
Combinatorial Solving with Provably Correct Results:
from SAT to MaxSAT (and Beyond?)

Bart Bogaerts
(thanks to numerous collaborators)

KU Leuven
25/11/2024 – TAASP workshop

Introduction

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . .)
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024

Introduction The Success of Combinatorial Solving (and the Dirty Little Secret. . .)

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . .)
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024

Introduction The Success of Combinatorial Solving (and the Dirty Little Secret. . .)

COMBINATORIAL SOLVING AND OPTIMISATION

▶ Revolution last couple of decades in combinatorial solvers for
▶ Boolean satisfiability (SAT) solving [BHvMW21]1
▶ Constraint programming (CP) [RvBW06]
▶ Mixed integer linear programming (MIP) [AW13, BR07]

▶ Solve NP-complete problems (or worse) very successfully in practice!

▶ Except solvers are sometimes wrong. . . (Even best commercial ones)
[BLB10, CKSW13, AGJ+18, GSD19, GS19, BMN22, BBN+23]

▶ Even get feasibility of solutions wrong (though this should be straightforward!)

▶ And how to check the absence of solutions?

▶ Or that a solution is optimal? (Even off-by-one mistakes can snowball into large errors if
solver used as subroutine)

1See end of slides for all references with bibliographic details
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 1/61

Introduction The Success of Combinatorial Solving (and the Dirty Little Secret. . .)

WHAT CAN BE DONE ABOUT SOLVER BUGS?

▶ Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

▶ Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

▶ Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting
1. not only answer but also
2. simple, machine-verifiable proof that answer is correct

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 2/61

Introduction The Success of Combinatorial Solving (and the Dirty Little Secret. . .)

WHAT CAN BE DONE ABOUT SOLVER BUGS?

▶ Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

▶ Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

▶ Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting
1. not only answer but also
2. simple, machine-verifiable proof that answer is correct

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 2/61

Introduction The Success of Combinatorial Solving (and the Dirty Little Secret. . .)

WHAT CAN BE DONE ABOUT SOLVER BUGS?

▶ Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

▶ Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

▶ Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting
1. not only answer but also
2. simple, machine-verifiable proof that answer is correct

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 2/61

Introduction Ensuring Correctness with the Help of Proof Logging

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . .)
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024

Introduction Ensuring Correctness with the Help of Proof Logging

PROOF LOGGING WITH CERTIFYING SOLVERS: WORKFLOW

Checker

Input Answer
Solver

1. Run combinatorial solving algorithm on problem input

2. Get as output not only answer but also proof

3. Feed input + answer + proof to proof checker

4. Verify that proof checker says answer is correct

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 3/61

Introduction Ensuring Correctness with the Help of Proof Logging

PROOF LOGGING WITH CERTIFYING SOLVERS: WORKFLOW

CheckerProof

Input Answer
Solver

1. Run combinatorial solving algorithm on problem input

2. Get as output not only answer but also proof

3. Feed input + answer + proof to proof checker

4. Verify that proof checker says answer is correct

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 3/61

Introduction Ensuring Correctness with the Help of Proof Logging

PROOF LOGGING WITH CERTIFYING SOLVERS: WORKFLOW

Proof

Input Answer
Solver

Checker

1. Run combinatorial solving algorithm on problem input

2. Get as output not only answer but also proof

3. Feed input + answer + proof to proof checker

4. Verify that proof checker says answer is correct

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 3/61

Introduction Ensuring Correctness with the Help of Proof Logging

PROOF LOGGING WITH CERTIFYING SOLVERS: WORKFLOW

Proof

Input Answer
Solver

Checker
✓ / ✗

1. Run combinatorial solving algorithm on problem input

2. Get as output not only answer but also proof

3. Feed input + answer + proof to proof checker

4. Verify that proof checker says answer is correct

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 3/61

Introduction Ensuring Correctness with the Help of Proof Logging

PROOF LOGGING DESIDERATA

Proof

Input Answer
Solver

Checker
✓ / ✗

Proof format for certifying solver
should be
▶ very powerful: minimal overhead for sophisticated reasoning
▶ dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 4/61

