-edges in Geq(Σ) equals
V × V − (b, a). We define the graph G′eq(Σ) similarly, but with V × V as the set of p-edges.

So, G′eq(Σ,m) is a complete graph, and Geq(Σ,m) is a complete graph with one edge
(b, a) removed.

Lemma 4.15. Let E be an id-free path expression over Σ and let H = Geq(Σ,m) or
G′eq(Σ,m). Then

A. JEKH ⊇ JrKH , or

B. JEKH ⊇ Jr−KH .

Proof. The claim is obvious for G′eq(Σ,m), being a complete graph. So we focus on the graph
Geq(Σ,m). The proof is by induction. If E is a property name or its inverse, the claim is
clear. If E is of the form E1 ∪ E2, the claim is immediate by induction.

Assume E is of the form E1/E2. We show that A applies.1 If A applies to E1, this is
clear, since we can follow any edge by E1 and then stay at the head of the edge by E2 using

1Actually, JEKG always contains V × V in this case, but we do not need this.

4.1 Expressiveness of SHACL features 51

the self-loop. If B applies to E1, the same can still be done for all edges except for (a, b),
which is the only nonsymmetrical edge. To go from a to b by E, we go by E1 from a to a
node c distinct from a and b, then go by E2 from c to b.

If E is of the form E∗1 , again A applies, since E∗1 contains E1/E1.

We are now ready to prove the non-obvious part of Proposition 4.2 where X = eq . We
use the following version of the proposition.

Proposition 4.16. Let G be Geq(Σ,m) and let G′ be G′eq(Σ,m). Let φ be a shape over Σ
that does not use eq and that counts to at most m. Then either JφKG ∩ V = ∅ or JφKG ⊇ V .

Moreover, JφKG = JφKG
′
.

Proof. This is proven by induction on the structure of φ. Let H be G or G′. We focus
directly on the relevant cases. Assume φ is of the form disj (E1, E2). Lemma 4.15 clearly
yields that JφKH ∩ V = ∅. It again remains to verify that G, v |= φ iff G′, v |= φ for all node
names v /∈ V . By Lemma 4.5, for such v and H = G or G′, we indeed have H, v |= φ if
exactly one of E1 and E2 is safe. If both are safe or both are unsafe, we have H, v ⊭ φ.

The last base case of interest is the case where φ is of the form closed(R). This goes
again exactly as in the proof for X = disj .

We next consider the inductive cases. The cases for the boolean connectives follow
readily by induction. Finally, assume φ is of the form ≥nE.φ1. By induction, there are two
possibilities for φ1:

• If Jφ1KG ∩ V = ∅ then JφKG ∩ V = ∅ since path expressions can only reach nodes in
some graph from nodes in that graph.

• If Jφ1KH ⊇ V , we distinguish three cases using Lemma 4.3. First, when E is id , then
if n = 1, JφKH ⊇ V . Otherwise, if n ̸= 1, then JφKH = ∅. Next, when E is id-free
or E′ ∪ id with E′ an id-free path expression, it suffices to show that ♯JE′KH(v) ≥ n
for all v ∈ V . By Lemma 4.15, we know that JEKH(v) contains JrKH(v) or Jr−KH(v).
These sets contain at least M −1 ≥ m ≥ n elements as desired. (The number M −1 is
reached only when H is G and v = b or v = a; otherwise the sets contain M elements.)

The equality JφKG = JφKG
′

is shown in the same way as in the proof for X = disj
(Section 4.1.2).

4.1.4 Closure

Without using closed , shapes cannot say anything about properties that they do not explic-
itly mention. We formalize this intuitive observation as follows. The proof is straightforward.

Lemma 4.17. Let Σ be a vocabulary, let E be a path expression over Σ, and let φ be a shape
over Σ that does not use closed. Let G1 and G2 be graphs such that JpKG1 = JpKG2 for every
property name p in Σ. Then JEKG1 = JEKG2 and JφKG1 = JφKG2 .

Theorem 4.1 now follows readily for X = closed . Let F be a feature set without closed ,
let S be a shape schema in L(F), and let φ be the validation shape of S. Let p be a property
name not mentioned in S, and different from r. Consider the graphs G = {(a, r, a), (a, p, a)}
and G′ = {(a, r, a)}, so that G′ belongs to Qclosed but G does not. By Lemma 4.17 we have

JφKG = JφKG
′
, showing that S does not define Qclosed .

Remark 4.18. Lemma 4.17 fails completely in the presence of closure constraints. The
simplest counterexample is to consider Σ = ∅ and the shape closed(∅). Trivially, any two
graphs agree on the property names from Σ. However, Jclosed(∅)KG, which equals the set of
node names that do not have an outgoing edge in G (they may still have an incoming edge),
obviously depends on the graph G.

52 Expressiveness

The reader may wonder if this statement still holds under active domain semantics. In
such semantics, which we denote by JφKGadom , we would view G as an interpretation with
domain not the whole of N ; rather we would take as domain the set NG ∪C, with C the set
of constants mentioned in φ. When assuming active domain semantics, a modified lemma
is required. To see this, consider the graph G = {(a, p, b)} and G′ = {(a, p, b), (a, q, c)}. Let

φ simply be ⊤. We have JφKGadom = {a, b} and JφKG
′

adom = {a, b, c}, so Lemma 4.17 no longer
holds. We can, however, give the following more refined variant of Lemma 4.17:

Lemma 4.19. Let Σ be a vocabulary, let E be a path expression over Σ, and let φ be a shape
over Σ that does not use closed. Let I1 and I2 be interpretations such that JpKI1 = JpKI2 for
every property name p in Σ. Then JEKI1 ∩∆I2×∆I2 = JEKI2 ∩∆I1×∆I1 and JφKI1 ∩∆I2 =
JφKI2 ∩∆I1 .

The same reasoning as given after Lemma 4.17, now using the new Lemma, then shows
that closed is still primitive under active domain semantics.

4.2 Are target-based shape schemas enough?

Lemma 4.17 also allows us to clarify that, as far as expressive power is concerned, and in
the absence of closure constraints, the restriction to target-based shape schemas is inconse-
quential.

Theorem 4.20. Every generalized shape schema that does not use closure constraints is
equivalent to a target-based shape schema (that still does not use closure constraints).

In order to prove this theorem, we first establish the following lemma.

Lemma 4.21. Let φ be a shape and let C be the set of constants mentioned in φ. Assume
there exists a graph G and a node name x /∈ NG∪C such that G, x |= φ. Then for any graph
H and any node name y /∈ NH ∪ C, also H, y |= φ.

Proof. By induction on φ. The case where φ is of the form hasValue(c) cannot occur, and
the case where φ is ⊤ is trivial.

If φ is φ1 ∨ φ2 or ¬φ1, the claim follows readily by induction.
Now assume φ is of the form ≥nE.φ1. Then there exists x1, . . . , xn such that (x, xi) ∈

JEKG and G, xi |= φ1 for i = 1, . . . , n. However, since x /∈ NG, by Lemma 4.5, all xi must
equal x. Hence, n = 1 and (x, x) ∈ JEKG and G, x |= φ1. By the same Lemma, (y, y) ∈ JEKH ,
since y /∈ NH . Furthermore, by induction, H, y |= φ1. We conclude that H, y |= φ as desired.

Next, assume φ is eq(E, p). Since G, x |= φ, but JpKG = ∅ since x /∈ NG, also JEKG(x) = ∅.
Then by Lemma 4.5, also JEKH(y) = ∅, since y /∈ NH . Furthermore, also JpKH(y) = ∅. We
conclude that H, y |= φ as desired.

Next assume φ is disj (E, p). Then H, y |= φ is clear. Indeed, since y /∈ NH , we have
JpKH(y) = ∅.

Finally, assume φ is closed(R). Then again H, y |= φ is clear because y /∈ NH .

We can now show the theorem.

Proof of Theorem 4.20. Let φ be the validation shape for shape schema S, so that G |= S if
and only if JφKG is empty. Let C be the set of constants mentioned in φ.

Let us say that φ is internal if for every graph G and every node name v such that
G, v |= φ, we have v ∈ NG ∪ C. If φ is not internal, then, using Lemma 4.21, for every
graph G and every node v /∈ NG ∪ C, we have G, v |= φ. Thus, if φ is not internal, S is
unsatisfiable and is equivalent to the single target-based inclusion hasValue(c) ⊆ ¬⊤, for an
arbitrary constant c.

So now assume φ is internal. Define the target-based shape schema T consisting of the
following inclusions:

4.3 Extensions for full equality and disjointness tests 53

• For each constant c ∈ C, the inclusion hasValue(c) ⊆ ¬φ.

• For each property name mentioned in φ, the two inclusions ∃p.⊤ ⊆ ¬φ and ∃p−.⊤ ⊆
¬φ.

We will show that S and T are equivalent. Let ψ be the validation shape for T .
Let G be any graph, and let G′ be the graph obtained from G by removing all triples

involving property names not mentioned in φ. We reason as follows:

G |= S ⇔ JφKG = ∅

⇔ JφKG
′

= ∅ by Lemma 4.17

⇔ G′ |= T since φ is internal

⇔ JψKG
′

= ∅

⇔ JψKG = ∅ by Lemma 4.17

⇔ G |= T

Remark 4.22. Note that we do not need class-based targets in the proof, so such targets are
redundant on the left-hand sides of inclusions. This can also be seen directly: any inclusion

∃type/subclass∗.hasValue(c) ⊆ φ

with a class-based target is equivalent to the following inclusion with a subjects-of target:

∃type.⊤ ⊆ ¬∃type/subclass∗.hasValue(c) ∨ φ

Remark 4.23. Theorem 4.20 fails in the presence of closure constraints. For example, the
inclusion ¬closed(∅) ⊆ ∃r.⊤ defines the class of graphs where every node with an outgoing
edge has an outgoing r-edge. Suppose this inclusion would be equivalent to a target-based
shape schema S, and let R be the set of all property names mentioned in the targets of S.
Let p be a property name not in R and distinct from r; let a be a node name not used as a
constant in S; and consider the graph G = {(a, p, a)}. This graph trivially satisfies S, but
violates the inclusion.

4.3 Extensions for full equality and disjointness tests

A quirk in the design of SHACL is that it only allows equality and disjointness tests
eq(E1, E2) and disj (E1, E2) where E1 can be a general path expression, but E2 needs to
be a property name. The next question we can ask is whether allowing “full” equality or
disjointness tests, i.e., allowing a general path expression for E2, strictly increases the ex-
pressive power. Within the community there are indeed plans to extend SHACL in this
direction [56].

When we allow for such “full” equality and disjointness tests, it gives rise to two new
features: full-eq and full-disj . Formally, we extend the grammar of shapes with two new
constructs: eq(E1, E2) and disj (E1, E2).

Remark 4.24. We cannot explicitly write the shapes eq(id , id) and disj (id , id). However,
these shapes are equivalent to ⊤ and ¬⊤ respectively.

We are going to show that each of these new features strictly adds expressive power.
Concretely, we introduce the following classes of graphs.

Full equality Qfull-eq is the class of graphs where all objects of a property name p do not
have the same subjects for p and q. Note that Qfull-eq is definable in L(full-eq) by the
single, target-based, inclusion statement ∃p−.⊤ ⊆ ¬eq(p−, q−).

54 Expressiveness

Listing 4.2: The two shapes used to express the classes of graphs Qfull-eq and Qfull-disj in
an extension of real SHACL

:fullequality a sh:NodeShape ;

sh:targetSubjectsOf :p ;

sh:not [sh:path [sh:inversePath :p] ;

sh:equals [sh:inversePath :q]] .

:fulldisjointness a sh:NodeShape ;

sh:targetSubjectsOf :p ;

sh:not [sh:path [sh:inversePath :p] ;

sh:disjoint [sh:inversePath :q]] .

Full disjointness Qfull-disj is the class of graphs where all objects of a property name p
do not have disjoint sets of subjects for p and q. Note that Qfull-disj is definable in
L(full-disj) by the single, target-based, inclusion statement ∃p−.⊤ ⊆ ¬disj (p−, q−).

To show the connection to real SHACL, the constraints described above can be written in
real SHACL as shown in Listing 4.2.

In the spirit of Theorem 4.1, we are now going to show the following:

Theorem 4.25. Qfull-eq is not definable in L(eq , full -disj , closed) and Qfull-disj is not defin-
able in L(disj , full -eq , closed).

These two non-definability results are proven in the following Sections 4.3.1 and 4.3.2.
Then in Section 4.3.3 we will reconsider the non-definability results for non-full equality and
disjointness from Theorem 4.1 in the new light of their full versions.

4.3.1 Full equality

We present here the proof for the primitivity of full equality tests. The general strategy is
the same as in Section 4.1, where again we will prove appropriate versions of Proposition 4.2.

We begin by defining the graphs G and G′ formally. Note that, as desired, G′ belongs to
Qfull-eq but G does not.

Definition 4.26. Gfull-eq(Σ,m) Let Σ be a finite vocabulary and let m ≥ 3 be a natural
number. Let A = {a1, . . . , am}, B = {b1, . . . , bm} and C = {c1, . . . , cm} be three disjoint
sets of nodes, disjoint from Σ. We define the graph Gfull-eq(Σ,m) to be JpKG = C × (A ∪B)
and JqKG = C ×A ∪ {(ci, bj) | i ̸= j ∈ {1, . . . ,m}}.

Definition 4.27. G′full-eq(Σ,m) We define the graph G′full-eq(Σ,m) like Gfull-eq(Σ,m) but

JqKG = {(ci, aj) | i ̸= j ∈ {1, . . . ,m}} ∪ {(ci, bj) | i ̸= j ∈ {1, . . . ,m}}.

We identify the possible types of strings on the graphs Gfull-eq(Σ,m) and G′full-eq(Σ,m)
as follows.

Lemma 4.28. Let Σ be a vocabulary. Let m ≥ 3 be a natural number. Let G be Gfull-eq(Σ,m)
and let G′ be G′full-eq(Σ,m). The only possibilities for a string s evaluated on G and G′ are
the following:

1. JsKG = JpKG = JsKG
′

= C × (A ∪B).

2. JsKG = JqKG = (C ×A) ∪ {(ci, bj) | i ̸= j ∈ {1, . . . ,m})} and
JsKG

′
= JqKG

′
= {(ci, aj) | i ̸= j ∈ {1, . . . ,m}} ∪ {(ci, bj) | i ̸= j ∈ {1, . . . ,m}}.

4.3 Extensions for full equality and disjointness tests 55

3. JsKG = Jp−KG = JsKG
′

= (A ∪B)× C.

4. JsKG = Jq−KG = (A× C) ∪ {(bi, cj) | i ̸= j ∈ {1, . . . ,m})} and
JsKG

′
= Jq−KG

′
= {(ai, cj) | i ̸= j ∈ {1, . . . ,m})} ∪ {(bi, cj) | i ̸= j ∈ {1, . . . ,m})}.

5. JsKG = JsKG
′

= C × C.

6. JsKG = JsKG
′

= (A ∪B)× (A ∪B).

7. JsKG = JsKG
′

= id.

8. JsKG = JsKG
′

= ∅.

Proof. We show this by systematically enumerating all strings until no new binary relations
can be found. Note that we only enumerate over strings that alternate between property
names and reversed property names. Indeed, all other strings evaluate to the empty relation
on both G and G′. Every time we encounter new binary relations, we put the string in
boldface.

s JsKG JsKG
′

id id id
p C × (A ∪B) C × (A ∪B)
q (C ×A) ∪ {(ci, aj) | i ̸= j ∈ {1, . . . ,m}} ∪

{(ci, bj) | i ̸= j ∈ {1, . . . ,m})} {(ci, bj) | i ̸= j ∈ {1, . . . ,m}}
p− (A ∪B)× C (A ∪B)× C
q− (A× C) ∪ {(ai, cj) | i ̸= j ∈ {1, . . . ,m})} ∪

{(bi, cj) | i ̸= j ∈ {1, . . . ,m})} {(bi, cj) | i ̸= j ∈ {1, . . . ,m})}
p/p− C × C C × C
p/q− C × C C × C
q/p− C × C C × C
q/q− C × C C × C
p−/p (A ∪B)× (A ∪B) (A ∪B)× (A ∪B)
p−/q (A ∪B)× (A ∪B) (A ∪B)× (A ∪B)
q−/p (A ∪B)× (A ∪B) (A ∪B)× (A ∪B)
q−/q (A ∪B)× (A ∪B) (A ∪B)× (A ∪B)
p/p−/p C × (A ∪B) C × (A ∪B)
p/p−/q C × (A ∪B) C × (A ∪B)
p−/p/p− (A ∪B)× C (A ∪B)× C
p−/p/q− (A ∪B)× C (A ∪B)× C

We are now ready to prove the key proposition.

Proposition 4.29. Let Σ be a vocabulary. Letm ≥ 3 be a natural number. Let V = A∪B∪C
be the common set of nodes of the graphs G = Gfull-eq(Σ,m) and G′ = G′full-eq(Σ,m). For

all shapes φ over Σ counting to at most m− 1, we have JφKG = JφKG
′
. Moreover,

• JφKG ∩ V = A ∪B, or

• JφKG ∩ V = C, or

• JφKG ∩ V = V , or

• JφKG ∩ V = ∅.

56 Expressiveness

Proof. By induction on the structure of φ. For the base cases, if φ is ⊤ then J⊤KG = J⊤KG
′

=

N and N ∩ V = V . If φ is hasValue(c), then JhasValue(c)KG = JhasValue(c)KG
′

= {c} and
{c} ∩ V = ∅ since c ∈ Σ and V ∩ Σ = ∅.

If φ is closed(Q), we consider the possibilities for Q. If Q does not contain both p and q,

then clearly JφKG ∩ V = JφKG
′
∩ V = A ∪B. Otherwise, JφKG = JφKG

′
= N .

Before considering the remaining cases, we observe the following symmetries:

• All elements of A are symmetrical in G. This is obvious from the definition of G.

• Also in G′, all elements of A are symmetrical. Indeed, for any ai ̸= aj in A, the
function that swaps ai and aj , as well as ci and cj , is an automorphism of G′.

• Similarly, all elements of B are symmetrical in G, and also in G′.

• Moreover, we see that all elements of C are symmetrical in G, and in G′.

• Finally, in G′, any ai and bj are symmetrical. Indeed, the function that swaps ai and
bi is clearly an automorphism of G′. In turn, bi and bj are symmetrical by the above.

Therefore, we are only left to show:

(i) For any a ∈ A and b ∈ B, we have G, a |= φ ⇐⇒ G, b |= φ,

(ii) For any a ∈ A, we have G, a |= φ ⇐⇒ G′, a |= φ, and

(iii) For any c ∈ C, we have G, c |= φ ⇐⇒ G′, c |= φ.

(iv) For any x ̸∈ V , we have G, x |= φ ⇐⇒ G′, x |= φ.

Note that then also for any b ∈ B, we have G, b |= φ ⇐⇒ G′, b |= φ because for any a ∈ A
and b ∈ B, we have G, b |= φ

(i)⇐⇒ G, a |= φ
(ii)⇐⇒ G′, a |= φ

symmetry⇐⇒ G′, b |= φ.

Consider the case where φ is eq(E, r). We verify (i), (ii), (iii), and (iv).

(i) By definition of G, JrKG(a) = JrKG(b) = ∅ for any property name r. Therefore we
need to show JEKG(a) = ∅ ⇐⇒ JEKG(b) = ∅. By Lemma 4.7 we know there is a
set of strings U equivalent to E in both G and G′. By Lemma 4.28 there are only 8
types of strings. We observe from Lemma 4.28 that for every U ,

⋃
s∈U JsKG(a) is empty

whenever U only contains strings of type 1, 2, 5, or 8. These are also exactly the U
s.t.

⋃
s∈U JsKG(b) is empty.

(ii) Furthermore, these are also exactly the sets of strings U s.t.
⋃

s∈U JsKG
′
(a) is empty.

Therefore, as JrKG
′
(a) = ∅, we have G′, a |= φ.

(iii) Assume G, c |= φ. We consider the possibilities for r. First, suppose r = p. The sets
of strings U s.t.

⋃
s∈U JsKG(c) = JpKG(c) contain strings of type 1 but not strings of

type 5 or 7. These are also exactly the U s.t.
⋃

s∈U JsKG
′
(c) = JpKG

′
(c).

Next, suppose r = q. The sets of strings U s.t.
⋃

s∈U JsKG(c) = JpKG(c) contain strings
of type 2 but not strings of type 1, 5 or 7. These are also exactly the types of strings
s.t.

⋃
s∈U JsKG

′
(c) = JqKG

′
(c).

Finally, if r is any other property name, then JrKG(c) = JrKG
′
(c) = ∅. This is the case

when U does not contain any strings of type 1, 2, 3, or 7. These are also exactly the
types of strings U s.t.

⋃
s∈U JsKG

′
(c) = ∅.

4.3 Extensions for full equality and disjointness tests 57

(iv) Let x ∈ N − V . Clearly JrKG(x) = JrKG
′
(x) = ∅. By Lemma 4.5, if E is safe, then

JEKG(x) = JEKG
′
(x) = ∅. Therefore G, x |= φ and G′, x |= φ. On the other hand,

whenever E is unsafe, JEKG(x) = JEKG
′
(x) = {x} ≠ ∅. Therefore, G, x ̸|= φ and

G′, x ̸|= φ.

Next, consider the case where φ is disj(E1, E2). We again verify (i), (ii), (iii), and (iv).

(i) Assume G, a |= disj (E1, E2). This can only be the case when the corresponding sets
of strings U1 and U2 are of the following form. U1 can consist only of strings of type
3, 4, 1, 2, 5, and 8 (Here, types 1, 2, 5 and 8 evaluate to empty from a as already seen
above). U2 can then only consist of strings of type 6, 7, 1, 2, 5, and 8 (or vice versa).
These are also the only cases where G, b |= disj (E1, E2).

(ii) Exactly the same situation occurs in G′ and these are then also the only cases where
G′, a |= disj (E1, E2).

(iii) Assume G, c |= disj (E1, E2). This can only be the case when the corresponding sets of
strings U1 and U2 are of the following form. U1 can consist only of strings of type 1,
2, 3, 4, 6, and 8 (Here, types 3, 4, 6, and 8 evaluate to empty from c as already seen
above). U2 can then only consist of strings of type 5, 7, 3, 4, 6, and 8. We observe
that this is also the case in G′.

(iv) Let x ∈ N − V . Whenever E1 is safe, by Lemma 4.5 JE1KG(x) = JE1KG
′
(x) = ∅.

Therefore, G, x |= φ and G′, x |= φ. Clearly, the same holds whenever E2 is safe.

When both E1 and E2 are unsafe, JE1KG(x) = JE1KG
′
(x) = {x} ≠ ∅. Therefore,

G, x ̸|= φ and G′, x ̸|= φ.

The cases where φ is φ1∧φ2, φ1∨φ2 or ¬φ1 are handled by induction in a straightforward
manner.

Lastly, we consider the case where φ is ≥nE.φ1.

(i) Assume G, a |= φ. Then, there exist distinct x1, . . . , xn s.t. (a, xi) ∈ JEKG and G, xi |=
φ1 for 1 ≤ i ≤ n. Again, by Lemma 4.7 we know there is a set of strings U equivalent
to E in both G and G′. By Lemma 4.28 there are only 8 types of strings. By induction,
we consider three cases.

First, if Jφ1KG ∩ V = A ∪ B, then xi, . . . , xn ∈ A ∪ B. Therefore, we know U must at
least contain strings of type 6 or 7. Suppose U contains strings of type 6. Then, we
verify that ♯(

⋃
s∈U JsKG(b) ∩ (A ∪ B)) ≥ m − 1 ≥ n. Whenever U contains strings of

type 7, and not of type 6, we know n = 1 and clearly ♯(
⋃

s∈U JsKG(b) ∩ (A ∪B)) = 1.

Next, if Jφ1KG ∩ V = C, then xi, . . . , xn ∈ C. Therefore, we know U must at
least contain strings of type 3 or 4. Whenever U contains 3 or 4, we verify that
♯(
⋃

s∈U JsKG(b) ∩ C) ≥ m− 1 ≥ n.

Next, if Jφ1KG ∩ V = V , then xi, . . . , xn ∈ V . Therefore, we know U must at least
contain strings of type 3, 4, 6 or 7. All these types have already been handled in the
previous two cases.

Finally, the case where Jφ1KG ∩ V = ∅ cannot occur as n > 0.

The sets of strings U above are also exactly the sets used to argue the implication from
right to left.

(ii) For every case of U above, for every inductive case of φ1, we can also verify that

♯(
⋃

s∈U JsKG
′
(a) ∩ (A ∪ B)) ≥ m − 1 ≥ n, ♯(

⋃
s∈U JsKG

′
(a) ∩ C) ≥ m − 1 ≥ n, and

♯(
⋃

s∈U JsKG
′
(a) ∩ V) ≥ m− 1 ≥ n.

58 Expressiveness

(iii) Assume G, c |= φ. Then, there exist distinct x1, . . . , xn s.t. (c, xi) ∈ JEKG and G, xi |=
φ1 for 1 ≤ i ≤ n. By induction, we consider three cases.

First, if Jφ1KG ∩ V = A ∪ B, then xi, . . . , xn ∈ A ∪ B. Therefore, we know U must
at least contain strings of type 1 or 2. Whenever U contains 1 or 2, we verify that
♯(
⋃

s∈U JsKG
′
(c) ∩ (A ∪B)) ≥ m ≥ n.

Next, if Jφ1KG ∩ V = C, then xi, . . . , xn ∈ C. Therefore, we know U must at least

contain strings of type 5 or 7. Whenever U contains 5, we verify that ♯(
⋃

s∈U JsKG
′
(c)∩

C) ≥ m ≥ n. Otherwise, whenever U contains strings of type 7, and not of type 5, we

know n = 1 and clearly ♯(
⋃

s∈U JsKG
′
(c) ∩ C) = 1.

Next, if Jφ1KG ∩ V = V , then xi, . . . , xn ∈ V . Therefore, we know U must at least
contain strings of type 1, 2, 5 or 7. All these types have already been handled in the
previous two cases.

Finally, the case where Jφ1KG ∩ V = ∅ cannot occur as n > 0.

The sets of strings U above are also exactly the sets used to argue the implication from
right to left.

(iv) For the direction from left to right, take x ∈ JφKG \ V . Since G, x |= φ, there exists
y1, . . . , yn s.t. (x, yi) ∈ JEKG and G, yi |= φ1 for i = 1, . . . , n. However, since x ̸∈ V ,
by Lemma 4.5, all yi must equal x. Hence, n = 1 and (x, x) ∈ JEKG and G, x |= φ1.

Then again, by the same Lemma, (x, x) ∈ JEKG
′
, since G and G′ have the same set of

nodes V . Moreover, by induction, G′, x |= φ1. We conclude G′, x |= φ as desired. The
direction from right to left is argued symmetrically.

4.3.2 Full disjointness

We present here the proof for the primitivity of full disjointness tests. The general strategy
is the same as in Section 4.3.1.

We begin by defining the graphs G and G′ formally.

Definition 4.30. Gfull-disj (Σ,m) Let m be a natural number that is a multiple of 8. Let
A = {a1, . . . , am}, B = {b1, . . . , bm} and C = {c1, . . . , cm} be three disjoint sets of nodes,
disjoint from Σ. For any i ≤ j, we write ai→j to denote the set

{a1+(i−1+l mod m) | 0 ≤ l ≤ j − i}

We define bi→j and ci→j analogously.

We define the graph Gfull-disj (Σ,m) by:

JpKG(ci) = ai→i+m
2
−1 ∪ bi−m

8
→i+m

2
−1 and

JqKG(ci) = ai−m
2
→i−1 ∪ bi−m

2
→i+m

8
−1 for 1 ≤ i ≤ m

The p and q relations are visualized in Figure 4.2.

To give an example for our notation, suppose m = 8. Then,

a2→5 = {a1+(1+l mod 8) | 0 ≤ l ≤ 3} = {a2, a3, a4, a5}
a7→10 = {a1+(6+l mod 8) | 0 ≤ l ≤ 3} = {a7, a8, a1, a2}, and

a−4→−1 = {a1+(−5+l mod 8) | 0 ≤ l ≤ 3} = {a4, a5, a6, a7}

4.3 Extensions for full equality and disjointness tests 59

Definition 4.31. G′full-disj (Σ,m) We define the graph G′full-disj (Σ,m) on the same nodes as
Gfull-disj (Σ,m), with the only difference being the relationship of the p- and q-edges from C
to A:

JpKG(ci) = ai−m
8
→i+m

2
−1 ∪ bi−m

8
→i+m

2
−1 and

JqKG(ci) = ai−m
2
→i+m

8
−1 ∪ bi−m

2
→i+m

8
−1 for 1 ≤ i ≤ m

The p and q relations are visualized in Figure 4.2.

Important to the intuition behind these graphs is the overlap generated by the inverse
p- and q-edges. As demonstrated in Figure 4.3, in graph G = Gfull-disj (Σ,m), the set of c
nodes reached from a nodes with inverse p edges is disjoint from the set of c nodes reached
with inverse q edges. This is not the case for b nodes: there, these sets overlap by precisely
one fourth of the c nodes. For graph G′ = G′full-disj (Σ,m), the sets of c nodes reachable by
inverse p and q edges overlap for both a and b nodes.

We precisely characterize the behavior of strings on the graphs G and G′ as follows.

Lemma 4.32. Let Σ be a vocabulary. Let m be a natural number that is a multiple of 8.
Let G be Gfull-disj (Σ,m) and let G′ be G′full-disj (Σ,m). The only possibilities for a string s
evaluated on G and G′ are the following:

1. JsKG = JpKG =
⋃

i∈{1,...,m}{ci} × (ai→i+m
2
−1 ∪ bi−m

8
→i+m

2
−1) and

JsKG
′

= JpKG
′

=
⋃

i∈{1,...,m}{ci} × (ai−m
8
→i+m

2
−1 ∪ bi−m

8
→i+m

2
−1);

2. JsKG = JqKG =
⋃

i∈{1,...,m}{ci} × (ai−m
2
→i−1 ∪ bi−m

2
→i+m

8
−1) and

JsKG
′

= JqKG =
⋃

i∈{1,...,m}{ci} × (ai−m
2
→i+m

8
−1 ∪ bi−m

2
→i+m

8
−1);

3. JsKG = Jp−KG =
⋃

i∈{1,...,m}({ai} × ci−m
2
+1→i) ∪ ({bi} × ci−m

2
+1→i+m

8
) and

JsKG
′

= Jp−KG
′

=
⋃

i∈{1,...,m}({ai} × ci−m
2
+1→i+m

8
) ∪ ({bi} × ci−m

2
+1→i+m

8
) ;

4. JsKG = Jq−KG =
⋃

i∈{1,...,m}({ai} × ci+1→i+m
2

) ∪ ({bi} × ci−m
8
+1→i+m

2
) and

JsKG
′

= Jq−KG
′

=
⋃

i∈{1,...,m}({ai} × ci−m
8
+1→i+m

2
) ∪ ({bi} × ci−m

8
+1→i+m

2
);

5. JsKG = JsKG
′

= C × C;

6. JsKG = JsKG
′

= (A ∪B)× (A ∪B);

7. JsKG = JsKG
′

= C × (A ∪B);

8. JsKG = JsKG
′

= (A ∪B)× C;

9. JsKG = JsKG
′

= id; or

10. JsKG = JsKG
′

= ∅

The first four types of strings are visualized in Figure 4.2 and Figure 4.3.

Proof. The proof is performed as in the proof of Lemma 4.28. We now have the following
table:

60 Expressiveness

s JsKG JsKG
′

id id id
p type 1 type 1
q type 2 type 2
p− type 3 type 3
q− type 4 type 4
p/p− C × C C × C
p/q− C × C C × C
q/p− C × C C × C
q/q− C × C C × C
p−/p (A ∪B)× (A ∪B) (A ∪B)× (A ∪B)
p−/q (A ∪B)× (A ∪B) (A ∪B)× (A ∪B)
q−/p (A ∪B)× (A ∪B) (A ∪B)× (A ∪B)
q−/q (A ∪B)× (A ∪B) (A ∪B)× (A ∪B)
p/p−/p C × (A ∪B) C × (A ∪B)
p/p−/q C × (A ∪B) C × (A ∪B)
p−/p/p− (A ∪B)× C (A ∪B)× C
p−/p/q− (A ∪B)× C (A ∪B)× C
p/p−/p/p− C × C C × C
p/p−/p/q− C × C C × C
p−/p/p−/p (A ∪B)× (A ∪B) (A ∪B)× (A ∪B)
p−/p/p−/q (A ∪B)× (A ∪B) (A ∪B)× (A ∪B)

We are ready to present our key Proposition.

Proposition 4.33. Let Σ be a vocabulary. Let m be a natural number and a multiple of
8. Let V = A ∪ B ∪ C be the common set of nodes of the graphs G = Gfull-disj (Σ,m) and

G′ = G′full-disj (Σ,m). For all shapes φ over Σ counting to at most m
2
, we have JφKG = JφKG

′
.

Moreover,

• JφKG ∩ V = A ∪B, or

• JφKG ∩ V = C, or

• JφKG ∩ V = V , or

• JφKG ∩ V = ∅.

Proof. By induction on the structure of φ. For the base cases, if φ is ⊤ then J⊤KG = J⊤KG
′

=

N and N ∩ V = V . If φ is hasValue(c), then JhasValue(c)KG = JhasValue(c)KG
′

= {c} and
{c} ∩ V = ∅ since c ∈ Σ and V ∩ Σ = ∅.

If φ is closed(Q), we consider the possibilities for Q. If Q does not contain both p and q,

then clearly JφKG ∩ V = JφKG
′
∩ V = A ∪B. Otherwise, JφKG = JφKG

′
= N .

Before considering the remaining cases, we observe the following symmetries:

• In both G and G′, all elements of A are symmetrical, as are all elements of B, and all
elements of C. Indeed, for any i ∈ {1, . . . ,m}, the function that maps xi to x1+i mod m

where xi is ai, bi or ci, is clearly an automorphism of G and also of G′.

• Furthermore, in G′, any ai and bj are symmetrical. Indeed, the function that swaps
every ai with bi is an automorphism of G′. (We already know that bi and bj are
symmetrical by the above.)

4.3 Extensions for full equality and disjointness tests 61

JpKG =
⋃

i∈{1,...,m}{ci} × (ai→i+m
2
−1 ∪ bi−m

8
→i+m

2
−1)

ci ai bi

JqKG =
⋃

i∈{1,...,m}{ci} × (ai−m
2
→i−1 ∪ bi−m

2
→i+m

8
−1)

ci ai bi

JpKG
′

=
⋃

i∈{1,...,m}{ci} × (ai−m
8
→i+m

2
−1 ∪ bi−m

8
→i+m

2
−1)

ci ai bi

JqKG
′

=
⋃

i∈{1,...,m}{ci} × (ai−m
2
→i+m

8
−1 ∪ bi−m

2
→i+m

8
−1)

ci ai bi

Figure 4.2: Illustration of the p and q relations in graphs G = Gfull-disj (Σ,m) and G′ =
G′full-disj (Σ,m)

62 Expressiveness

Jp−KG =
⋃

i∈{1,...,m}({ai} × ci−m
2
+1→i) ∪ ({bi} × ci−m

2
+1→i+m

8
)

ai ci bi ci

Jq−KG =
⋃

i∈{1,...,m}({ai} × ci+1→i+m
2

) ∪ ({bi} × ci−m
8
+1→i+m

2
)

ai ci bi ci

Jp−KG
′

=
⋃

i∈{1,...,m}({ai} × ci−m
2
+1→i+m

8
) ∪ ({bi} × ci−m

2
+1→i+m

8
)

ai ci bi ci

Jq−KG
′

=
⋃

i∈{1,...,m}({ai} × ci−m
8
+1→i+m

2
) ∪ ({bi} × ci−m

8
+1→i+m

2
)

ai ci bi ci

Figure 4.3: Illustration of the p− and q− relations in graphs G = Gfull-disj (Σ,m) and
G′ = G′full-disj (Σ,m)

4.3 Extensions for full equality and disjointness tests 63

Therefore, we are only left to show:

(i) For any a ∈ A and b ∈ B, we have G, a |= φ ⇐⇒ G, b |= φ,

(ii) For any a ∈ A, we have G, a |= φ ⇐⇒ G′, a |= φ, and

(iii) For any c ∈ C, we have G, c |= φ ⇐⇒ G′, c |= φ.

(iv) For any x ̸∈ V , we have G, x |= φ ⇐⇒ G′, x |= φ.

Note that then also for any b ∈ B, we have G, b |= φ ⇐⇒ G′, b |= φ because for any a ∈ A
and b ∈ B, we have G, b |= φ

(i)⇐⇒ G, a |= φ
(ii)⇐⇒ G′, a |= φ

symmetry⇐⇒ G′, b |= φ.
Consider the case where φ is disj (E, r). We verify (ii), (ii), (iii), and (iv). First, to

see that (ii) and (ii) hold, we observe that JrKG(a) = JrKG(b) = JrKG
′
(a) = JrKG

′
(b) = ∅.

Therefore, G, a |= φ, G, b |= φ, G′, a |= φ, and G′, b |= φ always hold, showing (ii) and (ii).
Next, to show (iii) where r = p, assume G, c |= disj (E, p). By Lemma 4.7 we know there

is a set of strings U equivalent to E in both G and G′. By Lemma 4.32 there are only 10
types of strings. We observe from Lemma 4.32 that for every U ,

⋃
s∈U JsKG(c) is disjoint

from JpKG(c) whenever U does not contain strings of type 1, 2, or 7. These are also exactly

the U s.t.
⋃

s∈U JsKG
′
(c) is disjoint from JpKG

′
(c).

Next, to show (iii) where r = q, assume G, c |= disj (E, q). We observe from Lemma 4.32
that for every U ,

⋃
s∈U JsKG(c) is disjoint from JqKG(c) whenever U does not contain strings

of type 1, 2, or 7. These are also exactly the U s.t.
⋃

s∈U JsKG
′
(c) is disjoint from JqKG

′
(c).

For every other property name r, JrKG(a) = JrKG(b) = ∅. Therefore, G, c |= φ and
G′, c |= φ always hold.

Finally, we show (iv) by observing that for any x ∈ N \ V , JrKG(x) = JrKG
′
(x) = ∅.

Therefore, G, x |= φ and G′, x |= φ always hold.
Next, consider the case where φ is eq(E1, E2). We again verify (ii), (ii), (iii), and (iv).
We show (ii) by using a canonical labeling argument. For any two sets U1 and U2 of

types, we call U1 and U2 equivalent in a ∈ A if
⋃

s∈U1
JsKG(a) =

⋃
s∈U2

JsKG(a). Similarly,
we define when U1 and U2 are equivalent in b or c.

We can canonically label the equivalence classes in a as follows. Let U = {u1, . . . , ul}
and u1 < · · · < ul with each ui ∈ {1, . . . , 10} a type.

There are only six unique singleton sets namely {1}, {3}, {4}, {6}, {8}, and {9}. Replace
each ui by their singleton representative ui. In {u1, . . . , ul}, reorder and remove duplicates
to obtain an equivalent set {u′1, . . . , u′l′}.

If l′ = 1, we are done. Otherwise, we enumerate all nonequivalent 2-element sets that
are not equivalent to a singleton: there are again six of those, namely {3, 6}, {3, 9}, {4, 6},
{4, 9}, {6, 8}, and {8, 9}.