Introduction Ensuring Correctness with the Help of Proof Logging

PROOF LOGGING DESIDERATA

Proof

Input Answer
Solver

Checker
✓ / ✗

Proof format for certifying solver
should be
▶ very powerful: minimal overhead for sophisticated reasoning
▶ dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 4/61

Introduction Ensuring Correctness with the Help of Proof Logging

PROOF LOGGING DESIDERATA

Proof

Input Answer
Solver

Checker
✓ / ✗

Proof format for certifying solver
should be
▶ very powerful: minimal overhead for sophisticated reasoning
▶ dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 4/61

Introduction Ensuring Correctness with the Help of Proof Logging

PROOF LOGGING DESIDERATA

Proof

Input Answer
Solver

Checker
✓ / ✗

Proof format for certifying solver
should be
▶ very powerful: minimal overhead for sophisticated reasoning
▶ dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 4/61

Introduction Ensuring Correctness with the Help of Proof Logging

PROOF LOGGING DESIDERATA

Proof

Input Answer
Solver

Checker
✓ / ✗

Proof format for certifying solver
should be
▶ very powerful: minimal overhead for sophisticated reasoning
▶ dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 4/61

Introduction Ensuring Correctness with the Help of Proof Logging

TAKE-AWAY MESSAGE

Proof logging for combinatorial optimisation is possible with single, unified method!

▶ Build on successes in proof logging for SAT solvers with proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .

▶ But represent constraints as 0–1 integer linear inequalities

▶ Formalize reasoning using cutting planes [CCT87] proof system

▶ Add well-chosen strengthening rules [Goc22, GN21, BGMN23]

▶ Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 5/61

https://gitlab.com/MIAOresearch/software/VeriPB
https://gitlab.com/MIAOresearch/software/VeriPB

Introduction Ensuring Correctness with the Help of Proof Logging

TAKE-AWAY MESSAGE

Proof logging for combinatorial optimisation is possible with single, unified method!

▶ Build on successes in proof logging for SAT solvers with proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .

▶ But represent constraints as 0–1 integer linear inequalities

▶ Formalize reasoning using cutting planes [CCT87] proof system

▶ Add well-chosen strengthening rules [Goc22, GN21, BGMN23]

▶ Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 5/61

https://gitlab.com/MIAOresearch/software/VeriPB
https://gitlab.com/MIAOresearch/software/VeriPB

Introduction Ensuring Correctness with the Help of Proof Logging

THE SALES PITCH FOR PROOF LOGGING

1. Certifies correctness of computed results

2. Detects errors even if due to compiler bugs, hardware failures, or cosmic rays

3. Provides debugging support during development [EG21, GMM+20, KM21, BBN+23]

4. Facilitates performance analysis

5. Helps identify potential for further improvements

6. Enables auditability

7. Serves as stepping stone towards explainability

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 6/61

Introduction Ensuring Correctness with the Help of Proof Logging

APPLICATIONS OF VeriPB

VeriPB has been used to do proof logging for

▶ SAT solving (including advanced techniques)

▶ SAT-based optimisation (MaxSAT) (this talk!)

▶ Subgraph algorithms

▶ Constraint programming

▶ Symmetry and dominance reasoning

in a unified way

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 7/61

Proof Logging for SAT

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . .)
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024

Proof Logging for SAT SAT Basics

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . .)
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024

Proof Logging for SAT SAT Basics

THE SAT PROBLEM
▶ Variable 𝑥 : takes value true (=1) or false (=0)

▶ Literal ℓ : variable 𝑥 or its negation 𝑥

▶ Clause 𝐶 = ℓ1 ∨ · · · ∨ ℓ𝑘 : disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

▶ Conjunctive normal form (CNF) formula 𝐹 = 𝐶1 ∧ · · · ∧𝐶𝑚 : conjunction of clauses

The SAT Problem
Given a CNF formula 𝐹 , is it satisfiable?