Replace u′1 and u′2 by either {u′′} in case {u′1, u′2} is equivalent to a singleton; otherwise
replace u′1 and u′2 by their equivalent 2-element set {u′′1 , u′′2}. If l′ = 2, we are again done.

We can repeat this process. However, it turns out that there are no 3-element sets that
are not equivalent to a singleton or a 2-element set. Hence, there are only 12 representatives.
The enumeration process is shown in Table 4.1, giving the representative for equivalence in
a as well as for equivalence in b. Crucially, in filling the table, we observe every set U has
the same representative for equivalence in a as for equivalence in b.

Next, (ii) is shown in an analogous manner, where the enumeration process is again
shown in Table 4.1.

Next, (iii) is again shown with an analogous manner, where the enumeration process is
shown in Table 4.2.

To show (iv), assume x ̸∈ V . If both E1 and E2 are safe, then by Lemma 4.5 JE1KG(x) =

JE2KG
′
(x) = ∅. Thus, G, x |= φ and G′, x |= φ. If both E1 and E2 are unsafe, then by Lemma

64 Expressiveness

4.5 JE1KG(x) = JE2KG
′
(x) = {x}. Thus, G, x |= φ and G′, x |= φ. However, whenever only

one of E1 and E2 is safe, clearly G, x ̸|= φ and G′, x ̸|= φ.
The cases where φ is φ1∧φ2, φ1∨φ2 or ¬φ1 are handled by induction in a straightforward

manner.
Lastly, we consider the case where φ is ≥nE.ψ.

(ii) Assume G, a |= φ. Then, there exist distinct x1, . . . , xn s.t. (a, xi) ∈ JEKG and G, xi |=
ψ for 1 ≤ i ≤ n. Again, by Lemma 4.7 we know there is a set of strings U equivalent to
E in both G and G′. By Lemma 4.32 there are only 10 types of strings. By induction,
we consider three cases.

First, if JψKG ∩ V = A ∪ B, then xi, . . . , xn ∈ A ∪ B. Therefore, we know U must at
least contain strings of type 6 or 9. Suppose U contains strings of type 6. Then, we
verify that ♯(

⋃
s∈U JsKG(b)∩(A∪B)) ≥ m ≥ n. Otherwise, whenever U contains strings

of type 9, and not of type 6, we know n = 1 and clearly ♯(
⋃

s∈U JsKG(b)∩ (A∪B)) = 1.

Next, if JψKG ∩ V = C, then xi, . . . , xn ∈ C. Therefore, we know U must at least
contain strings of type 3, 4 or 8. Whenever U contains 3, 4 or 8, we verify that
♯(
⋃

s∈U JsKG(b) ∩ C) ≥ m
2
≥ n.

Next, if JψKG ∩ V = V , then xi, . . . , xn ∈ V . Therefore, we know U must at least
contain strings of type 3, 4, 6, 8 or 9. All these types have already been handled in
the previous two cases.

Finally, the case where JψKG ∩ V = ∅ cannot occur as n > 0.

The sets of strings U above are also exactly the sets used to argue the implication from
right to left.

(ii) For every case of U above, for every inductive case of ψ, we can also verify that

♯(
⋃

s∈U JsKG
′
(a)∩(A∪B)) ≥ m ≥ n, ♯(

⋃
s∈U JsKG

′
(a)∩C) ≥ m

2
≥ n, and ♯(

⋃
s∈U JsKG

′
(a)∩

V) ≥ m
2
≥ n.

(iii) Assume G, c |= φ. Then, there exist distinct x1, . . . , xn s.t. (c, xi) ∈ JEKG and G, xi |=
ψ for 1 ≤ i ≤ n. By induction, we consider three cases.

First, if JψKG ∩ V = A ∪ B, then xi, . . . , xn ∈ A ∪ B. Therefore, we know U must at
least contain strings of type 1, 2 or 7. Whenever U contains 1, 2 or 7, we verify that
♯(
⋃

s∈U JsKG
′
(c) ∩ (A ∪B)) ≥ m

2
≥ n.

Next, if JψKG∩V = C, then xi, . . . , xn ∈ C. Therefore, we know U must at least contain

strings of type 5 or 9. Whenever U contains 5, we verify that ♯(
⋃

s∈U JsKG
′
(c) ∩ C) ≥

m ≥ n. Otherwise, whenever U contains strings of type 9, and not of type 5, we know
n = 1 and clearly ♯(

⋃
s∈U JsKG

′
(c) ∩ C) = 1.

Next, if JψKG ∩ V = V , then xi, . . . , xn ∈ V . Therefore, we know U must at least
contain strings of type 1, 2, 5, 7 or 9. All these types have already been handled in
the previous two cases.

Finally, the case where JψKG ∩ V = ∅ cannot occur as n > 0.

The sets of strings U above are also exactly the sets used to argue the implication from
right to left.

(iv) For the direction from left to right, take x ∈ JφKG \ V . Since G, x |= φ, there exists
y1, . . . , yn s.t. (x, yi) ∈ JEKG and G, yi |= ψ for i = 1, . . . , n. However, since x ̸∈ V ,
by Lemma 4.5, all yi must equal x. Hence, n = 1 and (x, x) ∈ JEKG and G, x |= ψ.

Then again, by the same Lemma, (x, x) ∈ JEKG
′
, since G and G′ have the same set of

4.3 Extensions for full equality and disjointness tests 65

Table 4.1: Sets of types starting from ai, bi in G and ai in G′.

U JEKG(ai) JEKG(bi) JEKG
′
(ai)

{1} ∅ ∅ ∅
{2} ∅ ∅ ∅
{3} ci− k

2
+1→i ci− k

2
+1→i+ k

8
ci− k

2
+1→i+ k

8

{4} ci+1→i+ k
2

ci− k
8
+1→i+ k

2
ci− k

8
+1→i+ k

2

{5} ∅ ∅ ∅
{6} A ∪B A ∪B A ∪B
{7} ∅ ∅ ∅
{8} C C C
{9} {ai} {bi} {ai}
{10} ∅ ∅ ∅
{3, 4} C C C
{3,6} A ∪B ∪ ci− k

2
+1→i A ∪B ∪ ci− k

2
+1→i+ k

8
A ∪B ∪ ci− k

2
+1→i+ k

8

{3, 8} C C
{3,9} ci+1→i+ k

2
∪ {ai} ci− k

8
+1→i+ k

2
∪ {bi} ci− k

8
+1→i+ k

2
∪ {ai}

{4,6} A ∪B ∪ ci+1→i+ k
2

A ∪B ∪ ci− k
8
+1→i+ k

2
A ∪B ∪ ci− k

8
+1→i+ k

2

{4, 8} C C
{4,9} ci+1→i+ k

2
∪ {ai} ci− k

8
+1→i+ k

2
∪ {bi} ci− k

8
+1→i+ k

2
∪ {ai}

{6,8} V V V
{6, 9} A ∪B A ∪B A ∪B
{8,9} C ∪ {ai} C ∪ {bi} C ∪ {ai}
{3, 6, 4} V V V
{3, 6, 8} V V V
{3, 6, 9} A ∪B ∪ ci− k

2
+1→i A ∪B ∪ ci− k

2
+1→i+ k

8
A ∪B ∪ ci− k

2
+1→i+ k

8

{3, 9, 4} C ∪ {ai} C ∪ {bi} C ∪ {ai}
{4, 9, 6} A ∪B ∪ ci+1→i+ k

2
A ∪B ∪ ci− k

8
+1→i+ k

2
A ∪B ∪ ci− k

8
+1→i+ k

2

{4, 9, 8} C C C
{8, 9, 3} C ∪ {ai} C ∪ {bi} C ∪ {ai}
{4, 6, 3} V V V

nodes V / Moreover, by induction, G′, x |= ψ. We conclude G′, x |= φ as desired. The
direction from right to left is argued symmetrically.

Remark 4.34. In our construction of the graphs G and G′, we work with segments that
overlap for 1/8th of the number of nodes. The critical reader will remark that an overlap
of a single node would already be sufficient. Our choice for working with a larger overlap is
indeed largely aesthetic. Moreover, our proof still works for an extension of SHACL where
shapes of the form |r ∩ E| ≥ n would be allowed. This extension allows us to write shapes
like |colleague ∩ friend| ≥ 5, stating that the node has at least five colleagues that are also
friends. Such an extension then would still not be able to express full disjointness.

4.3.3 Further non-definability results

In Theorem 4.1, we showed that equality is primitive in L(disj , closed), and similarly, that
disjointness is primitive in L(eq , closed). Can we strengthen these results to L(full-disj , closed)
and L(full-eq , closed), respectively? This turns out to be indeed possible.

66 Expressiveness

Table 4.2: Sets of types starting from ci in G and in G′.

U JEKG(ci) JEKG
′
(ci)

{1} ai→i+m
2
−1 ∪ bi−m

8
→i+m

2
−1 ai−m

8
→i+m

2
−1 ∪ bi−m

8
→i+m

2
−1

{2} ai−m
2
→i−1 ∪ bi−m

2
→i+m

8
−1 ai−m

2
→i+m

8
−1 ∪ bi−m

2
→i+m

8
−1

{3} ∅ ∅
{4} ∅ ∅
{5} C C
{6} ∅ ∅
{7} A ∪B A ∪B
{8} ∅ ∅
{9} {ci} {ci}
{10} ∅ ∅
{1, 2} A ∪B A ∪B
{1,5} C ∪ ai→i+m

2
−1 ∪ bi−m

8
→i+m

2
−1 C ∪ ai−m

8
→i+m

2
−1 ∪ bi−m

8
→i+m

2
−1

{1, 7} A ∪B A ∪B
{1,9} {ci} ∪ ai→i+m

2
−1 ∪ bi−m

8
→i+m

2
−1 {ci} ∪ ai−m

8
→i+m

2
−1 ∪ bi−m

8
→i+m

2
−1

{2,5} C ∪ ai−m
2
→i−1 ∪ bi−m

2
→i+m

8
−1 C ∪ ai−m

2
→i+m

8
−1 ∪ bi−m

2
→i+m

8
−1

{2, 7} A ∪B A ∪B
{2,9} {ci} ∪ ai−m

2
→i−1 ∪ bi−m

2
→i+m

8
−1 {ci} ∪ ai−m

2
→i+m

8
−1 ∪ bi−m

2
→i+m

8
−1

{5,7} V V
{5, 9} C C
{7,9} {ci} ∪A ∪B {ci} ∪A ∪B
{1, 5, 2} V V
{1, 5, 7} V V
{1, 5, 9} C ∪ ai→i+m

2
−1 ∪ bi−m

8
→i+m

2
−1 C ∪ ai−m

8
→i+m

2
−1 ∪ bi−m

8
→i+m

2
−1

{1, 9, 2} {ci} ∪A ∪B {ci} ∪A ∪B
{1, 9, 7} {ci} ∪A ∪B {ci} ∪A ∪B
{2, 5, 7} V V
{2, 5, 9} C ∪ ai−m

2
→i−1 ∪ bi−m

2
→i+m

8
−1 C ∪ ai−m

2
→i+m

8
−1 ∪ bi−m

2
→i+m

8
−1

{2, 9, 7} {ci} ∪A ∪B {ci} ∪A ∪B
{5, 7, 9} V V

4.4 Extension to stratified recursion 67

That equality remains primitive in L(full-disj , closed) already follows from our given
proof in Section 4.1.3. In effect, the attentive reader may have noticed that we already
cover full disjointness in that proof. In contrast, our proof of primitivity of disjointness
in L(eq , closed) does not extend to full equality. Nevertheless, we can reuse our proof of
primitivity of full disjointness as follows. The graphs G and G′ from Proposition 4.33 are
indistinguishable in L(full-eq , disj , closed). Let H and H ′ be the same graphs but with all
directed edges reversed (i.e., the graphs illustrated in Figure 4.3). Then the same proof
shows that H and H ′ are indistinguishable in L(full-eq , closed). However, since G and G′

are distinguishable by the inclusion statement ∃p−.⊤ ⊆ ¬disj (p−, q−), also H and H ′ are
distinguishable by the inclusion statement ∃p.⊤ ⊆ ¬disj (p, q). Thus, the primitivity of
disjointness in L(full-eq , closed) is established.

4.4 Extension to stratified recursion

Until now, we could do without shape names. We do need them, however, for recursive
shape schemas. Such schemas allow shapes to be defined using recursive rules, much as in
Datalog and logic programming. The rules have a shape name in the head; in the body they
have a shape that can refer to the same or other shape names.

Example 4.35. The following rule defines a shape, named s, recursively:

s← hasValue(c) ∨ (eq(p, q) ∧ ∃r.hasShape(s)).

A node x will satisfy s if there is a (possibly empty) path of r-edges from x to the constant
c, so that all nodes along the path satisfy eq(p, q) (for two property names p and q).

Rules and programs We need to make a few extensions to our formalism and the se-
mantics.

• We assume an infinite supply S of shape names. Again for simplicity of notation only,
we assume that S is disjoint from N and P .

• The syntax of shapes is extended so that every shape name is a shape.

• A vocabulary Σ is now a subset of N ∪ P ∪ S; an interpretation I now additionally
assigns a subset JsKI of ∆I to every shape name s in Σ.

Noting the obvious parallels with the field of logic programming, we propose to use the
following terminology from that field. A rule is of the form s← φ, where s is a shape name
and φ is a shape. A program is a finite set of rules. The shape names appearing as heads of
rules in a program are called the intensional shape names of that program.

The following definitions of the semantics of programs are similar to definitions well-
known for Datalog. A program is semipositive if for every intensional shape name s, and
every shape φ in the body of some rule, s occurs only positively in φ. Let P be a semipositive
program over vocabulary Σ, with set of intensional shape names D. An interpretation J over
Σ∪D is called a model of P if for every rule s← φ of P, the set JφKJ is a subset of JsKJ . Given
any interpretation I over Σ−D, there exists a unique minimal interpretation J that expands
I to Σ ∪ D such that J is a model of P (Indeed, J is the least fixpoint of the well-known
immediate consequence operator, which is a monotone operator since P is semipositive [2]).
We call J the result of applying P to I, and denote J by P(I).

Stratified programs are essentially sequences of semipositive programs. Formally, a pro-
gram P is called stratified if it can be partitioned into parts P1, . . . , Pn called strata, such
that (i) the strata have pairwise disjoint sets of intensional shape names; (ii) each stratum

68 Expressiveness

is semipositive; and (iii) the strata are ordered in such a way that when a shape name s
occurs in the body of a rule in some stratum, s is not intensional in any later stratum.

Let P be a stratified program with n strata P1, . . . , Pn and let again I be an interpre-
tation over a vocabulary without the intensional shape names. We define P(I), the result
of applying P to I, to be the interpretation Jn, where J0 := I and Jk+1 := Pk+1(Jk) for
0 ≤ k < n.

Stratified shape schemas We are now ready to define a stratified shape schema again as
a set of inclusions, but now paired with a stratified program. Formally, it is a pair (P, T),
where:

• P is a program that is stratified, and where every shape name mentioned in the body
of some rule is an intensional shape name in P.

• T is a finite set of inclusion statements φ1 ⊆ φ2, where φ1 and φ2 mention only shape
names that are intensional in P.

Now we define a graph G to conform to (P, T) if Jφ1KP(G) is a subset of Jφ2KP(G), for
every inclusion φ1 ⊆ φ2 in T .

Remark 4.36. The nonrecursive notion of shape schema, defined in Chapter 2, corresponds
to the special case where P is the empty program.

Extending Theorem 4.1 Theorem 4.1 extends to stratified shape schemas. Indeed,
consider a stratified shape schema (P, T). Shapes not mentioning any shape names are
referred to as elementary shapes. We observe that for every intensional shape name s and
every graph H, there exists an elementary shape φ such that JsKP(H) = JφKH . Furthermore,
φ uses the same constants, quantifiers, and path expressions as P. For semipositive programs,
this is shown using a fixpoint characterization of the minimal model; for stratified programs,
this argument can then be applied repeatedly. The crux, however, is that graphs G and G′

of Proposition 4.2 will have the same φ. Indeed, by that Proposition, the fixpoints of the
different strata will be reached on G and on G′ in the same stage. We effectively obtain an
extension of Proposition 4.2, which establishes the theorem for features X other than closed .

Also for X = closed , the reasoning, given after Lemma 4.17, extends in the same way to
stratified shape schemas, since the graphs G and G′ used there again yield exactly the same
evaluation for all shapes that do not use closed .

Extending Theorem 4.20 Also Theorem 4.20 extends to stratified shape schemas. Thereto,
Lemma 4.17 needs to be reproven in the presence of a stratified program P defining the in-
tensional shape names. The extended Lemma 4.17 then states that JφKP(G) = JφKP(G′). The
proof of Theorem 4.20 then goes through unchanged.

Extending Theorem 4.25 Also Theorem 4.25 extends to stratified shape schemas for
the same reasons given above for Theorem 4.1.

5
Provenance

An important functionality expected of modern data management systems [1] is that they
can provide provenance for the results they produce in response to queries or constraint
checks. Intuitively, the provenance of a query result explains why the result was produced.
Provenance typically takes the form of a subinstance, containing the data on which the
produced result depends, or the data that is responsible for the result.

Provenance semantics have been proposed for a variety of data models and query lan-
guages, as surveyed by Glavic [47], even with many different proposals for the standard
relational model and conjunctive queries. For SHACL, however, a provenance semantics has
been lacking so far. The goal of this chapter is to fill this gap.

Provenance semantics is normally defined for query languages, not for constraint lan-
guages. Yet, any shape (constraint) φ can be naturally treated as the query that returns the
set of nodes from the input graph that conform to φ. Following this idea, we will propose a
provenance semantics for SHACL that returns, for any shape φ, any RDF graph G, and any
focus node v from G that conforms to the shape, a certain subset of G. This subset, which
we call the neighborhood of v in G with respect to φ, intuitively consists of the triples from
G that contribute to v conforming to φ.

Example 5.1. Consider a publication graph (like the DBLP database) in RDF, where nodes
represent papers, authors, and classes. We have :author-labeled edges from papers to their
authors, and rdf:type-labeled edges from nodes to their class (e.g., paper, student, professor).
Consider the constraint “the focus node has at least one author of type student”, which can
be written as the shape:

:WorkshopShape← ≥1 :author.≥1 rdf:type.hasValue(:Student)

We will define the neighborhood of a conforming node v to consist of all triples (v :author
x) from the graph where the graph also has the triple (x rdf:type Student), and that triple is
also included in the neighborhood.

The above example involves a simple positive-existential constraint, but SHACL has
quite powerful logical constructs, including negation, universal and counting quantifiers,
path expressions, and primitives for equality and disjointness. This means that giving a
nontrivial definition of neighborhood is challenging, if we want neighborhoods to satisfy an
essential criterion known as sufficiency [47]. Simply put, a neighborhood N of a node v with
respect to a shape φ is sufficient if v still conforms to φ when evaluated in the subgraph N .
We will prove sufficiency for our provenance semantics for SHACL.

69

70 Provenance

For conjunctive queries or positive-existential queries, sufficiency is easy to satisfy. For a
language with the logical constructs mentioned above, however, we are the first to present a
nontrivial provenance semantics for which sufficiency can be proved. We specify “nontrivial”
here, as one can always define the neighborhood to be the entire graph and obtain sufficiency
trivially. Indeed, the challenge is to keep only the relevant triples, without throwing out too
much. Also, thanks to negation, we obtain both “why” and “why not” provenance [57]:
if v does not conform to a shape φ, then its neighborhood for the shape ¬φ provides the
explanation.