For instance, what about:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧
(𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 8/61

Proof Logging for SAT SAT Basics

PROOFS FOR SAT

For satisfiable instances: just specify satisfying assignment

For unsatisfiability: a sequence of clauses (CNF constraints)
▶ Each clause follows “obviously” from everything we know so far
▶ Final clause is empty, meaning contradiction (written ⊥)
▶ Means original formula must be inconsistent

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 9/61

Proof Logging for SAT SAT Basics

WHAT IS OBVIOUS? UNIT PROPAGATION

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

▶ 𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
▶ 𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
▶ Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
▶ No further unit propagations

Proof checker should know how to unit propagate until saturation
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 10/61

Proof Logging for SAT SAT Basics

WHAT IS OBVIOUS? UNIT PROPAGATION

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

▶ 𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
▶ 𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
▶ Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
▶ No further unit propagations

Proof checker should know how to unit propagate until saturation
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 10/61

Proof Logging for SAT SAT Basics

WHAT IS OBVIOUS? UNIT PROPAGATION

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

▶ 𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
▶ 𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
▶ Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
▶ No further unit propagations

Proof checker should know how to unit propagate until saturation
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 10/61

Proof Logging for SAT SAT Basics

WHAT IS OBVIOUS? UNIT PROPAGATION

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

▶ 𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
▶ 𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
▶ Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
▶ No further unit propagations

Proof checker should know how to unit propagate until saturation
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 10/61

Proof Logging for SAT SAT Basics

WHAT IS OBVIOUS? UNIT PROPAGATION

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

▶ 𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
▶ 𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
▶ Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
▶ No further unit propagations

Proof checker should know how to unit propagate until saturation
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 10/61

Proof Logging for SAT SAT Basics

WHAT IS OBVIOUS? UNIT PROPAGATION

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

▶ 𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
▶ 𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
▶ Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
▶ No further unit propagations

Proof checker should know how to unit propagate until saturation
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 10/61

Proof Logging for SAT SAT Basics

WHAT IS OBVIOUS? UNIT PROPAGATION

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

▶ 𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
▶ 𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
▶ Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
▶ No further unit propagations

Proof checker should know how to unit propagate until saturation
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 10/61

Proof Logging for SAT SAT Basics

WHAT IS OBVIOUS? UNIT PROPAGATION

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

▶ 𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
▶ 𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
▶ Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
▶ No further unit propagations

Proof checker should know how to unit propagate until saturation
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 10/61

Proof Logging for SAT DPLL and CDCL

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . .)
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024

Proof Logging for SAT DPLL and CDCL

DAVIS-PUTMAN-LOGEMANN-LOVELAND (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1. 𝑥 ∨ 𝑦

2. 𝑥 ∨ 𝑦

3. 𝑥

4. 𝑥

5. ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 11/61

Proof Logging for SAT DPLL and CDCL

DAVIS-PUTMAN-LOGEMANN-LOVELAND (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1. 𝑥 ∨ 𝑦

2. 𝑥 ∨ 𝑦

3. 𝑥

4. 𝑥

5. ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 11/61

Proof Logging for SAT DPLL and CDCL

DAVIS-PUTMAN-LOGEMANN-LOVELAND (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1. 𝑥 ∨ 𝑦

2. 𝑥 ∨ 𝑦

3. 𝑥

4. 𝑥

5. ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 11/61

Proof Logging for SAT DPLL and CDCL

DAVIS-PUTMAN-LOGEMANN-LOVELAND (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1. 𝑥 ∨ 𝑦

2. 𝑥 ∨ 𝑦

3. 𝑥

4. 𝑥

5. ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 11/61

Proof Logging for SAT DPLL and CDCL

DAVIS-PUTMAN-LOGEMANN-LOVELAND (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1. 𝑥 ∨ 𝑦

2. 𝑥 ∨ 𝑦

3. 𝑥

4. 𝑥

5. ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 11/61

Proof Logging for SAT DPLL and CDCL

DAVIS-PUTMAN-LOGEMANN-LOVELAND (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1. 𝑥 ∨ 𝑦

2. 𝑥 ∨ 𝑦

3. 𝑥

4. 𝑥

5. ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 11/61

Proof Logging for SAT DPLL and CDCL

DAVIS-PUTMAN-LOGEMANN-LOVELAND (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1. 𝑥 ∨ 𝑦