Interestingly, neighborhoods suggest an opportunity to leverage shapes beyond confor-
mance checking, and use them also to retrieve data. Specifically, given a shape φ and an
input graph G, we can retrieve the subgraph of G formed by the union of all neighborhoods
of all nodes in G that conform to φ. We refer to the result as the shape fragment of G with
respect to φ. We will actually prove a stronger version of sufficiency, to the effect that a
node v conforms to φ in G if and only if it conforms to φ in the shape fragment of G with
respect to φ. In our work, we will duly generalize the notion of shape fragments to shape
schemas, and also extend the sufficiency result to them.

Throughout this chapter, we use the complete formalization of SHACL as described in
Section 2.4 with a slightly deviating definition of a shape schema. Here, a shape schema H
is simply a collection of triples of the form (s, φ, τ) where s ∈ S a shape name, φ a shape
expression and τ the associated target declaration. If some named shapes do not have a
target declaration, τ is ⊥.

5.1 Data provenance for SHACL

In this section, we propose a provenance semantics for SHACL by defining the fundamental
notion of the neighborhood of a node v for a shape φ in a graph G. The intuition is that
this neighborhood consists of those triples in G that show that v conforms to φ; if v does
not conform to φ, the neighborhood is set to be empty. We want a generic, tractable,
deterministic definition that formalizes this intuition.

5.1.1 Neighborhoods

Before developing the definition formally, we discuss the salient features of our approach.

Negation Following the work by Grädel and Tannen on supporting where-provenance in
the presence of negation [48], we assume shapes are in negation normal form, i.e.,
negation is only applied to atomic shapes. This is no restriction, since every shape can
be put in negation normal form, preserving the overall syntactic structure, simply by
pushing negations down. We push negation through conjunction and disjunction using
De Morgan’s laws. We push negation through quantifiers as follows:

¬≥n+1E.ψ ≡ ≤nE.ψ ¬≤nE.ψ ≡ ≥n+1E.ψ ¬∀E.ψ ≡ ≥1E.¬ψ

The negation of ≥0E.ψ is simply false.

Node tests We leave the neighborhood for hasValue and test shapes empty, as these involve
no properties, i.e., no triples.

Closedness We also define the neighborhood for closed(P) to be empty, as this is a minimal
subgraph in which the shape is indeed satisfied. A reasonable alternative approach
would be to return all properties of the node, as “evidence” that these indeed involve
only IRIs in P . Indeed, we will show in Section 5.1.4 that our definitions, while
minimalistic, are taken such that they can be relaxed without sacrificing the sufficiency
property.

5.1 Data provenance for SHACL 71

Disjointness Still according to our minimal approach, the neighborhood for disjointness
shapes is empty. Analogously, the same holds for lessThan and uniqueLang shapes.

Equality The neighborhood for a shape eq(E, p) consists of the subgraph traced out by
the E-paths and p-properties of the node under consideration, evidencing that the sets
of end-nodes are indeed equal. Here, we can no longer afford to return the empty
neighborhood, although equality would hold trivially there. Indeed, this would destroy
the relaxation property promised above. For example, relaxing by adversely adding
just one E-path and one p-property with distinct end-nodes, would no longer satisfy
equality.

Nonclosure The neighborhood for a shape ¬closed(P) consists of those triples from the
node under consideration that involve properties outside P , as expected.

Nonequality For ¬eq(E, p) we return the subgraph traced out by the E-paths from the
node v under consideration that end in a node that is not a p-property of v, and vice
versa. A similar approach is taken for nondisjointness and negated lessThan shapes.

Quantifiers The neighborhood for a shape ∀E.ψ consists, as expected, of the subgraph
traced out by all E-paths from the node under consideration to nodes x, plus the ψ-
neighborhoods of these nodes x. For ≥nE.ψ we do something similar, but we take only
those x that conform to ψ. Given the semantics of the ≥n quantifier, it seems tempting
to instead just take a selection of n of such nodes x. However, we want a deterministic
definition of neighborhood, so we take all x. Dually, for≤nE.ψ, we return the subgraph
traced out by E-paths from the current node to nodes not conforming to ψ, plus their
¬ψ-neighborhoods.

5.1.2 Formal definition

Towards a formalization of the above ideas, we first make precise the intuitive notion of a
path in an RDF graph, and of the subgraph traced out by a path. Paths are finite sequences
of adjacent steps. Each step either moves forward from the subject to the object of a triple,
or moves backward from the object to the subject. We make backward steps precise by
introducing, for each property p ∈ I, its reverse, denoted by p−. The set of reverse IRIs is
denoted by I−. We assume I and I− are disjoint, and moreover, we also define (p−)− to be
p for every p ∈ I.

For any RDF triple t = (s, p, o), the triple t− := (o, p−, s) is called a reverse triple. As
for IRIs, we define (t−)− to be t. A step is an RDF triple (a forward step) or a reverse triple
(a backward step). For any step t = (x, r, y), we refer to x as the tail, denoted by tail(t),
and to y as the head, denoted by head(t). A path is a nonempty finite sequence π of steps
so that head(t1) = tail(t2) for any two subsequent steps t1 and t2 in π. The tail of π is the
tail of its first step; the head of π is the head of its last step. Any two paths π and π′ where
head(π) = tail(π′) can be concatenated; we denote this by π · π′.

The graph traced out by a path π, denoted by graph(π), is simply the set of RDF triples
underlying the steps of the path. Thus, backward steps must be reversed. Formally,

graph(π) = {t | t forward step in π} ∪ {t− | t backward step in π}.

For a set Π of paths, we define graph(Π) =
⋃
{graph(π) | π ∈ Π}.

We are not interested in arbitrary sets of paths, but in the set of paths generated by a
path expression E in an RDF graph G, denoted by paths(E,G) and defined in a standard
manner as follows.

• paths(p,G) = {(a, r, b) ∈ G | r = p};

72 Provenance

• paths(E/E′, G) = {π · π′ | π ∈ paths(E,G) & π′ ∈ paths(E′, G) & head(π) = tail(π′)};

• paths(E ∪ E′, G) = paths(E,G) ∪ paths(E′, G);

• paths(E?, G) = paths(E,G);

• paths(E∗, G) =
⋃∞

i=1 paths(Ei, G); and

• paths(E−, G) = {π− | π ∈ paths(E,G)}.

Here, Ei abbreviates E/ · · · /E (i times), and π− = t−l , . . . , t
−
1 for π = t1, . . . , tl. Note that

paths(p,G) is a set of length-one paths.
In order to link E-paths to the evaluation of shapes below, we introduce some more

notation, for any two nodes a and b:

paths(E,G, a, b) := {π ∈ paths(E,G) | tail(π) = a & head(π) = b}

Note that graph(π), for every π ∈ paths(E,G), is a subgraph of G. This will ensure that
neighborhoods and shape fragments are always subgraphs of the original graph. Moreover,
the following observation ensures that path expressions will have the same semantics in the
neighborhood as in the original graph:

Proposition 5.2. Let F = graph(paths(E,G, a, b)). Then (a, b) ∈ JEKG ⇔ (a, b) ∈ JEKF .

Proof. That JEKF ⊆ JEKG is immediate from F ⊆ G and the monotonicity of path expres-
sions. For the reverse inclusion, we proceed by induction on the structure of E. The base
case, where E is a property p, is immediate from the definitions. The inductive cases where
E is one of E1 ∪ E2, E−1 , or E1/E2, are clear. Two cases remain:

• Let E be of the form E1?. If a = b, then (a, b) ∈ JEKF by definition. Otherwise, (a, b)
must be in JE1KG. Therefore, by induction, (a, b) ∈ JE1KF ⊆ JEKF .

• Let E be of the form E∗1 . If a = b, then (a, b) ∈ JEKF by definition. Otherwise,
there exist i ≥ 1 nodes c0, . . . , ci such that a = c0 and b = ci, and (cj , cj+1) ∈ JE1KG

for 0 ≤ j < i. By induction, each (cj , cj+1) ∈ JE1KF , whence (a, b) belongs to the
transitive closure of JE1KF as desired.

Note that paths(E,G) may be infinite, due to the use of Kleene star in E and cycles in
G. However graph(paths(E,G)) is always finite, because G is finite.

We are now ready to define neighborhoods in the context of an arbitrary but fixed schema
H. To avoid clutter we will omit H from the notation.

Definition 5.3. Let v be a node, G be a graph, and φ be a shape. We define the φ-
neighborhood of v in G, denoted by B(v,G, φ), as the empty RDF graph whenever v does
not conform to φ in G. When v does conform, the definition is given in Table 5.1.

In the table, as already discussed above, by pushing negations down, we can and do
assume that φ is put in negation normal form, meaning that negation is only applied to
atomic shapes. (Atomic shapes are those from the grammar in Section 2.4 that do not refer
back to φ.)

Example 5.4. Consider the “happy at work” shape

¬disj (:friend, :colleague)

The neighborhood of a conforming node v consists of the union of all pairs of triples (v :friend
x) and (v :colleague x) for each common x that exists in the data graph.

5.1 Data provenance for SHACL 73

Table 5.1: Neighborhood B(v,G, φ) in the context of a schema H, when G, v |= φ and
φ is in negation normal form. In particular, in rules 2 and 6, we assume that ¬def (s,H)
and ¬ψ are put in negation normal form. In the omitted cases, and when G, v ̸|= φ, the
neighborhood is defined to be empty.

φ B(v,G, φ)

hasShape(s) B(v,G, def (s,H))
¬hasShape(s) B(v,G,¬def (s,H))
φ1 ∧ φ2 B(v,G, φ1) ∪ B(v,G, φ2)
φ1 ∨ φ2 B(v,G, φ1) ∪ B(v,G, φ2)

≥n E.ψ
⋃
{graph(paths(E,G, v, x)) ∪ B(x,G, ψ) | (v, x) ∈ JEKG & G, x |= ψ}

≤n E.ψ
⋃
{graph(paths(E,G, v, x)) ∪ B(x,G,¬ψ) | (v, x) ∈ JEKG & G, x |= ¬ψ}

∀E.ψ
⋃
{graph(paths(E,G, v, x)) ∪ B(x,G, ψ) | (v, x) ∈ JEKG}

eq(E, p)
⋃
{graph(paths(E ∪ p,G, v, x)) | (v, x) ∈ JE ∪ pKG}

eq(id, p) {(v, p, v)}

¬eq(E, p)

⋃
{graph(paths(E,G, v, x)) | (v, x) ∈ JEKG & (v, p, x) /∈ G} ∪

{(v, p, x) ∈ G | (v, x) /∈ JEKG}
¬eq(id, p) {(v, p, x) ∈ G | x ̸= v}
¬disj (E, p)

⋃
{graph(paths(E,G, v, x)) ∪ {(v, p, x)} | (v, x) ∈ JEKG & (v, p, x) ∈ G}

¬disj (id, p) {(v, p, v)}

¬lessThan(E, p)

⋃
{graph(paths(E,G, v, x)) ∪ {(v, p, y)} |(v, x) ∈ JEKG &

(v, p, y) ∈ G & x ≮ y}

¬lessThanEq(E, p)

⋃
{graph(paths(E,G, v, x)) ∪ {(v, p, y)} |(v, x) ∈ JEKG &

(v, p, y) ∈ G & x ≰ y}
¬uniqueLang(E)

⋃
{graph(paths(E,G, v, x)) | (v, x) ∈ JEKG & ∃y ̸= x : (v, y) ∈ JEKG & y ∼ x}

¬closed(P) {(v, p, x) ∈ G | p /∈ P}

5.1.3 Algorithms for neighborhoods

Table 5.1 defines neighborhoods by set-theoretic expressions which are constructive, com-
parable to safe relational calculus formulas in the relational model [95]. As such, these
expressions immediately yield a naive algorithm for computing neighborhoods.

Consider, for example, the computation of B(v,G,≥nE.ψ). We proceed as follows,
following the set-theoretic expression provided. Run through all nodes x for which there is
an E-path from v to x. Algorithms for such regular path queries are well understood [11] and
are supported by SPARQL query processors. For each such x, test whether G, x |= ψ. This
test is according to the semantics of shapes defined in Table 2.1, which is again constructive
and algorithmic. Now for each x passing the test, recursively compute B(x,G, ψ), and also
compute graph(paths(E,G, v, x)). Collect the results for all x, and return their union.

For another example, the computation of B(v,G,¬eq(E, p)) proceeds as follows. Again
run through all nodes x for which there is an E-path from v to x. For each x we test if
(v, p, x) is in G; if it is not, we compute graph(paths(E,G, v, x)). We collect the resulting
triples for all x in a temporary result set T1. Secondly, we run through all nodes x for which
the triple t = (v, p, x) is in G. For each x we test if x is reachable from v by an E-path; if it
is not, add t to the temporary result set T2. We finally return the union T1 ∪ T2.

All cases from Table 5.1 likewise can be given an algorithmic reading, so together they
provide a (naive) algorithm for computing neighborhoods.

Computing graph(paths(E,G, v, x)). A key ingredient in the neighborhood algorithm is
the computation of the subgraph graph(paths(E,G, v, x)). For simple path expressions E
which are just a property p or an inverse property p−, these are simply the singletons
{(v, p, x)} and {(x, p, v)}, respectively. For more complex path expressions E, however, it is
not obvious how graph(paths(E,G, v, x)) can be computed. We will actually show this later
in Lemma 5.13, by effectively reducing the problem to the computation of a SPARQL query.

74 Provenance

Complexity In Section 5.2.2 we will see more generally that, in fact, the entire neighbor-
hood can be computed by a single SPARQL query. Since SPARQL (without the need for reg-
ular expressions with counting, and using standard regular path semantics) has polynomial-
time data complexity [74], we obtain polynomial-time complexity of neighborhood compu-
tation.

5.1.4 The sufficiency property

We can prove that neighborhoods indeed provide us with an adequate provenance semantics
for shapes. Specifically, we want to show that the neighborhood B(v,G, φ) is sufficient in
the sense of providing provenance for the conformance of v to φ in G. Thinking of a shape
as a unary query, returning all nodes that conform to it, the following theorem states exactly
the “sufficiency property” that has been articulated in the theory of data provenance [47].

Theorem 5.5 (Sufficiency). If G, v |= φ then also G′, v |= φ for any RDF graph G′ such
that B(v,G, φ) ⊆ G′ ⊆ G.

Proof. For any shape φ, we consider its expansion with relation to the schema H, obtained
by repeatedly replacing subshapes of the form hasShape(s) by def (s,H), until we obtain an
equivalent shape that no longer contains any subshapes of the form hasShape(s).

Proof by induction on the height of the expansion of φ in negation normal form, where the
height of negated atomic shapes is defined to be zero. When φ is ⊤, test(t), or hasValue(c),
and v conforms to φ in G, then v clearly also conforms to φ in G′, as the conformance of
the node is independent of the graph. We start by considering the remaining base cases.

Let φ be of the form eq(E, p). We must show that JEKG
′
(v) = JpKG

′
(v). For the con-

tainment from left to right, let x ∈ JEKG
′
(v). Since E is monotone, x ∈ JEKG(v). Since

G, v |= φ, x ∈ JpKG(v). Let F = graph(paths(p,G, v, x)). By Proposition 5.2, x ∈ JpKF (v).
By definition of φ-neighborhood, F ⊆ B, and we know B ⊆ G′. Therefore, because path
expressions are monotone, we also have x ∈ JpKG

′
(v) as desired. The containment from right

to left is analogous.
Let φ be of the form eq(id , p). We must show that JidKG

′
(v) = JpKG

′
(v), or equivalently

we must show that {v} = JpKG
′
(v). We know that G, v |= φ, therefore JpKG(v) = {v}. Now

we only need to show that (v, p, v) ∈ G′ as G′ ⊆ G (and therefore G′ does not contain
more p-edges than G). Because by definition of neighborhood B = {(v, p, v)}, and because
B ⊆ G′, the claim follows.

Let φ be of the form disj (E, p). Let x ∈ JEKG
′
(v). Since E is monotone, x ∈ JEKG(v).

Since G, v |= φ, x ̸∈ JpKG(v). Therefore, as p is monotone, x ̸∈ JpKG
′
(v). The case where

x ∈ JpKG
′
(v) is analogous.

Let φ be of the form disj (id , p). We must show that (v, p, v) ̸∈ G′. Because G, v |= φ,
we know that (v, p, v) ̸∈ G. As G′ ⊆ G, the claim follows.

Let φ be of the form lessThan(E, p). Let x ∈ JEKG
′
(v). Let (v, p, y) ∈ G′. We must

show that x < y. Since E is monotone, x ∈ JEKG(v) and since G′ ⊆ G, (v, p, y) ∈ G. As
G, v |= φ, we know that x < y in G and thus also in G′.

The case where φ is the form lessThanEq(E, p) is analogous to the previous case.

Let φ be of the form uniqueLang(E). Let x ∈ JEKG
′
(v). Let y ∈ JEKG

′
(v) such that

y ̸= x. As E is monotone, x ∈ JEKG(v) and y ∈ JEKG(v). As G, v |= φ, we know y ≁ x in G
and thus also in G′.

Let φ be of the form closed(P). Let (v, p, x) ∈ G′. Then, (v, p, x) ∈ G. Therefore, as
G, v |= φ, p ∈ P as desired.

Let φ be of the form ¬eq(E, p). Since G, v |= φ, there are two cases. First, there
exists a node x ∈ JEKG(v) such that x ̸∈ JpKG(v). Let F = graph(paths(E,G, v, x)). By
Proposition 5.2, x ∈ JEKF (v). By definition of φ-neighborhood F ⊆ B, and we know

5.1 Data provenance for SHACL 75

B ⊆ G′. Therefore, since E is monotone, x ∈ JEKG
′
(v). Next, since (v, p, x) ̸∈ G, we know

(v, p, x) ̸∈ G′. Thus, JEKG(v) ̸= JpKG(v) as desired. For the other case, there exists a node x
such that (v, p, x) ∈ G and x ̸∈ JEKG(v). By definition of φ-neighborhood, (v, p, x) ∈ B ⊆ G′.
However, because E is monotone x ̸∈ JEKG

′
(v). Therefore JpKG(v) ̸= JEKG(v) as desired.

Let φ be of the form ¬eq(id , p). Since G, v |= φ, there are two cases. First, (v, p, v) ̸∈ G.
We know G′ ⊆ G, therefore if (v, p, v) ̸∈ G, then (v, p, v) ̸∈ G′ as desired. Second, (v, p, v) ∈
G and there exists a node x such that (v, p, x) ∈ G and x ̸= v. From the definition of
neighborhood, we know that this also holds for B and therefore also in G′ as B ⊆ G′.

Let φ be of the form ¬disj (E, p). Since G, c |= φ, we know that there exists a node
x ∈ JEKG(v) such that (v, p, x) ∈ G. Let F = graph(paths(E,G, v, x)). By Proposition 5.2,
x ∈ JEKF (v). By definition of φ-neighborhood F ⊆ B, and we know B ⊆ G′. Then, since E

is monotone, x ∈ JEKG
′
(v). Next, by definition of φ-neighborhood, also (v, p, x) ∈ B ⊆ G′.

Thus, x ∈ JEKG
′
(v) ∩ JpKG

′
(v) as desired.

Let φ be of the form ¬disj (id , p). We need to show that (v, p, v) ∈ G′. By definition of
neighborhood, (v, p, v) ∈ B. As B ⊆ G′, (v, p, v) ∈ G′ as desired.

Let φ be of the form ¬lessThan(E, p). Since G, v |= φ, there exists a node x ∈ JEKG(v)

and a node y ∈ JpKG(v) with x ≮ y. If we can show that x ∈ JEKG
′
(v) and x ∈ JpKG

′
(v), it

will follow that G′, v |= φ as desired. Let F = graph(paths(E,G, v, x)). By Proposition 5.2,
x ∈ JEKF (v). By definition of φ-neighborhood, F ⊆ B, and we know B ⊆ G′. Then, since

E is monotone, x ∈ JEKG
′
(v). Next, by definition of φ-neighborhood, (v, p, x) ∈ B. Since

B ⊆ G′, also x ∈ JpKG
′
(v) as desired.