2. 𝑥 ∨ 𝑦

3. 𝑥

4. 𝑥

5. ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 11/61

Proof Logging for SAT DPLL and CDCL

DAVIS-PUTMAN-LOGEMANN-LOVELAND (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1. 𝑥 ∨ 𝑦

2. 𝑥 ∨ 𝑦

3. 𝑥

4. 𝑥

5. ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 11/61

Proof Logging for SAT DPLL and CDCL

DAVIS-PUTMAN-LOGEMANN-LOVELAND (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1. 𝑥 ∨ 𝑦

2. 𝑥 ∨ 𝑦

3. 𝑥

4. 𝑥

5. ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 11/61

Proof Logging for SAT DPLL and CDCL

DAVIS-PUTMAN-LOGEMANN-LOVELAND (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1. 𝑥 ∨ 𝑦

2. 𝑥 ∨ 𝑦

3. 𝑥

4. 𝑥

5. ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 11/61

Proof Logging for SAT DPLL and CDCL

DAVIS-PUTMAN-LOGEMANN-LOVELAND (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1. 𝑥 ∨ 𝑦

2. 𝑥 ∨ 𝑦

3. 𝑥

4. 𝑥

5. ⊥

𝑥

𝑦

E

0

E

1

0

E

1

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 11/61

Proof Logging for SAT DPLL and CDCL

REVERSE UNIT PROPAGATION (RUP)

To make this a proof, need backtrack clauses to be easily verifiable

Reverse unit propagation (RUP) clause [GN03, Van08]
𝐶 is a reverse unit propagation (RUP) clause with respect to 𝐹 if
▶ assigning 𝐶 to false
▶ then unit propagating on 𝐹 until saturation
▶ leads to contradiction

If so, 𝐹 clearly implies 𝐶 , and this condition is easy to verify efficiently

Fact
Backtrack clauses from DPLL solver generate a RUP proof

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 12/61

Proof Logging for SAT DPLL and CDCL

REVERSE UNIT PROPAGATION (RUP)

To make this a proof, need backtrack clauses to be easily verifiable

Reverse unit propagation (RUP) clause [GN03, Van08]
𝐶 is a reverse unit propagation (RUP) clause with respect to 𝐹 if
▶ assigning 𝐶 to false
▶ then unit propagating on 𝐹 until saturation
▶ leads to contradiction

If so, 𝐹 clearly implies 𝐶 , and this condition is easy to verify efficiently

Fact
Backtrack clauses from DPLL solver generate a RUP proof

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 12/61

Proof Logging for SAT DPLL and CDCL

REVERSE UNIT PROPAGATION (RUP)

To make this a proof, need backtrack clauses to be easily verifiable

Reverse unit propagation (RUP) clause [GN03, Van08]
𝐶 is a reverse unit propagation (RUP) clause with respect to 𝐹 if
▶ assigning 𝐶 to false
▶ then unit propagating on 𝐹 until saturation
▶ leads to contradiction

If so, 𝐹 clearly implies 𝐶 , and this condition is easy to verify efficiently

Fact
Backtrack clauses from DPLL solver generate a RUP proof

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 12/61

Proof Logging for SAT DPLL and CDCL

WHAT ABOUT CONFLICT-DRIVEN CLAUSE LEARNING (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 13/61

Proof Logging for SAT DPLL and CDCL

WHAT ABOUT CONFLICT-DRIVEN CLAUSE LEARNING (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 13/61

Proof Logging for SAT DPLL and CDCL

WHAT ABOUT CONFLICT-DRIVEN CLAUSE LEARNING (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0 Decision

Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 13/61

Proof Logging for SAT DPLL and CDCL

WHAT ABOUT CONFLICT-DRIVEN CLAUSE LEARNING (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0 Decision

Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 13/61

Proof Logging for SAT DPLL and CDCL

WHAT ABOUT CONFLICT-DRIVEN CLAUSE LEARNING (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 13/61

Proof Logging for SAT DPLL and CDCL

WHAT ABOUT CONFLICT-DRIVEN CLAUSE LEARNING (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 13/61

Proof Logging for SAT DPLL and CDCL

WHAT ABOUT CONFLICT-DRIVEN CLAUSE LEARNING (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 13/61

Proof Logging for SAT DPLL and CDCL

WHAT ABOUT CONFLICT-DRIVEN CLAUSE LEARNING (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 13/61

Proof Logging for SAT DPLL and CDCL

WHAT ABOUT CONFLICT-DRIVEN CLAUSE LEARNING (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 13/61

Proof Logging for SAT DPLL and CDCL

WHAT ABOUT CONFLICT-DRIVEN CLAUSE LEARNING (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 13/61

Proof Logging for SAT DPLL and CDCL

WHAT ABOUT CONFLICT-DRIVEN CLAUSE LEARNING (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 13/61

Proof Logging for SAT DPLL and CDCL

WHAT ABOUT CONFLICT-DRIVEN CLAUSE LEARNING (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 13/61

Proof Logging for SAT DPLL and CDCL

WHAT ABOUT CONFLICT-DRIVEN CLAUSE LEARNING (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

decision
level 1

decision
level 2

decision
level 3

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 13/61

Proof Logging for SAT DPLL and CDCL

CONFLICT ANALYSIS
Time to analyse this conflict and learn from it!

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by erasing conflict level & flipping last
decision

But want to learn from conflict and cut away as much of search
space as possible

Case analysis over 𝑧 for last two clauses:
▶ 𝑥 ∨ 𝑦 ∨ 𝑧 wants 𝑧 = 1
▶ 𝑦 ∨ 𝑧 wants 𝑧 = 0
▶ Resolve clauses by merging them & removing 𝑧 — must

satisfy 𝑥 ∨ 𝑦

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjumpBart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 14/61

Proof Logging for SAT DPLL and CDCL

CONFLICT ANALYSIS
Time to analyse this conflict and learn from it!

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by erasing conflict level & flipping last
decision

But want to learn from conflict and cut away as much of search
space as possible

Case analysis over 𝑧 for last two clauses:
▶ 𝑥 ∨ 𝑦 ∨ 𝑧 wants 𝑧 = 1
▶ 𝑦 ∨ 𝑧 wants 𝑧 = 0
▶ Resolve clauses by merging them & removing 𝑧 — must

satisfy 𝑥 ∨ 𝑦

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjumpBart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 14/61

Proof Logging for SAT DPLL and CDCL

CONFLICT ANALYSIS
Time to analyse this conflict and learn from it!

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by erasing conflict level & flipping last
decision

But want to learn from conflict and cut away as much of search
space as possible

Case analysis over 𝑧 for last two clauses:
▶ 𝑥 ∨ 𝑦 ∨ 𝑧 wants 𝑧 = 1
▶ 𝑦 ∨ 𝑧 wants 𝑧 = 0
▶ Resolve clauses by merging them & removing 𝑧 — must

satisfy 𝑥 ∨ 𝑦

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjumpBart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 14/61

Proof Logging for SAT DPLL and CDCL

CONFLICT ANALYSIS
Time to analyse this conflict and learn from it!

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

Could backtrack by erasing conflict level & flipping last
decision

But want to learn from conflict and cut away as much of search
space as possible

Case analysis over 𝑧 for last two clauses:
▶ 𝑥 ∨ 𝑦 ∨ 𝑧 wants 𝑧 = 1
▶ 𝑦 ∨ 𝑧 wants 𝑧 = 0
▶ Resolve clauses by merging them & removing 𝑧 — must

satisfy 𝑥 ∨ 𝑦

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjumpBart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 14/61

Proof Logging for SAT DPLL and CDCL

CONFLICT ANALYSIS
Time to analyse this conflict and learn from it!