The case where φ is the form ¬lessThanEq(E, p) is analogous to the previous case.

Let φ be of the form ¬uniqueLang(E). Since G, v |= φ, there exists x1 ̸= x2 ∈ JEKG(v)

such that x1 ∼ x2. As in the previous case, we must show that x1 and x2 are in JEKG
′
(v). By

Proposition 5.2, for both i = 1, 2, we have xi ∈ JEKFi(v) with Fi = graph(paths(E,G, v, xi)).

By definition of φ-neighborhood Fi ⊆ B ⊆ G′. Therefore xi ∈ JEKG
′
(v) as desired.

Let φ be of the form ¬closed(P). As G, v |= φ, there exists a property p ̸∈ P and a node
x such that (v, p, x) ∈ G. By definition (v, p, x) ∈ B(v,G, φ) ⊆ G′. Hence, G′, v |= φ as
desired.

We proceed with the inductive cases. Let φ be of the form φ1 ∧ φ2. By induction, we
know v conforms to φ1 in G′ and conforms to φ2 in G′. Therefore, v conforms to φ1 ∧φ2 in
G′.

Let φ be of the form φ1 ∨ φ2. We know v conforms to at least one of φi for i ∈ {1, 2} in
G. Assume w.l.o.g. that v conforms to φ1 in G. Then, our claim follows by induction.

Let φ be of the form ≥nE.ψ. Here, and in the following cases, we denote B(v,G, φ) by
B. As G, v |= φ, we know there are at least n nodes x1, . . . , xn in G such that xi ∈ JEKG(v)
and G, xi |= ψ for all 1 ≤ i ≤ n. Let F = graph(paths(E,G, v, x)). By Proposition 5.2,
xi ∈ JEKF (v). By definition of φ-neighborhood F ⊆ B, and we know B ⊆ G′. Therefore,

because E is monotone, xi ∈ JEKG
′
(v). Furthermore, since B(xi, G, ψ) ⊆ B ⊆ G′, by

induction, G′, xi |= ψ as desired.

Let φ be of the form ≤nE.ψ. First we show that every x ∈ JEKG
′
(v) that conforms to ψ

in G′, must also conform to ψ in G.

Proof by contradiction. Suppose there exists a node x ∈ JEKG
′
(v) that conforms to ψ in

G′, but conforms to ¬ψ in G. By definition of φ-neighborhood, B(x,G,¬ψ) ⊆ B, and we
know B ⊆ G′. Therefore, by induction, x conforms to ¬ψ in G′, which is a contradiction.

Because of the claim above, the number of nodes reachable from v through E that satisfy
ψ in G′ must be smaller or equal to the number of nodes reachable from v through E that
satisfy ψ in G. Because we know G, v |= φ, the lemma follows.

Let φ be of the form ∀E.ψ. For all nodes x such that x ∈ JEKG
′
(v), as E is monotone,

x ∈ JEKG(v). As G, v |= φ, G, x |= ψ. By definition of φ-neighborhood, B(x,G, ψ) ⊆ B. We

76 Provenance

know B ⊆ G′. Thus, by induction, G′, x |= ψ as desired.

Note that the Sufficiency property is stated not just for the neighborhood, but more
strongly for all subgraphs G′ that encompass the neighborhood. This stronger statement
serves both a technical and a practical purpose. The technical purpose is that it is needed to
deduce our results on shape fragments (cf. the next Subsection). The practical advantage is
that it allows some leeway for provenance engines. Indeed, even if the engine, for reasons of
efficiency or ease of implementation, return larger neighborhoods than the ones we strictly
define, Sufficiency will continue to hold.

Example 5.6. Let us consider the a schema about workshop papers and authors. We
require that each paper must have at least one author, but can have at most one author
who is not of type student. These two constraints are captured by a schema H with two
shape definitions. One has the shape expression ≥1 author.⊤, and the other has the shape
expression

≤1 author.¬≥1 type.hasValue(student),

which in negation normal form becomes

≤1 author.≤0 type.hasValue(student).

Both shape definitions have target ≥1 type.hasValue(paper). We denote the two shape ex-
pressions by φ1 and φ2, and the target by τ .

Consider the simple graph G consisting of a single paper, say p1. This paper has two
authors: Anne, who is a professor, and Bob, who is a student. Formally, G consists of the
five triples (p1, type, paper), (p1, auth,Anne), (p1, auth,Bob), (Anne, type, prof) and (Bob, type,
student).

Let us consider the neighborhood of p1 for the shape φ1 ∧ τ . This neighborhood consists
of the three triples (p1, type, paper), (p1, auth,Anne) and (p1, auth,Bob). On the other hand,
the neighborhood of p1 for φ2∧τ consists of the three triples (p1, type, paper), (p1, auth,Bob)
and (Bob, type, student).

Note that the triple (Bob, type, student) is essential in the neighborhood for φ2 ∧ τ ;
omitting it would break Sufficiency. On the other hand, we are free to add the triple
(Anne, type, prof) to any of the neighborhoods without breaking Sufficiency.

Finally, note that we could add to G various other triples unrelated to the shapes φ1, φ2

and τ . The neighborhoods would omit all this information, as desired.

We conclude this section with a number of remarks.

Remark 5.7. A natural question is whether B(v,G, φ), as we have defined it, is minimal
while still being sufficient in the sense of Theorem 5.5. Our discussion on quantifiers in
Section 5.1.1 already indicated non-minimality. Assume, for example, that φ is “the focus
node must have an a-property” (say, an address), expressed as ≥1 a.⊤. In a graph G with
two triples (v, a, x) and (v, a, y), node v has two addresses. Any of the two triples in itself
would be sufficient as a neighborhood of v for φ. Choosing between the two addresses x and
y, however, leads to a nondeterministic behavior.

Remark 5.8. In Theorem 5.1.1, what can we say if v does not conform to φ in G? In this case,
v conforms to ¬φ in G. Hence, the provenance for the non-conformance will be provided by
B(v,G,¬φ). This point was first made by Köhler, Ludäscher and Zinn [57], who, however,
do not define neighborhood subgraphs and do not prove any Sufficiency property.

Remark 5.9. The neighborhood of a node, for whatever shape, is always a subset of its con-
nected component in the graph. Thus, Sufficiency implies that only the connected component
(indeed, only the neighborhood!) is needed to check conformance of a node.

5.2 Shape fragments 77

5.2 Shape fragments

In this section we define and illustrate the idea of shape fragments as a novel mechanism to
retrieve subgraphs.

The shape fragment of an RDF graph G, for a finite set S of shapes, is the subgraph of
G formed by the neighborhoods of all nodes in G for the shapes in S. Formally:

Frag(G,S) =
⋃
{B(v,G, φ) | v ∈ N & φ ∈ S}.

Here, v ranges over the universeN of all nodes, but since neighborhoods are always subgraphs
of G, it is equivalent to let v range over all subjects and objects of triples in G. So, to compute
Frag(G,S), we run over v, retrieve the neighborhoods for each v independently, and collect
and return the set of resulting triples.

The shapes in S can be interpreted as arbitrary “request shapes”. An interesting special
case, however, is when S is derived from a shape schema H. Formally, we define the shape
fragment of G for H as Frag(G,H) := Frag(G,S), where S = {φ ∧ τ | ∃s : (s, φ, τ) ∈ H}.
Thus, the shape fragment for a schema requests the conjunction of each shape in the schema
with its associated target.

In order to state our main results concerning these two types of shape fragments, we need
to revisit the definition of schema. Recall that a schema is a set of shape definitions, where
a shape definition is of the form (s, φ, τ). Until now, we allowed both the shape expression
φ and the target τ to be arbitrary shapes. In real SHACL, however, only shapes of the
following specific forms can be used as targets:

• hasValue(c) (node targets);

• ≥1 p/r
∗.hasValue(c) (class-based targets: p and r stand for type and subclass from the

RDF Schema vocabulary [79], and c is the class name);

• ≥1 p.⊤ (subjects-of targets); and

• ≥1 p
−.⊤ (objects-of targets).

For our purposes, however, what counts is that real SHACL targets τ are monotone, in the
sense that if G, v |= τ and G ⊆ G′, then also G′, v |= τ .

We establish:

Theorem 5.10 (Conformance). Assume that schema H has monotone targets, and assume
RDF graph G conforms to H. Then Frag(G,H) also conforms to H.

Proof. The proof is a straightforward application of Theorem 5.5. Let F = Frag(G,H); we
must show that F conforms to H. Thereto, consider a shape definition (s, φ, τ) ∈ H, and
let v be a node such that F, v |= τ . Since F ⊆ G and τ is monotone, also G, v |= τ , whence
G, v |= φ since G conforms to H. Since by definition, F contains B(v,G, φ), Sufficiency
yields F, v |= φ as desired.

Moreover, Sufficiency carries over to shape fragments defined by arbitrary request shapes
as follows:

Corollary 5.11. Let G be an RDF graph, let S be a finite set of shapes, let φ be a shape in
S, and let v be a node. If G, v |= φ, then also Frag(G,S), v |= φ.

Example 5.12. For monotone shapes, the converse of Corollary 5.11 clearly holds as well.
In general, however, the converse does not always hold. For example, consider the shape
φ = ≤0 p.⊤ (“the node has no property p”), and the graph G = {(a, p, b)}. Then the
fragment Frag(G, {φ}) is empty, so a trivially conforms to φ in the fragment. However, a
clearly does not conform to φ in G.

78 Provenance

5.2.1 Applicability of shape fragments

In order to assess the practical applicability of shape fragments, we simulated a range of
SPARQL queries by shape fragments. Queries were taken from the SPARQL benchmarks
BSBM [15] and WatDiv [5]. Unlike a shape fragment, a SPARQL select-query does not
return a subgraph but a set of variable bindings. SPARQL construct-queries do return
RDF graphs directly, but not necessarily subgraphs. Hence, we followed the methodology of
modifying SPARQL select-queries to construct-queries that return all images of the pattern
specified in the where-clause.

For tree-shaped basic graph patterns, with given IRIs in the predicate position of triple
patterns, we can always simulate the corresponding subgraph query by a shape fragment.
Indeed, a typical query from the benchmarks retrieves nodes with some specified properties,
some properties of these properties, and so on. For example, a slightly simplified WatDiv
query, modified into a subgraph query, would be the following. (To avoid clutter, we forgo
the rules of standard IRI syntax.)

CONSTRUCT WHERE {
?v0 caption ?v1 .
?v0 hasReview ?v2 .
?v2 title ?v3 .
?v2 reviewer ?v6 .
?v7 actor ?v6 }

(Here, CONSTRUCT WHERE is the SPARQL notation for returning all images of a basic
graph pattern.) We can express the above query as the fragment for the following request
shape:

≥1 caption.⊤ ∧≥1 hasReview.(≥1 title.⊤ ∧≥1 reviewer.≥1 actor
−.⊤)

Of course, patterns can involve various SPARQL operators, going beyond basic graph
patterns. Filter conditions on property values can be expressed as node tests in shapes;
optional matching can be expressed using ≥0 quantifiers. For example, consider a simplified
version of the pattern of a typical BSBM query:

?v text ?t . FILTER langMatches(lang(?t),“EN”) OPTIONAL { ?v rating ?r }

The images of this pattern can be retrieved using the shape

≥1 title.test(lang = “EN”) ∧ ≥0 rating.⊤.

Interestingly, the BSBM workload includes a pattern involving a combination of optional
matching and a negated bound-condition to express absence of a certain property (a well-
known trick [7, 9]). Simplified, this pattern looks as follows:

?prod label ?lab .
?prod feature 870
OPTIONAL { ?prod feature 59 . ?prod label ?var }
FILTER (!bound(?var))

The images of this pattern can be retrieved using the shape

≥1 label.⊤ ∧≥1 feature.hasValue(870) ∧ ≤0 feature.hasValue(59).

A total of 39 out of 46 benchmark queries, modified to return subgraphs, could be
simulated by shape fragments in this manner. The remaining seven queries involved features
not supported by SHACL, notably, variables in the property position, or arithmetic.

5.2 Shape fragments 79

5.2.2 Translation to SPARQL

Our first approach to computing neighborhoods is by translation into SPARQL, the recom-
mended query language for RDF graphs [50]. SPARQL select-queries return sets of solution
mappings, which are maps µ from finite sets of variables to N . Variables are marked using
question marks. Different mappings in the result may have different domains [10,73].

Neighborhoods in a graph G are unions of subgraphs of the form graph(paths(E,G, a, b)),
for path expressions E mentioned in the shapes, and selected nodes a and b. Hence, the
following lemma is important. For any RDF graph G, we denote by N(G) the set of all
subjects and objects of triples in G.

Lemma 5.13. For every path expression E, there exists a SPARQL select-query
QE(?t, ?s, ?p, ?o, ?h) such that for every RDF graph G:

1. The binary relation {(µ(?t), µ(?h)) | µ ∈ QE(G)} equals JEKG, restricted to N(G).

2. For all a, b ∈ N(G), the RDF graph

{(µ(?s), µ(?p), µ(?o)) | µ ∈ QE(G) & (µ(?t), µ(?h)) = (a, b)
& µ is defined on ?s, ?p and ?o}

equals graph(paths(E,G, a, b)).

Proof. The difficulty is that we do not merely have to test if (a, b) ∈ JEKG, which can
readily be expressed using SPARQL property paths, but that we actually have to return
graph(paths(E,G, a, b)). We construct QE by induction on the structure of E. We list QE

in each of the cases of the syntax of path expressions. In the base case, when E is a property
name p:

SELECT (?s AS ?t) ?s (p AS ?p) ?o (?o AS ?h) WHERE { ?s p ?o }

When E is of the form E−1 , we obtain QE1 by induction, and construct QE as follows:

SELECT (?h AS ?t) ?s ?p ?o (?t AS ?h) WHERE { QE1 }

When E is of the form E1?:

SELECT ?t ?s ?p ?o ?h WHERE {
{ QE1 } UNION
{ SELECT (?v AS ?t) (?v AS ?h)
WHERE { { ?v ? p1 ? o1 } UNION { ? s2 ? p2 ?v } } } }

When E is of the form E1 ∪ E2:

SELECT ?t ?s ?p ?o ?h WHERE { { QE1 } UNION { QE2 } }

When E is of the form E1/E2:

SELECT ?t ?s ?p ?o ?h WHERE {
{ { SELECT ?t ?s ?p ?o (?h AS ?h1) WHERE { QE1 } } .
{ SELECT (?t AS ?h1) ?h WHERE { ?t E2 ?h } } }

UNION {
{ SELECT ?t (?h AS ?h1) WHERE { ?t E1 ?h } } .
{ SELECT (?t AS ?h1) ?s ?p ?o ?h WHERE { QE2 } } } }

Finally, when E is of the form E∗1 :

80 Provenance

SELECT ?t ?s ?p ?o ?h WHERE {
{ ?t E∗1 ?x1 . ?x2 E∗1 ?h .
{ SELECT (?t AS ?x1) ?s ?p ?o (?h AS ?x2) WHERE { QE1 } } }

UNION {
SELECT (?v AS ?h) (?v AS ?t)
WHERE { { ?v ? p1 ? o1 } UNION { ? s2 ? p2 ?v } } } }

The following example illustrates the lemma, but using a more readable query than the
one that would be literally generated by the above proof.

Example 5.14. For IRIs a, b, q and r, the following SPARQL query, applied to any graph
G, returns graph(paths((q/r)∗, G, a, b)):

SELECT ?s ?p ?o
WHERE { a (q/r)* ?t . ?h (q/r)* b . {

{ SELECT ?t (?t AS ?s) (q AS ?p) ?o ?h
WHERE { ?t q ?o . ?o r ?h } }

UNION
{ SELECT ?t ?s (r AS ?p) (?h AS ?o) ?h
WHERE { ?t q ?s . ?s r ?h } } } }

Using Lemma 5.13, and expressing the definitions from Table 5.1 in SPARQL, we obtain
that neighborhoods can be uniformly computed in SPARQL as follows.

Proposition 5.15. For every shape φ, there exists a SPARQL select-query Qφ(?v, ?s, ?p,
?o) such that for every RDF graph G,

{(µ(?v), µ(?s), µ(?p), µ(?o)) | µ ∈ Qφ(G)} = {(v, s, p, o) ∈ N4 | (s, p, o) ∈ B(v,G, φ)}

Moreover, the size of Qφ is linear in the size of φ.

Proof. As always we work in the context of a schema H. We assume φ is put in negation
normal form and proceed by induction as in the proof of the Sufficiency Theorem.

Note that Qφ should not merely check conformance of nodes to shapes, but actually
must return the neighborhoods. Indeed, that conformance checking in itself is possible in
SPARQL (for nonrecursive shapes) is well known; it was even considered for recursive shapes
[29]. Hence, in the constructions below, we use an auxiliary SPARQL query CQφ(?v) (C
for conformance) which returns, on every RDF graph G, the set of nodes v ∈ N(G) such
that G, v |= φ. We now describe Qφ for all the cases in the following. We start by not-
ing that many shapes have an empty neighborhood, concretely, the cases where φ is of
one of the forms: ⊤, hasValue(c), test(t), closed(P), disj (E, p), disj (id , p), lessThan(E, p),
lessThanEq(E, p), uniqueLang(E), ¬⊤, ¬hasValue(c), and ¬test(t) have an empty neighbor-
hood, i.e., the corresponding SPARQL query is the empty query. Furthermore, when φ is of
the form hasShape(s), the query is given by Qdef (s,H). Analogously, when φ is of the form
¬hasShape(s), the query is given by Q¬def (s,H). We proceed with listing all other cases.