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

Could backtrack by erasing conflict level & flipping last
decision

But want to learn from conflict and cut away as much of search
space as possible

Case analysis over 𝑧 for last two clauses:
▶ 𝑥 ∨ 𝑦 ∨ 𝑧 wants 𝑧 = 1
▶ 𝑦 ∨ 𝑧 wants 𝑧 = 0
▶ Resolve clauses by merging them & removing 𝑧 — must

satisfy 𝑥 ∨ 𝑦

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjumpBart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 14/61

Proof Logging for SAT DPLL and CDCL

COMPLETE EXAMPLE OF CDCL EXECUTION
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 15/61

Proof Logging for SAT DPLL and CDCL

COMPLETE EXAMPLE OF CDCL EXECUTION
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 15/61

Proof Logging for SAT DPLL and CDCL

COMPLETE EXAMPLE OF CDCL EXECUTION
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 15/61

Proof Logging for SAT DPLL and CDCL

COMPLETE EXAMPLE OF CDCL EXECUTION
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 15/61

Proof Logging for SAT DPLL and CDCL

COMPLETE EXAMPLE OF CDCL EXECUTION
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥Assertion level 1 (2nd largest level in learned clause) — trim trail

to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 15/61

Proof Logging for SAT DPLL and CDCL

COMPLETE EXAMPLE OF CDCL EXECUTION
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 15/61

Proof Logging for SAT DPLL and CDCL

COMPLETE EXAMPLE OF CDCL EXECUTION
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 15/61

Proof Logging for SAT DPLL and CDCL

COMPLETE EXAMPLE OF CDCL EXECUTION
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 15/61

Proof Logging for SAT DPLL and CDCL

COMPLETE EXAMPLE OF CDCL EXECUTION
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 15/61

Proof Logging for SAT DPLL and CDCL

COMPLETE EXAMPLE OF CDCL EXECUTION
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

𝑝∨𝑢
⊥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 15/61

Proof Logging for SAT DPLL and CDCL

COMPLETE EXAMPLE OF CDCL EXECUTION
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

𝑝∨𝑢
⊥

𝑢

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 15/61

Proof Logging for SAT DPLL and CDCL

COMPLETE EXAMPLE OF CDCL EXECUTION
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

𝑝∨𝑢
⊥

𝑢

𝑥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 15/61

Proof Logging for SAT DPLL and CDCL

COMPLETE EXAMPLE OF CDCL EXECUTION
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

𝑝∨𝑢
⊥

𝑢

𝑥

⊥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 15/61

Proof Logging for SAT Proof System for SAT Proof Logging

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . .)
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024

Proof Logging for SAT Proof System for SAT Proof Logging

CDCL REASONING AND THE RESOLUTION PROOF SYSTEM

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]

▶ Start with clauses of formula (axioms)
▶ Derive new clauses by resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ 𝑥
𝐶 ∨ 𝐷

▶ Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 16/61

Proof Logging for SAT Proof System for SAT Proof Logging

CDCL REASONING AND THE RESOLUTION PROOF SYSTEM

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]

▶ Start with clauses of formula (axioms)
▶ Derive new clauses by resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ 𝑥
𝐶 ∨ 𝐷

▶ Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 16/61

Proof Logging for SAT Proof System for SAT Proof Logging

CDCL REASONING AND THE RESOLUTION PROOF SYSTEM

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]

▶ Start with clauses of formula (axioms)
▶ Derive new clauses by resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ 𝑥
𝐶 ∨ 𝐷

▶ Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 16/61

Proof Logging for SAT Proof System for SAT Proof Logging

RESOLUTION PROOFS FROM CDCL EXECUTIONS

Obtain resolution proof. . .

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 17/61

Proof Logging for SAT Proof System for SAT Proof Logging

RESOLUTION PROOFS FROM CDCL EXECUTIONS

Obtain resolution proof from our example CDCL execution. . .

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

𝑝∨𝑢
⊥

𝑢

𝑥

⊥

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 17/61

Proof Logging for SAT Proof System for SAT Proof Logging

RESOLUTION PROOFS FROM CDCL EXECUTIONS

Obtain resolution proof from our example CDCL execution by stringing together conflict analyses:

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 17/61

Proof Logging for SAT Proof System for SAT Proof Logging

RESOLUTION PROOFS FROM CDCL EXECUTIONS

Obtain resolution proof from our example CDCL execution by stringing together conflict analyses:

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 17/61

Proof Logging for SAT Proof System for SAT Proof Logging

RUP PROOFS AND CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1. 𝑢 ∨ 𝑥
2. 𝑥