When φ is of the form φ1 ∧ φ2 or φ1 ∨ φ2, we obtain Qφ1 and Qφ2 by induction, and
construct Qφ as follows:

SELECT ?v ?s ?p ?o
WHERE { { CQφ } . { Qφ1 } UNION { Qφ2 }}

When φ is of the form ≥nE.φ1:

5.2 Shape fragments 81

SELECT (?t AS ?v) ?s ?p ?o
WHERE {
{ { SELECT (?v AS ?t) WHERE { CQφ } } .
{ QE } .
{ SELECT (?v AS ?h) WHERE { CQφ1

} }
} UNION
{ { SELECT (?v AS ?t) WHERE { CQφ } } .
?t E ?h .
{ SELECT (?v AS ?h) ?s ?p ?o
WHERE { { Qφ1 } . { CQφ1

}}}}}

When φ is of the form ≤nE.φ1:

SELECT (?t AS ?v) ?s ?p ?o
WHERE {
{ { SELECT (?v AS ?t) WHERE { CQφ } } .
{ QE } .
{ SELECT (?v AS ?h) WHERE { CQ¬φ1

} }
} UNION
{ { SELECT (?v AS ?t) WHERE { CQφ } } .
?t E ?h .
{ SELECT (?v AS ?h) ?s ?p ?o
WHERE { { Q¬φ1 } . { CQ¬φ1

}}}}}

When φ is of the form ∀E.φ1:

SELECT (?t AS ?v) ?s ?p ?o
WHERE {
{ { SELECT (?v AS ?t) WHERE { CQφ } } .
{ QE }
} UNION
{ { SELECT (?v AS ?t) WHERE { CQφ } } .
?t E ?h .
{ SELECT (?v AS ?h) ?s ?p ?o
WHERE { Qφ1 }}}}

When φ is of the form eq(id , p):

SELECT ?v (?s AS ?v) (p AS ?p) (?v AS ?o)
WHERE { { CQφ } . ?v p ?v }

When φ is of the form ¬closed(P)):

SELECT ?v (?v AS ?s) ?p ?o
WHERE { { CQφ } . ?v ?p ?o FILTER (?p NOT IN P) }

When φ is of the form ¬eq(E, p):

SELECT (?t AS ?v) ?s ?p ?o
WHERE {
{ SELECT (?v AS ?t) WHERE { CQφ } } .
{ { { QE } MINUS { ?t p ?h } }
UNION
{ { Qp } MINUS { ?t E ?h } } } }

When φ is of the form ¬eq(id , p):

82 Provenance

SELECT ?v (?v AS ?s) (p AS ?p) (?v AS ?o)
WHERE { { CQφ } . ?v p ?o FILTER (?o != ?v) }

When φ is of the form ¬disj (E, p):

SELECT (?t AS ?v) ?s ?p ?o
WHERE {
{ SELECT (?v AS ?t) WHERE { CQφ } } .
{ { { QE } . { ?t p ?h } }
UNION
{ { Qp } . { ?t E ?h } } } }

When φ is of the form ¬disj (id , p):

SELECT ?v (?v AS ?s) (p AS ?p) (?v AS ?o)
WHERE { { CQφ } . ?v p ?v }

When φ is of the form ¬lessThan(E, p):

SELECT (?t AS ?v) ?s ?p ?o
WHERE {
{ SELECT (?v AS ?t) WHERE { CQφ } } .
{ { { QE } . { ?t p ?h2 } FILTER (! ?h ¡ ?h2) }
UNION
{ { Qp } . { ?t E ?h2 } FILTER (! ?h2 ¡ ?h) } } }

When φ is of the form ¬lessThanEq(E, p):

SELECT (?t AS ?v) ?s ?p ?o
WHERE {
{ SELECT (?v AS ?t) WHERE { CQφ } } .
{ { { QE } . { ?t p ?h2 } FILTER (! ?h ¡= ?h2) }
UNION
{ { Qp } . { ?t E ?h2 } FILTER (! ?h2 ¡= ?h) } } }

And finally, when φ is of the form ¬uniqueLang(E):

SELECT (?t AS ?v) ?s ?p ?o
WHERE {
{ SELECT (?v AS ?t) WHERE { CQφ } } .
{ QE } . { ?t E ?h2 }
FILTER (?h != ?h2 && lang(?h) = lang(?h2)) }

The linear-size claim can indeed be verified by inspecting the construction in the proof
of Lemma 5.13 and the construction of Qφ.

Remark 5.16. The above result should not be confused with the known result [29, Proposition
3] that SPARQL can compute the set of nodes that conform to a given shape. Our result
states that also the neighborhoods can be computed.

Since shape fragments are unions of neighborhoods, we also obtain:

Corollary 5.17. For every finite set S of shapes, there exists a SPARQL select-query
QS(?s, ?p, ?o) such that for every RDF graph G,

{(µ(?s), µ(?p), µ(?o)) | µ ∈ QS(G)} = Frag(G,S).

5.2 Shape fragments 83

Example 5.18. For IRIs p, q and c, consider the request shape ∀p.≥1 q.hasValue(c) (e.g.,
“all my friends like ping-pong”, with p, q and c playing the role of friend, like, and ping-
pong, respectively). The corresponding shape fragment is retrieved by the following SPARQL
query:

SELECT ?s ?p ?o WHERE {
{ SELECT ?v WHERE
{ ?v p ?x MINUS { ?v p ?y OPTIONAL { ?y q c . ?v p ?z }

FILTER (!bound(?z)) } } } .
{ { SELECT (?v AS ?s) (p AS ?p) (?x as ?o)

WHERE { ?v p ?x . ?x q c } }
UNION
{ SELECT (?x AS ?s) (q AS ?p) (c as ?o)
WHERE { ?v p ?x . ?x q c } } } }

The first subselect retrieves nodes ?v conforming to the shape; the UNION of the next
two subselects then retrieves the neighborhoods.

The above example illustrates that query expressions for shapes can quickly become
quite complex, even for just retrieving the nodes that conform to a shape. Shapes involving
equality constraints require nested not-exists subqueries in SPARQL, and would benefit from
specific operators for set joins, e.g., [51,63]. Shapes of the form ≤5 p.⊤ requires grouping the
p-properties and applying a condition count ≤ 5, plus a union with an outer join to retrieve
the nodes without any p-property. Such shapes would benefit from specific operators for
group join [38, 64]. Query optimization for queries derived from SHACL is an important
topic for further research.

One may wonder about the converse to Corollary 5.17: is every SPARQL select-query
expressible as a shape fragment? This does not hold, if only because shape fragments always
consist of triples from the input graph, while select-queries can return arbitrary variable
bindings. However, also more fundamentally, SHACL is strictly weaker than SPARQL; we
give two representative examples.

4-clique Let p ∈ I. There does not exist a shape φ such that, on any RDF graph G, the
nodes that conform to φ are exactly the nodes belonging to a 4-clique of p-triples in G.
We can show that if 4-clique would be expressible by a shape, then the corresponding
4-clique query about a binary relation P would be expressible in 3-variable counting
infinitary logic C3

∞ω. The latter is known not to be the case, however [66]. (Infinitary
logic is needed here to express path expressions, and counting is needed for the ≥n

quantifier, since we have only 3 variables.)

Majority Let p, q ∈ I. There does not exist a shape φ such that, on any RDF graph G, the
nodes that conform to φ are exactly the nodes v such that ♯{x | (v, p, x) ∈ G} ≥ ♯{x |
(v, q, x) ∈ G} (think of departments with at least as many employees as projects). We
can show that if Majority would be expressible by a shape, then the classical Majority
query about two unary relations P and Q would be expressible in first-order logic.
Again, the latter is not the case [58]. (Infinitary logic is not needed here, since for this
query, we can restrict to a class of structures where all paths have length one.)

5.2.3 Adapting a validation engine

We have also investigated computing neighborhoods by adjusting a SHACL validator to
return the validated RDF terms and their neighborhood, instead of a validation report.

A SHACL validation engine checks whether a given RDF graph conforms to a given
schema, and produces a validation report detailing possible violations. A validation engine

84 Provenance

needs to inspect the neighborhoods of nodes anyway. Hence, it requires only reasonably
lightweight adaptations to produce, in addition to the validation report, also the nodes
and their neighborhoods that validate the shapes graph, without introducing significant
overheads for tracing out and returning these neighborhoods, compared to doing validation
alone. Our hypothesis is that the resulting overhead will not be prohibitive.

To test this hypothesis, we extended the open-source, free-license engine pySHACL [76].
This is a main-memory engine and it achieves high coverage for core SHACL [44]. Written
in Python, we found it easy to make local changes to the code [71]; starting out with 4501
lines of code, 482 lines were changed, added or deleted.

Our current implementation covers most of SHACL core, with the exception of complex
path expressions, i.e., only simple path expressions are supported. The algorithm that is
implemented is then essentially the naive algorithm described in Section 5.1.3.

Our software, called pySHACL-fragments, is available open-source [77].

5.2.4 Experiments

We validated our approach by (i) measuring the overhead of neighborhood extraction, com-
pared to mere validation, using pySHACL-fragments; and (ii) testing the viability of comput-
ing neighborhoods by translation to SPARQL. We perform our experiments in the context
of computing shape fragments. Indeed, shape fragments offer a natural test case as they
require the neighborhoods of all nodes to be retrieved.

Extraction overhead

To evaluate the viability of computing neighborhoods by adapting a validation engine, we
measured the overhead of extracting neighborhoods using our system pySHACL-fragments,
compared to producing the corresponding validation report using pySHACL alone. Perfor-
mance evaluation of SHACL engines is not our goal here; see Schaffenrath et al. [83] for this.
Yet, we reuse the 57 shapes from their performance benchmark. These shapes are expressed
over a 30-million triple dataset known as the “Tyrolean Knowledge Graph”. Notably, how-
ever, Schaffenrath et al. managed to run their comparative study on a 1-million slice of the
knowledge graph only, as common SHACL validation engines are still in their infancy and
not very efficient.

For our experiment, instead, we generated a 1.5-million triple induced subgraph of the
knowledge graph as follows. We sampled 50 000 individual nodes uniformly at random, and
then retrieved all triples involving these individuals as subjects or objects. By sampling a
larger number of 100K, 150K and 200K nodes, we similarly obtained subgraphs of (approx-
imately) 2.5, 3.5, and 4.5 million triples.

We used a 12 core AMD EPYC 2.595GHz processor with 16GB DDR4 RAM and 400GB
SSD. We executed each of the shapes three times, both on pySHACL and on pySHACL-
fragments. Timers were placed around the validator.run() function, so data loading and
shape parsing time is not included. The average overhead turns out to be well below 10%; if
we restrict attention to the shapes where validation on the 1.5M graph takes longer than a
second, the average overhead grows to 15.6%. Figure 5.1 shows that the overhead may vary
somewhat going to larger graphs, but stays constant on average. There are some outliers
where the overhead fluctuates more wildly, but these happen to be associated with low (below
second) runtimes.

The shapes where the overhead is highest are those with existential shapes and many
target nodes with large neighborhoods. For some property p and some condition ψ, an
existential shape requires that the target node must have at least one p-edge to a node x
satisfying ψ (expressed as ≥1 p.ψ). Here, a validator merely needs to check for each target

5.2 Shape fragments 85

0

5

10

15

20

25

30

1.5M 2.5M 3.5M 4.5M

O
ve

rh
ea

d
pe

rc
en

ta
ge

Figure 5.1: Overhead (percent increase in time to do provenance extraction, over mere
validation of a shape) shown for 57 shapes over four graph sizes. Each line represents a
shape.

node v that at least one such x exists, while provenance computation must also retrieve all
the satisfying triples (v, p, x).

Computing neighborhoods in SPARQL

Instead of modifying an existing SHACL engine, one may compute provenance using SPARQL
queries, as presented in Section 5.2.2. Shapes give rise to complex SPARQL queries which
pose quite a challenge to SPARQL query processors. It is outside the scope of the present
study to do a performance study of SPARQL query processors; our goal rather is to obtain
an indication of the practical feasibility of computing neighborhoods in SPARQL.

Initial work by Corman et al. has reported satisfying results on doing validation for
nonrecursive schemas by a single, complex SPARQL query [29]. The question we want to
answer is whether we can observe a similar situation when computing neighborhoods, where
the queries become even more complex.

We have obtained a mixed picture. We used the main-memory SPARQL engine Apache
Jena ARQ. Implementing Corollary 5.17 by following the constructive proof of Proposi-
tion 5.15, we translated the shape fragment queries for the benchmark shapes from the
previous Section 5.2.4 into large SPARQL queries. The generated expressions can be hun-
dreds of lines long, as our translation procedure is not yet optimized to generate “efficient”
SPARQL expressions. However, we then reduced the shapes by substituting ⊤ for node tests,
and simplifying the resulting expressions. This reduction preserves the graph-navigational
nature of the queries.

After the reduction, 13 out of 57 shapes produced SPARQL queries that ARQ could
execute. The other queries were still too long and did not terminate or went out of memory.
Figure 5.2 shows the runtimes on the same test data and the same machine as the overhead
experiment; one shape is omitted from the Figure as it does not retrieve any triples at all.
Reported timings are averages over three runs.

Finally, to test the extraction of paths in SPARQL, we used the DBLP database [32],
and computed the shape fragment for shape ≥1 a

−/a/a−/a/a−/a.hasValue(MYV), where a
stands for the property dblp:authoredBy, and MYV stands for the DBLP IRI for Moshe Y.
Vardi. This extracts not only all authors at co-author distance three or less from this famous
computer scientist, but, crucially, also all a-triples on all the relevant paths. The generated
SPARQL query is similar to the query from Example 5.14.

86 Provenance

0

5

10

15

20

25

30

35

40

45

50

1.5M 2.5M 3.5M 4.5M

Ti
m

e
in

 se
co

nd
s

Figure 5.2: Execution times of provenance computation for 12 shapes by SPARQL queries,
over four graph sizes. Each line represents a shape.

We ran this heavy analytical query on the two secondary-memory engines Apache Jena
ARQ on TDB2 store, and GraphDB. The execution times over increasing slices of DBLP,
going backwards in time from 2021 until 2010, are comparable between the two engines (see
Figure 5.3). Vardi is a prolific and central author and co-author; just from 2016 until 2021,
almost 7% of all DBLP authors are at distance three or less, or almost 145 943 authors.
The resulting shape fragment contains almost 3% of all dblpl:authoredBy triples, or 219 085
unique triples. We see that retrieving neighborhoods can be a computationally intensive
task for which new methods may be needed.

For the Vardi experiment we used a 2x 8core Intel Xeon E5-2650 v2 processor with 48GB
DDR3 RAM and a 250GB hard disk.

Discussion

From these experiments, we conclude that computing neighborhoods is viable, but can be
computationally intensive. Indeed, provenance for SHACL serves as an interesting new chal-
lenge and testbed both for SHACL validators (suitably adapted to retrieve neighborhoods)
and SPARQL engines. Advances on either front will also benefit SHACL provenance perfor-
mance. Interestingly, recent approaches to SHACL validation [29,41] consider decomposing
the task into multiple small SPARQL queries, as opposed to translating to a single large
query.

5.3 Related work

Shapes may be viewed as queries on RDF graphs, returning the nodes that conform to the
shape. This observation allows us to compare neighborhoods for shapes, with provenance
semantics for queries proposed in the literature [27,47].

A seminal work in the area of data provenance is that on lineage by Cui, Widom and
Wiener [31]. Like neighborhoods, the lineage of a tuple returned by a query on a database
D is a subdatabase of D. Lineage was defined for queries expressed in the relational algebra.
In principle, we can express shapes in relational algebra. So, instead of defining our own
notion of neighborhood, should we have simply used lineage instead? The answer is no; the
following example shows that Sufficiency would fail.

Example 5.19. Recalling Example 5.6, consider a relational database schema with three
relation schemes Paper(P), Author(P,A), and Student(A), and the query Q returning all

5.3 Related work 87

2 4 6 8 10 12

0

20

40

60

80

2020
2018

2016

2014

2012

2010

Ex
ec

ut
io

n
tim

e
(m

in
ut

es
)

Data graph size (million triples)

Figure 5.3: Jena ARQ store-based SPARQL execution time (dotted) and store-based
GraphDB execution time (dashed-dotted) for the Vardi-distance-3 shape fragment.

papers with at least one author but without non-student authors. Consider the database D
given by

D(Paper) = {p1};
D(Author) = {(p1,Bob)};
D(Student) = {Bob}.

Note that p1 is returned by Q on D. A relational algebra expression for Q is E = Paper 1
(πP (Author)−V) with V = πP (Author− (Author 1 Student)). Since V is empty on D, the
lineage of p1 for E in D is the database D′ where

D′(Paper) = {p1}; D′(Author) = {(p1,Bob)}; D′(Student) = ∅.

However, p1 is no longer returned by E on D.

An alternative approach to lineage is why-provenance [24] which is non-deterministic
in that it reflects that there may be several “explanations” for why a tuple is returned
by a query (for example, queries involving existential quantification). Accordingly, why-
provenance does not yield a single neighborhood (called witness), but a set of them. While
logical, this approach is at odds with our aim of providing a deterministic retrieval mechanism
through shapes. Of course, one could take the union of all witnesses, but this runs into similar
problems as illustrated in the above example. Indeed, why-provenance was not developed
for queries involving negation or universal quantification.

A recent approach to provenance for negation is that by Grädel and Tannen [48,91] based
on the successful framework of provenance semirings [49]. There, provenance is produced in
the form of provenance polynomials which give a compact representation of the several pos-
sible proof trees showing that the tuple satisfies the query. Thus, like why-provenance, this
approach is inherently non-deterministic. Still, we were influenced by Grädel and Tannen’s
use of negation normal form, which we have followed in this work.

88 Provenance

5.3.1 Triple pattern fragments

Shape fragments return subgraphs: they retrieve a subset of the triples of an input graph.
A popular subgraph-returning mechanism is that of triple pattern fragments (TPF [102]). A
TPF may indeed be viewed as a query that, on an input graph G, returns the subset of G
consisting of all images of some fixed triple pattern in G.

While the logic of shapes is, in general, much richer than simple triple patterns, it turns
out that not all TPFs are actually expressible by shape fragments.

For example, TPFs of the form (?x, p, ?y), (c, p, ?x), (?x, p, c), or (c, p, d), for IRIs p, c, and
d, are easily expressed as shape fragments using request shapes ≥1 p.⊤, ≥1 p

−.hasValue(c),
≥1 p.hasValue(c), or hasValue(c) ∧ ≥1 p.hasValue(d), respectively.

The TPF (?x, p, ?x), asking for all p-self-loops in the graph, corresponds to the shape
fragment for ¬disj (id , p).

Furthermore, the TPFs (?x, ?y, ?z) (requesting a full download) and (c, ?y, ?z) are ex-
pressible using the request shapes ¬closed(∅) and hasValue(c) ∧ ¬closed(∅). Here, the need
to use a “trick” via negation of closedness constraints exposes a weakness of shapes: proper-
ties are not treated on equal footing as subjects and objects. Indeed, other TPFs involving
variable properties, such as (?x, ?y, c), (?x, ?y, ?x), or (c, ?x, d), are not expressible as shape
fragments.

The above discussion can be summarized as follows.

Proposition 5.20. The TPFs expressible as a shape fragment (uniformly over all input
graphs) are precisely the TPFs of the following forms:

1. (?x, p, ?y);

2. (?x, p, c);

3. (c, p, ?x);

4. (c, p, d);

5. (?x, p, ?x);

6. (?x, ?y, ?z);

7. (c, ?y, ?z).

It remains to show that all other forms of TPF are not expressible as shape fragments.
Since, for any finite set S of shapes, we can form the disjunction

∨
S of all shapes in S, and

Frag(G,S) = Frag(G, {
∨
S}) for any graph G, it suffices to consider single shapes φ instead

of finite sets of shapes. We abbreviate Frag(G, {φ}) to Frag(G,φ).
Formally, let Q = (u, v, w) be a triple pattern, i.e., u, v and w are variables or elements

of N . Let V be the set of variables from {u, v, w} to N . A solution mapping is a function
µ : V → N . For any node a, we agree that µ(a) = a. Then the TPF query Q maps any
input graph G to the subset

Q(G) = {(µ(u), µ(v), µ(w)) | µ : V → N & (µ(u), µ(v), µ(w)) ∈ G}.

We now say that a shape φ expresses a TPF query Q if Frag(G,φ) = Q(G) for every graph
G.

We begin by showing:

Lemma 5.21. Let G be an RDF graph and let φ be a shape. Assume Frag(G,φ) contains
a triple (s, p, o) where p is not mentioned in φ. Then Frag(G,φ) contains all triples in G of
the form (s, p′, o′), where p′ is not mentioned in φ.

5.3 Related work 89

Proof. Since shape fragments are unions of neighborhoods, it suffices to verify the statement
for an arbitrary neighborhood B(v,G, φ). This is done by induction on the structure of
the negation normal form of φ. In almost all cases of Table 5.1, triples from B(v,G, φ)
come from E-paths, with E mentioned in φ; from B(v,G, ψ), with ψ a subshape of φ or
the negation thereof; or involve a property p clearly mentioned in φ. Triples of the first
kind never have a property not mentioned in φ, and triples of the second kind satisfy the
statement by induction.

The only remaining case is ¬closed(P). Assume (v, p, x) is in the neighborhood, and let
(v, p′, x′) ∈ G be a triple such that p′ is not mentioned in φ. Then certainly p′ /∈ P , so
(v, p′, x′) also belongs to the neighborhoods, as desired.

Using the above Lemma, we give:

Proof of Proposition 5.20. Consider the TPF Q = (?x, ?x, ?y) and assume there exists a
shape φ such that Q(G) = Frag(G,φ) for all G. Consider G = {(a, a, b), (a, c, b)}, where
a and c are not mentioned in φ. We have (a, a, b) ∈ Q(G) so (a, a, b) ∈ Frag(G,φ). Then
by Lemma 5.21, also (a, c, b) ∈ Frag(G,φ). However, (a, c, b) /∈ P (G), so we arrive at a
contradiction, and φ cannot exist.

Similar reasoning can be used for all other forms of TPF not covered by the proposition.
Below we give the table of these TPFs Q, where c and d are arbitrary IRIs, possibly equal,
and ?x and ?y are distinct variables. The right column lists the counterexample graph G
showing that Q(G) ̸= Frag(G,φ). Importantly, the property (a or b) of the triples in G is
always chosen so that it is not mentioned in φ, and moreover, a, b and e are distinct and
also distinct from c and d.

Q G

(?x, ?y, ?x) {(a, b, a), (a, b, c)}
(?x, ?y, ?y) {(a, b, b), (a, b, c)}
(?x, ?x, ?x) {(a, a, a), (a, a, b)}
(?x, ?y, c) {(a, b, c), (a, b, d)}
(?x, ?x, c) {(a, a, c), (a, a, d)}
(?x, ?y, ?y) {(a, b, b), (a, b, c)}
(c, ?x, ?x) {(c, a, a), (c, a, b)}
(c, ?x, d) {(c, a, d), (c, a, e)}

Remark 5.22. SHACL does not allow negated properties in path expressions, while these are
supported in SPARQL property paths. Extending SHACL with negated properties would
readily allow the expression of all TPFs as shape fragments. For example, the TPF (?x, ?y, c),
for IRI c, would become expressible by requesting the shape

≥1 p.hasValue(c) ∨ ≥1!p.hasValue(c),

with p an arbitrary IRI. Here, the negated property !p matches any property different from
p.

5.3.2 Knowledge graph subsets

Recently, the idea of defining subgraphs (or fragments as we call them) using shapes was
independently proposed by Labra Gayo [59]. An important difference with our SHACL-based
approach is that his approach is based on ShEx, the other shape language besides SHACL
that is popular in practice [23,45]. Shapes in ShEx are quite different from those in SHACL,
being based on bag-regular expressions over the bag of properties of the focus node. As a

90 Provenance

Figure 5.4: Positioning shape fragments in the LDF Framework (adapted from [102]). This
diagram is not to be interpreted as a comparison in expressive power.

result, the technical developments of our work and Labra Gayo’s are quite different. Still,
the intuitive and natural idea of forming a subgraph by collecting all triples encountered
during conformance checking, is clearly the same in both approaches. This idea, which
Labra Gayo calls “slurping”, is implemented in our pyshacl-fragments implementation, as
well as a “slurp” option in the shex.js implementation of ShEx [87]. Labra Gayo also gives
a formal definition of ShEx + slurp, extending the formal definition of ShEx [23].

In our work we make several additional contributions compared to the development by
Labra Gayo:

• We make the connection to database provenance.

• We consider the important special case of shape fragments based on schemas with
targets.

• We support path expressions directly, which in ShEx need to be expressed through
recursion.

• We support negation, universal quantification, and other non-monotone quantifiers and
shapes, such as ≤n, equality, disjointness, lessThan.

• We establish formal correctness properties (Sufficiency and Conformance Theorems).

• We investigate the translation of shape fragments into SPARQL. On the other hand,
Labra Gayo discusses Pregel-based implementations of his query mechanism.

5.3.3 Path-returning queries on graph databases

Our definition of neighborhood of a node v for a shape involving a path expression E returns
E-paths from v to relevant nodes x (see Table 5.1). Notably, these paths are returned as
a subgraph, using the graph constructor applied to a set of paths. Thus, shape fragments
are loosely related to path-returning queries on graph databases, introduced as a theoretical
concept by Barceló et al. [13] and found in the languages Cypher [43] and G-CORE [60].

However, to our knowledge, a mechanism to return a set of paths in the form of a
subgraph is not yet implemented by these languages. We have showed in Section 5.2.2 that,
at least in principle, this is actually possible in any standard query language supporting path
expressions, such as SPARQL. Barceló et al. consider a richer output structure whereby an
infinite set of paths (or even set of tuples of paths) resulting from an extended regular path
query can be finitely and losslessly represented. In contrast, our graph constructor is lossy
in that two different sets S1 and S2 of paths may have graph(S1) = graph(S2). However, our
Sufficiency property shows that our representation is sufficient for the purpose of validating
shapes.

6
Conclusions

6.1 Formalization

In this thesis, starting from the formalizations of SHACL in the literature [6, 30], we have
investigated the formalization of SHACL, establishing its nature as a (description) logic.
This connection was also observed in previous work [3, 61, 69, 70], however, none of the
discussed works, took the explicit viewpoint that a data graph represents a standard first-
order interpretation or that SHACL validation is model checking. We took this viewpoint and
in doing so formalized precisely how SHACL relates to the field of description logics. Later,
this viewpoint was also adopted by Ortiz [65] and used by Seifer et al. [85], indicating that
it is indeed natural. There are (at least) three reasons why this formalization is important.
First, it establishes a bridge between two communities, thereby allowing to exploit the many
years of research in Description Logics also for studying SHACL. Second, our formalization
of SHACL clearly separates two orthogonal concerns:

1. Which information does a data graph represent? This is handled in the translation of
a graph into its natural interpretation.

2. What is the semantics of language constructs? This is handled purely in the well-
studied logical setting.

Third, as we showed above, our formalization corresponds closer to actual SHACL than
existing formalizations, respects well-known laws (such as De Morgan’s) and avoids issues
with nodes not occurring in the graph requiring special treatment. We then extended this
basic formalization such that it corresponds exactly to real SHACL. The construction in
Section 2.4.1 can be seen as a formal definition of real SHACL.

Using this foundation, we can accurately study different aspects of SHACL like recursion,
expressiveness and provenance. Furthermore, the logical syntax itself could be the basis of an
alternative SHACL syntax to be used in practice. It highlights the fundamental features of
SHACL without, for example, hiding the (universal, existential, and counting) quantification
as much as the current SHACL syntax does, which may increase understanding, and avoid
unintended bugs in shape graphs.

6.2 Recursion

Corman, Reutter and Savkovic [30] started with the work on recursive semantics and even
already defined a three-valued operator. Hence, the only work left to obtain a rich family of

91

92 Conclusions

semantics, was observing that this operator is indeed an approximator and applying AFT.
As such, we believe our approach establishes strong and formal foundations for the study of
recursive SHACL. Indeed, AFT does not just dictate how the semantics are to be defined,
but immediately provides guarantees such as stratification and predicate introduction results
that can be instrumental when developing concrete validators for recursive SHACL: we
immediately obtain results about which transformations can safely be applied to our theories.
Furthermore, we compare the semantics dictated by AFT with the existing literature. We
do not directly propose any semantics for SHACL. It is important to realize though, that
in case one wants to view a shapes as (inductive) definitions, it has been argued repeatedly
that the Well-founded semantics correctly formalizes the notion of inductive definitions [37].
The Well-founded semantics was later also directly defined for SHACL, indicating interest
in its adoption [28].

Nevertheless, whatever semantics for SHACL will be adopted by the W3C, it should be
informed by what is actually desired by users and should be easy to understand. A sensible
suggestion could be to only define recursion for SHACL shapes graphs where recursion
through negation can only occur in a stratified manner, i.e., Stratified Negation as discussed
in Section 1.3. This keeps the language simple, and many natural recursive shapes can
be defined this way. Furthermore, Stable model- and Well-founded semantics agree on the
semantics for stratified shapes graphs. So implementations can still choose to adopt these
alternative semantics, while still adhering to the specification.

6.3 Expressiveness

We have established the primitivity of the non-standard logical features of SHACL. However,
an obvious open question is whether our results extend further to nonstratified programs,
under well-founded or stable model semantics. Notably, Corman et al. [30] have already
suggested that disjointness is redundant in a setting of recursive shape schemas with non-
stratified negation. Their expression is not correct, however [82].1

There is clear interest in the expressiveness of SHACL. There have been efforts to formal-
ize Wikidata constraints in SHACL [40] where the authors argue certain constraints are not
expressible in SHACL. The study of expressiveness also concerns practitioners who propose
extensions for SHACL, like the DASH constraint components [56]. A natural question to ask
is whether these extensions are already expressible, and ideally, prove that they are (not).

In the case of DASH, it turns out that many of the constraints are expressible if we
allow for full equality constraints. This is a fundamental addition to SHACL, as shown
in Chapter 4. A natural conclusion is to simply add full equality to the SHACL recom-
mendation. In real SHACL, this means allowing full property paths as a parameter for the
equality constraint component. More generally, this idea can be applied to all the property
pair constraint components. This then also solves the issue with lessThan and lessThanEq
discussed in Remark 2.13: moreThan(E1, E2) is equivalent with lessThan(E2, E1), and sim-
ilarly, moreThanEq(E1, E2) is equivalent with lessThanEq(E2, E1).

6.4 Provenance

In Chapter 5, we have proposed a provenance semantics for SHACL. In addition to the
desirability of supporting provenance from a general database perspective, the utility of a
provenance semantics for shapes to support data footprint in Linked Data applications has

1Their approach is to postulate two shape names s1 and s2 that can be assigned arbitrary sets of nodes,
as long as the two sets form a partition of the domain. Then for one node x to satisfy the shape disj (E, p),
it is sufficient that E(x) is a subset of s1 and p(x) of s2. This condition is not necessary, however, as other
nodes may require different partitions.

6.5 Research directions 93

been pointed out informally by prominent Semantic Web researchers [14,101]. Moreover, the
idea of using shapes to describe nodes in a graph has been floating around in the community
[89]. Also, the SHACL Recommendation itself anticipates applications for shapes beyond
conformance checking. Our work serves to put these ideas on a firm formal footing.

Our notions of shape fragment serve to open up SHACL: initially conceived as a constraint
or data validation language, it can now also serve as a data retrieval language. If shapes are
available, either in a schema coming from the producer of the data, or as an expression of
an application’s interest in certain types of information, they can now be used to retrieve
data. In such settings we avoid the need to switch to a separate retrieval language, typically
SPARQL in this context.

Our approach to defining neighborhoods has been to be deterministic, and to satisfy
Sufficiency, while also omitting needless triples, i.e., trying to be minimal. However, as
discussed by Glavic [47, Section 2.1], minimality is a requirement for provenance semantics
that is challenging, and sometimes impossible to achieve together with determinism and
Sufficiency. See also our Remark 5.7 in Section 5.1.4.

6.5 Research directions

SHACL should be understood in context of other related technologies. Within the Semantic
Web technologies stack, this means understanding its place in relation to SPARQL and OWL.
In the case of OWL, Chapter 2 helps towards this end: we give a purely logical formulation
of SHACL that resembles the logical foundations of OWL. There are still questions here, for
example, how to combine SHACL and OWL, i.e., what does it mean to validate an RDF
graph in the presence of an ontology? This direction is being explored by Ahmetaj et al. [4].
In the case of SPARQL, Corman et al. [29] showed the connections between (recursive)
SHACL and SPARQL: SHACL shapes can be expressed as unary queries using SPARQL.
However, there is also another shape language for RDF, namely, ShEx [23]. It similarly
has a concept of ‘shapes’ as unary queries and the main task is also validation. However,
the design of ShEx differs fundamentally from SHACL. The main difference is the use of
regular expressions in shapes to describe the immediate neighborhood of nodes, given by the
outgoing and incoming properties. Similarly to SHACL, there is also an emphasis on the
navigational aspect of shapes by using recursion as opposed to regular path expressions in
SHACL. There are two interesting research tasks here: finding a common fragment of the
two languages, and defining a combined shape language that encapsulates both SHACL and
ShEx. Given the different designs of the languages, these are challenging tasks.

Going further, looking at RDF and SHACL from a graph database perspective, it is
also of interest to develop a further understanding of the relation between SHACL and PG-
Schema. PG-Schema is the proposed schema language for the property graph data model [8].
Here, the challenge is to compare languages that have different logical data models. There
are two immediately recognizable approaches to this problem: you can study the languages
using an intersection of the two data models, or you can take a unifying graph data model
like the Domain Graph model from MillenniumDB [103] and try to define SHACL, ShEx
and PG-Schema for that setting. Both approaches should be considered and come with their
own challenges.

Another topic of research is the extension of SHACL for the complete RDF data model.
SHACL distinguishes the IRIs used as nodes from IRIs used as predicate names, even when
they are the exact same IRI. For example, the constraint “all triples that have a predicate of
type ‘HumanProperty’ must have a subject of type ‘Human’ ” is not expressible in SHACL.
This opens SHACL up for more general shapes about RDF documents that, for example,
contain some information on the properties that might be checked. Finding a suitable
underlying formal model and understanding its usefulness for expressing shapes in such

94 Conclusions

a setting are possible next steps here.
Finally, there is one last gap in the SHACL recommendation that has not been discussed

so far, which are the validation reports. The SHACL specification only requires this report
to contain the violating nodes, together with the constraint components that they violate.
However, this kind of information may be too little for users to understand what is going
wrong. Finding suitable explanations for non-validation is therefore of interest, and this was
already explored by Ahmetaj et al. [3] where they consider ‘repairs’ (additions and deletions)
for the data graph as a possible explanation for non-validation. This line of work has close
ties with data provenance and causality in the database literature [21].

Bibliography

[1] D. Abadi et al. The Seattle report on database research. SIGMOD Record, 48(4):44–53,
2019.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[3] S. Ahmetaj, R. David, M. Ortiz, A. Polleres, B. Shehu, and M. ˇ Simkus. Reason-
ing about explanations for non-validation in SHACL. In Meghyn Bienvenu, Gerhard
Lakemeyer, and Esra Erdem, editors, Proceedings of the 18th International Confer-
ence on Principles of Knowledge Representation and Reasoning, pages 12–21. IJCAI
Organization, 2021.

[4] Shqiponja Ahmetaj, Magdalena Ortiz, Anouk Oudshoorn, and Mantas Simkus. Rec-
onciling SHACL and ontologies: Semantics and validation via rewriting. In Kobi
Gal, Ann Nowé, Grzegorz J. Nalepa, Roy Fairstein, and Roxana Radulescu, edi-
tors, ECAI 2023 - 26th European Conference on Artificial Intelligence, volume 372
of Frontiers in Artificial Intelligence and Applications, pages 27–35. IOS Press, 2023.
doi:10.3233/FAIA230250.

[5] G. Aluç, O. Hartig, T. Özsu, and K. Daudjee. Diversified stress testing of RDF data
management systems. In P. Mika, T. Tudorache, et al., editors, Proceedings 13th
International Semantic Web Conference, volume 8796 of Lecture Notes in Computer
Science, pages 197–212. Springer, 2014.

[6] M. Andreşel, J. Corman, M. Ortiz, J.L. Reutter, O. Savkovic, and M. ˇ Simkus. Stable
model semantics for recursive SHACL. In Y. Huang, I. King, T.-Y. Liu, and M. van
Steen, editors, Proceedings WWW’20, pages 1570–1580. ACM, 2020.

[7] R. Angles and C. Gutierrez. The expressive power of SPARQL. In A. Sheth, S. Staab,
et al., editors, Proceedings 7th International Semantic Web Conference, volume 5318
of Lecture Notes in Computer Science, pages 114–129. Springer, 2008.

[8] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Alastair Green,
Jan Hidders, Bei Li, Leonid Libkin, Victor Marsault, Wim Martens, Filip Murlak,
Stefan Plantikow, Ognjen Savkovic, Michael Schmidt, Juan Sequeda, Slawek Staworko,
Dominik Tomaszuk, Hannes Voigt, Domagoj Vrgoc, Mingxi Wu, and Dusan Zivkovic.
Pg-schema: Schemas for property graphs. Proc. ACM Manag. Data, 1(2):198:1–198:25,
2023. doi:10.1145/3589778.

[9] M. Arenas and J. Pérez. Querying semantic web data with SPARQL. In Proceedings
30st ACM Symposium on Principles of Databases, pages 305–316. ACM, 2011.

95

https://doi.org/10.3233/FAIA230250
https://doi.org/10.1145/3589778

96 BIBLIOGRAPHY

[10] M. Arenas, J. Pérez, and C. Gutierrez. On the semantics of SPARQL. In R. De Virgilio,
F. Giunchiglia, and L. Tanca, editors, Semantic Web Information Management—A
Model-Based Perspective, pages 281–307. Springer, 2009.

[11] D. Arroyuelo, A. Hogan, G. Navarro, and J. Rojas-Ledesma. Time- and space-efficient
regular path queries. In Proceedings 38th International Conference on Data Engineer-
ing, pages 3091–3105. IEEE, 2022.

[12] F. Baader, I. Horrocks, C. Lutz, and U. Sattler. An Introduction to Description Logic.
Cambridge University Press, 2017.

[13] P. Barceló, C.A. Hurtado, L. Libkin, and P.T. Wood. Expressive languages for
path queries over graph-structured data. ACM Transactions on Database Systems,
37(4):31:1–31:46, 2012.

[14] T. Berners-Lee. Linked data shapes, forms and footprints. https://www.w3.org/

DesignIssues/Footprints.html, 2019.

[15] C. Bizer and A. Schultz. The Berlin SPARQL benchmark. International Journal on
Semantic Web and Information Systems, 5(2):1–24, 2009.

[16] Bart Bogaerts and Lúıs Cruz-Filipe. Fixpoint semantics for active integrity constraints.
AIJ, 255:43–70, 2018. doi:10.1016/j.artint.2017.11.003.

[17] Bart Bogaerts and Lúıs Cruz-Filipe. Stratification in approximation fixpoint theory
and its application to active integrity constraints. ACM Transactions on Computa-
tional Logic, 22(1):6:1–6:19, 2021. doi:10.1145/3430750.

[18] Bart Bogaerts and Maxime Jakubowski. Fixpoint semantics for recursive SHACL. In
A. Formisano, Y.A. Liu, et al., editors, Proceedings 37th International Conference on
Logic Programming (Technical Communications), volume 345 of Electronic Proceedings
in Theoretical Computer Science, pages 41–47, 2021.

[19] Bart Bogaerts, Maxime Jakubowski, and Jan Van den Bussche. Expressiveness of
SHACL features and extensions for full equality and disjointness tests. Log. Methods
Comput. Sci., 20(1), 2024. doi:10.46298/LMCS-20(1:16)2024.

[20] Bart Bogaerts, Maxime Jakubowski, and Jan Van den Bussche. SHACL: A description
logic in disguise. In G. Gottlob, D. Inclezan, and M. Maratea, editors, Logic Program-
ming and Nonmonotonic Reasoning, pages 75–88. Springer International Publishing,
2022.

[21] Bart Bogaerts, Maxime Jakubowski, and Jan Van den Bussche. Postulates for prove-
nance: Instance-based provenance for first-order logic, 2024. ACM Symposium on
Principles of Database Systems, June 2024, to appear.

[22] Bart Bogaerts, Joost Vennekens, and Marc Denecker. Grounded fixpoints and their
applications in knowledge representation. Artificial Intelligence Journal, 224:51–71,
2015. doi:10.1016/j.artint.2015.03.006.

[23] I. Boneva, J.E.L. Gayo, and E.G. Prud’hommeaux. Semantics and validation of shape
schemas for RDF. In C. d’Amato, M. Fernandez, V. Tamma, et al., editors, Proceed-
ings 16th International Semantic Web Conference, volume 10587 of Lecture Notes in
Computer Science, pages 104–120. Springer, 2017.

https://www.w3.org/DesignIssues/Footprints.html
https://www.w3.org/DesignIssues/Footprints.html
https://doi.org/10.1016/j.artint.2017.11.003
https://doi.org/10.1145/3430750
https://doi.org/10.46298/LMCS-20(1:16)2024
https://doi.org/10.1016/j.artint.2015.03.006

BIBLIOGRAPHY 97

[24] P. Buneman, S. Khanna, and W.C. Tan. Why and where: A characterization of data
provenance. In J. Van den Bussche and V. Vianu, editors, Database Theory—ICDT
2001, volume 1973 of Lecture Notes in Computer Science, pages 316–330. Springer,
2001.

[25] D. Calvanese, G. De Giacomo, D. Nardi, and M. Lenzerini. Reasoning in expressive
description logics. In F. Baader, D. Calvanese, D. McGuiness, D. Nardi, and P. Patel-
Schneider, editors, The Description Logic Handbook, chapter 23. Cambridge University
Press, 2003.

[26] Angelos Charalambidis, Panos Rondogiannis, and Ioanna Symeonidou. Approxi-
mation fixpoint theory and the well-founded semantics of higher-order logic pro-
grams. Theory and Practice of Logic Programming, 18(3-4):421–437, 2018. doi:

10.1017/S1471068418000108.

[27] J. Cheney, L. Chiticarius, and W.-C. Tan. Provenance in databases: why, how and
where. Foundations and Trends in Databases, 1(4):379–474, 2009.

[28] Adrian Chmuroviĉ and Mantas ˇ Simkus. Well-founded semantics for recursive
SHACL. In Datalog-2.0 2022, 4th International Workshop on the Resurgence of Dat-
alog in Academia and Industry, CEUR Workshop proceedings, pages 2–13, 2022.

[29] J. Corman, F. Florenzano, J.L. Reutter, and O. Savkovic. Validating SHACL con-
straints over a SPARQL endpoint. In C. Ghidini, O. Hartig, M. Maleshkova, V. Svátek,
et al., editors, Proceedings 18th International Semantic Web Conference, volume 11778
of Lecture Notes in Computer Science, pages 145–163. Springer, 2019.

[30] J. Corman, J.L. Reutter, and O. Savkovic. Semantics and validation of recursive
SHACL. In D. Vrandecic et al., editors, Proceedings 17th International Seman-
tic Web Conference, volume 11136 of Lecture Notes in Computer Science, pages
318–336. Springer, 2018. Extended version, technical report KRDB18-01, https:

//www.inf.unibz.it/krdb/tech-reports/.

[31] Y. Cui, J. Widom, and J.L. Wiener. Tracing the lineage of view data in a warehousing
environment. ACM Transactions on Database Systems, 25(2):179–227, 2000.

[32] DBLP data in RDF. http://dblp.org/rdf/.

[33] Thomas Delva, Anastasia Dimou, Maxime Jakubowski, and Jan Van den Bussche.
Data provenance for SHACL. In J. Stoyanovich, J. Teubner, et al., editors, Proceed-
ings 26th International Conference on Extending Database Technology, pages 285–297.
openproceedings.org, 2023.

[34] Marc Denecker, Victor Marek, and Miros law Truszczyński. Approximations, stable
operators, well-founded fixpoints and applications in nonmonotonic reasoning. Logic-
Based Artificial Intelligence, pages 127–144, 2000. doi:10.1007/978-1-4615-1567-8_
6.

[35] Marc Denecker, Victor Marek, and Miros law Truszczyński. Uniform semantic treat-
ment of default and autoepistemic logics. Artificial Intelligence Journal, 143(1):79–122,
2003. doi:10.1016/S0004-3702(02)00293-X.

[36] Marc Denecker, Victor Marek, and Miros law Truszczyński. Ultimate approximation
and its application in nonmonotonic knowledge representation systems. Information
and Computation, 192(1):84–121, 2004. doi:10.1016/j.ic.2004.02.004.

https://doi.org/10.1017/S1471068418000108
https://doi.org/10.1017/S1471068418000108
https://www.inf.unibz.it/krdb/tech-reports/
https://www.inf.unibz.it/krdb/tech-reports/
http://dblp.org/rdf/
https://doi.org/10.1007/978-1-4615-1567-8_6
https://doi.org/10.1007/978-1-4615-1567-8_6
https://doi.org/10.1016/S0004-3702(02)00293-X
https://doi.org/10.1016/j.ic.2004.02.004

98 BIBLIOGRAPHY

[37] Marc Denecker and Joost Vennekens. The well-founded semantics is the principle of
inductive definition, revisited. In Chitta Baral, Giuseppe De Giacomo, and Thomas
Eiter, editors, Principles of Knowledge Representation and Reasoning: Proceedings of
the 14th International Conference, pages 1–10. AAAI Press, 2014.

[38] M. Eich, P. Fender, and G. Moerkotte. Efficient generation of query plans containing
group-by, join, and groupjoin. The VLDB Journal, 27(5):617–641, 2018.

[39] Herbert Enderton. A mathematical introduction to logic. Academic Press, 2nd edition,
2001.

[40] Nicolas Ferranti, Jairo Francisco de Souza, Shqiponja Ahmetaj, and Axel Polleres.
Formalizing and validating wikidata’s property constraints using shacl and sparql.
Semantic Web Journal, 2024. under review.

[41] M. Figuera, Ph.D. Rohde, and M.-E. Vidal. Trav-SHACL: Efficiently validating net-
works of SHACL constraints. In J. Leskovec et al., editors, Proceedings WWW’21,
pages 3337–3348. ACM, 2021.

[42] Melvin Fitting. Fixpoint semantics for logic programming — A survey. Theoretical
Computer Science, 278(1-2):25–51, 2002. doi:10.1016/S0304-3975(00)00330-3.

[43] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plan-
tikow, M. Rydberg, P. Selmer, and A. Taylor. Cypher: An evolving query language
for property graphs. In SIGMOD [88], pages 1433–1445.

[44] J.E.L. Gayo, H. Knublauch, and D. Kontokostas. SHACL test suite and implementa-
tion report. https://w3c.github.io/data-shapes/data-shapes-test-suite/, Jan-
uary 2021.

[45] J.E.L. Gayo, E. Prud’hommeaux, I. Boneva, and D. Kontokostas. Validating RDF
data. Synthesis Lectures on the Semantic Web: Theory and Technology, 16, 2018.

[46] Jose Emilio Labra Gayo, Eric Prud’hommeaux, Iovka Boneva, and Dimitris Kon-
tokostas. Validating RDF Data. Springer International Publishing, 2018. doi:

10.1007/978-3-031-79478-0.

[47] Boris Glavic. Data provenance: Origins, applications, algorithms, and models. Foun-
dations and Trends in Databases, 9(3–4):209–441, 2021. doi:10.1561/1900000068.

[48] E. Grädel and V. Tannen. Semiring provenance for first-order model checking.
arXiv:1712.01980, 2017.

[49] T.J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In Proceedings
26th ACM Symposium on Principles of Database Systems, pages 31–40, 2007.

[50] S. Harris and A. Seaborne. SPARQL 1.1 query language. W3C Recommendation,
March 2013.

[51] S. Helmer and G. Moerkotte. Evaluation of main memory join algorithms for joins
with set comparison join predicates. In Proceedings 23rd International Conference on
Very Large Data Bases, pages 386–395. Morgan Kaufmann, 1997.

[52] I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In Chitta
Baral, James P. Delgrande, and Frank Wolter, editors, Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the 15th International Conference, pages
57–67. AAAI Press, 2016.

https://doi.org/10.1016/S0304-3975(00)00330-3
https://w3c.github.io/data-shapes/data-shapes-test-suite/
https://doi.org/10.1007/978-3-031-79478-0
https://doi.org/10.1007/978-3-031-79478-0
https://doi.org/10.1561/1900000068

BIBLIOGRAPHY 99

[53] Maxime Jakubowski. SHACL Logical Syntax Parser, January 2024. URL: https:

//github.com/MaximeJakubowski/sls_project, doi:10.5281/zenodo.10462613.

[54] Maxime Jakubowski. SPARQL RML Rewriter, January 2024. URL: https://github.
com/MaximeJakubowski/SRR, doi:10.5281/zenodo.10462628.

[55] Holger Knublauch. SHACL and OWL compared. https://spinrdf.org/

shacl-and-owl.html. Accessed: 2021-06-16.

[56] Holger Knublauch. Dash constraint components. https://datashapes.org/

constraints.html, 2021.

[57] S. Köhler, B. Ludäscher, and D. Zinn. First-order provenance games. In V. Tannen,
L. Wong, et al., editors, In Search of Elegance in the Theory and Practice of Compu-
tation, volume 8000 of Lecture Notes in Computer Science, pages 382–399. Springer,
2013.

[58] Ph. G. Kolaitis. On the expressive power of logics on finite models. In Finite Model
Theory and Its Applications, chapter 2. Springer, 2007.

[59] J.E. Labra Gayo. Creating knowledge graph subsets using shape expressions.
arXiv:2110.11709, October 2021.

[60] LDBC Graph Query Language Task Force. G-CORE: A core for future graph query
languages. In SIGMOD [88], pages 1421–1432.

[61] Martin Leinberger, Philipp Seifer, Tjitze Rienstra, Ralf Lämmel, and Steffen Staab.
Deciding SHACL shape containment through description logics reasoning. In Pan et al.
[68], pages 366–383.

[62] Fangfang Liu, Yi Bi, Md. Solimul Chowdhury, Jia-Huai You, and Zhiyong Feng. Flex-
ible approximators for approximating fixpoint theory. In Proceedings of Canadian AI,
pages 224–236, 2016. doi:10.1007/978-3-319-34111-8_28.

[63] N. Mamoulis. Efficient processing of joins on set-valued attributes. In Proceedings ACM
SIGMOD International Conference on Management of Data, pages 157–168, 2003.

[64] G. Moerkotte and Th. Neumann. Accelerating queries with group-by and join by
groupjoin. Proceedings of the VLDB Endowment, 4:843–851, 2011.

[65] Magdalena Ortiz. A short introduction to shacl for logicians. In Helle Hvid Hansen,
Andre Scedrov, and Ruy J.G.B. de Queiroz, editors, Logic, Language, Information,
and Computation, pages 19–32. Springer Nature Switzerland, 2023.

[66] M. Otto. Bounded Variable Logics and Counting: A Study in Finite Models, volume 9
of Lecture Notes in Logic. Springer, 1997.

[67] OWL 2 Web ontology language: Structural specification and functional-style syntax.
W3C Recommendation, December 2012.

[68] J.Z. Pan et al., editors. Proceedings 19th International Semantic Web Conference,
volume 12506 of Lecture Notes in Computer Science. Springer, 2020.

[69] P. Pareti, G. Konstantinidis, and F. Mogavero. Satisfiability and containment of re-
cursive shacl. Journal of Web Semantics, 74:100721, 2022. doi:10.1016/j.websem.

2022.100721.

https://github.com/MaximeJakubowski/sls_project
https://github.com/MaximeJakubowski/sls_project
https://doi.org/10.5281/zenodo.10462613
https://github.com/MaximeJakubowski/SRR
https://github.com/MaximeJakubowski/SRR
https://doi.org/10.5281/zenodo.10462628
https://spinrdf.org/shacl-and-owl.html
https://spinrdf.org/shacl-and-owl.html
https://datashapes.org/constraints.html
https://datashapes.org/constraints.html
https://doi.org/10.1007/978-3-319-34111-8_28
https://doi.org/10.1016/j.websem.2022.100721
https://doi.org/10.1016/j.websem.2022.100721

100 BIBLIOGRAPHY

[70] P. Pareti, G. Konstantinidis, F. Mogavero, and T. J. Norman. SHACL satisfiability
and containment. In Pan et al. [68], pages 474–493.

[71] L.D. Paulson. Developers shift to dynamic programming languages. Computer,
40(2):12–15, 2007.

[72] Nikolay Pelov, Marc Denecker, and Maurice Bruynooghe. Well-founded and stable se-
mantics of logic programs with aggregates. Theory and Practice of Logic Programming,
7(3):301–353, 2007. doi:10.1017/S1471068406002973.

[73] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL. ACM
Transactions on Database Systems, 34(3):article 16, 2009.

[74] J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A navigational language for RDF.
Journal of Web Semantics, 8(4):255–270, 2010.

[75] Irena Polikoff. Why I don’t use OWL anymore – Top Quadrant blog. https://www.

topquadrant.com/owl-blog/. Accessed: 2021-06-04.

[76] RDFLib/pySHACL: A Python validator for SHACL. https://github.com/RDFLib/

pySHACL, May 2021.

[77] pySHACL-fragments software. https://github.com/shape-fragments/

pySHACL-fragments.

[78] RDF 1.1 concepts and abstract syntax. W3C Recommendation, February 2014.

[79] RDF 1.1 primer. W3C Working Group Note, June 2014.

[80] RDF 1.1 semantics. W3C Recommendation, February 2014.

[81] RDF 1.1 turtle. W3C Recommendation, February 2014.

[82] J. Reutter. Personal communication, 15 January 2021.

[83] Robert Schaffenrath, Daniel Proksch, Markus Kopp, Iacopo Albasini, Oleksandra
Panasiuk, and Anna Fensel. Benchmark for performance evaluation of shacl implemen-
tations in graph databases. In International Joint Conference on Rules and Reasoning,
pages 82–96. Springer, 2020.

[84] M. Schmidt-Schauß. Subsumption in KL-ONE is undecidable. In R. J. Brachman,
editor, Proceedings of the First International Conference on Principles of Knowledge
Representation and Reasoning, volume 1 of Representation and Reasoning, pages 421–
431, 1989.

[85] Philipp Seifer, Daniel Hernández, Ralf Lämmel, and Steffen Staab. From shapes to
shapes: Inferring SHACL shapes for results of SPARQL CONSTRUCT queries (ex-
tended version). CoRR, abs/2402.08509, 2024. arXiv:2402.08509, doi:10.48550/

ARXIV.2402.08509.

[86] Shapes constraint language (SHACL). W3C Recommendation, July 2017.

[87] https://github.com/shexjs/shex.js.

[88] Proceedings 2018 International Conference on Management of Data. ACM, 2018.

[89] SPARQL 1.2 community group. DESCRIBE using shapes. https://github.com/w3c/
sparql-12/issues/39.

https://doi.org/10.1017/S1471068406002973
https://www.topquadrant.com/owl-blog/
https://www.topquadrant.com/owl-blog/
https://github.com/RDFLib/pySHACL
https://github.com/RDFLib/pySHACL
https://github.com/shape-fragments/pySHACL-fragments
https://github.com/shape-fragments/pySHACL-fragments
https://arxiv.org/abs/2402.08509
https://doi.org/10.48550/ARXIV.2402.08509
https://doi.org/10.48550/ARXIV.2402.08509
https://github.com/shexjs/shex.js
https://github.com/w3c/sparql-12/issues/39
https://github.com/w3c/sparql-12/issues/39

BIBLIOGRAPHY 101

[90] Hannes Strass. Approximating operators and semantics for abstract dialectical frame-
works. Artificial Intelligence Journal, 205:39–70, 2013. doi:10.1016/j.artint.2013.
09.004.

[91] V. Tannen. Provenance analysis for FOL model checking. ACM SIGLOG News,
4(1):24–36, 2017.

[92] TopQuadrant. An overview of SHACL: A new W3C standard for data validation and
modeling. https://www.topquadrant.com/an-overview-of-shacl/, 2017. Webinar
slides.

[93] M. Truszczynski. An introduction to the stable and well-founded semantics of logic
programs. In M. Kifer and Y.A. Liu, editors, Declarative Logic Programming: Theory,
Systems, and Applications, pages 121–177. ACM and Morgan & Claypool, 2018.

[94] Miros law Truszczyński. Strong and uniform equivalence of nonmonotonic theories - an
algebraic approach. Annals Mathematics and Artificial Intelligence, 48(3-4):245–265,
2006. doi:10.1007/s10472-007-9049-2.

[95] J.D. Ullman. Principles of Database and Knowledge-Base Systems, volume I. Computer
Science Press, 1988.

[96] Maarten H. van Emden and Robert A. Kowalski. The semantics of predicate logic as
a programming language. Journal of the ACM, 23(4):733–742, 1976. doi:10.1145/

321978.321991.

[97] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded seman-
tics for general logic programs. J. ACM, 38(3):620–650, 1991. doi:10.1145/116825.

116838.

[98] Maarten Vandenbrande, Maxime Jakubowski, Pieter Bonte, Bart Buelens, Femke On-
genae, and Jan Van den Bussche. POD-QUERY: schema mapping and query rewrit-
ing for solid pods. In Irini Fundulaki, Kouji Kozaki, Daniel Garijo, and José Manuél
Gómez-Pérez, editors, Proceedings of the ISWC 2023 Posters, Demos and Industry
Tracks, volume 3632 of CEUR Workshop Proceedings. CEUR-WS.org, 2023.

[99] Joost Vennekens, David Gilis, and Marc Denecker. Splitting an operator: Algebraic
modularity results for logics with fixpoint semantics. ACM Transactions on Compu-
tational Logic, 7(4):765–797, 2006. doi:10.1145/1182613.1189735.

[100] Joost Vennekens, Maarten Mariën, Johan Wittocx, and Marc Denecker. Predicate
introduction for logics with a fixpoint semantics. Parts I and II. Fundamenta Infor-
maticae, 79(1-2):187–227, 2007. doi:10.5555/2366527.2366536.

[101] R. Verborgh. Shaping linked data apps. https://ruben.verborgh.org/blog/2019/

06/17/shaping-linked-data-apps/, 2019.

[102] R. Verborgh, M. Vander Sande, O. Hartig, et al. Triple Pattern Fragments: A low-cost
knowledge graph interface for the Web. Journal of Web Semantics, 37–38:184–206,
2016.

[103] Domagoj Vrgoc, Carlos Rojas, Renzo Angles, Marcelo Arenas, Diego Arroyuelo, Car-
los Buil Aranda, Aidan Hogan, Gonzalo Navarro, Cristian Riveros, and Juan Romero.
Millenniumdb: A persistent, open-source, graph database. CoRR, abs/2111.01540,
2021. URL: https://arxiv.org/abs/2111.01540, arXiv:2111.01540.

https://doi.org/10.1016/j.artint.2013.09.004
https://doi.org/10.1016/j.artint.2013.09.004
https://www.topquadrant.com/an-overview-of-shacl/
https://doi.org/10.1007/s10472-007-9049-2
https://doi.org/10.1145/321978.321991
https://doi.org/10.1145/321978.321991
https://doi.org/10.1145/116825.116838
https://doi.org/10.1145/116825.116838
https://doi.org/10.1145/1182613.1189735
https://doi.org/10.5555/2366527.2366536
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://arxiv.org/abs/2111.01540
https://arxiv.org/abs/2111.01540

	Foreword
	Nederlandstalige samenvatting
	Abstract
	Contents
	Introduction
	SHACL in a nutshell
	Expressiveness
	Semantics for recursion
	Provenance and SHACL
	Thesis outline
	Publications
	Funding acknowledgements

	Formalization
	The logical perspective
	From graphs to interpretations
	SHACL, Description Logics, and OWL
	Correspondence with the recommendation
	Translating real SHACL to formal SHACL
	Translating formal SHACL to real SHACL

	Recursion
	Preliminaries: Approximation Fixpoint Theory
	Fixpoint Semantics for Recursive SHACL
	Comparison with Existing Semantics

	Expressiveness
	Expressiveness of SHACL features
	Preliminaries on path expressions
	Disjointness
	Equality
	Closure

	Are target-based shape schemas enough?
	Extensions for full equality and disjointness tests
	Full equality
	Full disjointness
	Further non-definability results

	Extension to stratified recursion

	Provenance
	Data provenance for SHACL
	Neighborhoods
	Formal definition
	Algorithms for neighborhoods
	The sufficiency property

	Shape fragments
	Applicability of shape fragments
	Translation to SPARQL
	Adapting a validation engine
	Experiments

	Related work
	Triple pattern fragments
	Knowledge graph subsets
	Path-returning queries on graph databases

	Conclusions
	Formalization
	Recursion
	Expressiveness
	Provenance
	Research directions

	Bibliography