3. ⊥

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 18/61

Proof Logging for SAT Proof System for SAT Proof Logging

RUP PROOFS AND CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1. 𝑢 ∨ 𝑥
2. 𝑥

3. ⊥

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 18/61

Proof Logging for SAT Proof System for SAT Proof Logging

RUP PROOFS AND CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1. 𝑢 ∨ 𝑥
2. 𝑥

3. ⊥

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 18/61

Proof Logging for SAT Proof System for SAT Proof Logging

RUP PROOFS AND CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1. 𝑢 ∨ 𝑥
2. 𝑥

3. ⊥

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 18/61

Proof Logging for SAT Proof System for SAT Proof Logging

RUP PROOFS AND CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1. 𝑢 ∨ 𝑥
2. 𝑥

3. ⊥

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 18/61

Proof Logging for SAT Proof System for SAT Proof Logging

RUP PROOFS AND CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1. 𝑢 ∨ 𝑥
2. 𝑥

3. ⊥

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 18/61

Proof Logging for SAT Proof System for SAT Proof Logging

RUP PROOFS AND CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1. 𝑢 ∨ 𝑥
2. 𝑥

3. ⊥

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 18/61

Proof Logging for SAT Proof System for SAT Proof Logging

RUP PROOFS AND CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1. 𝑢 ∨ 𝑥
2. 𝑥

3. ⊥

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 18/61

Proof Logging for SAT Proof System for SAT Proof Logging

RUP PROOFS AND CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1. 𝑢 ∨ 𝑥
2. 𝑥

3. ⊥

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 18/61

Proof Logging for SAT Proof System for SAT Proof Logging

RUP PROOFS AND CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1. 𝑢 ∨ 𝑥
2. 𝑥

3. ⊥

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 18/61

Proof Logging for SAT Proof System for SAT Proof Logging

RUP PROOFS AND CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1. 𝑢 ∨ 𝑥
2. 𝑥

3. ⊥

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 18/61

Proof Logging for SAT Proof System for SAT Proof Logging

MORE INGREDIENTS IN PROOF LOGGING FOR SAT

Fact
RUP proofs can be viewed as shorthand for resolution proofs

See [BN21] for more on this and connections to SAT solving

But RUP and resolution are not enough for preprocessing, inprocessing, and some other kinds of
reasoning

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 19/61

Proof Logging for SAT Proof System for SAT Proof Logging

EXTENSION VARIABLES, PART 1
Suppose we want a variable 𝑎 encoding

𝑎 ⇔ (𝑥 ∧ 𝑦)

Extended resolution [Tse68]
Resolution rule plus extension rule introducing clauses

𝑎 ∨ 𝑥 ∨ 𝑦 𝑎 ∨ 𝑥 𝑎 ∨ 𝑦

for fresh variable 𝑎 (this is fine since 𝑎 doesn’t appear anywhere previously)

Fact
Extended resolution (RUP + definition of new variables) is essentially equivalent to the DRAT
proof logging system most commonly used for SAT solving

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 20/61

Proof Logging for SAT Proof System for SAT Proof Logging

EXTENSION VARIABLES, PART 1
Suppose we want a variable 𝑎 encoding

𝑎 ⇔ (𝑥 ∧ 𝑦)

Extended resolution [Tse68]
Resolution rule plus extension rule introducing clauses

𝑎 ∨ 𝑥 ∨ 𝑦 𝑎 ∨ 𝑥 𝑎 ∨ 𝑦

for fresh variable 𝑎 (this is fine since 𝑎 doesn’t appear anywhere previously)

Fact
Extended resolution (RUP + definition of new variables) is essentially equivalent to the DRAT
proof logging system most commonly used for SAT solving

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 20/61

Pseudo-Boolean Proof Logging

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . .)
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024

Pseudo-Boolean Proof Logging

WHY AREN’T WE DONE?

Practical limitations of current SAT proof logging technology:
▶ Difficulties dealing with stronger reasoning efficiently (even for SAT solving)
▶ Clausal proofs can’t easily reflect what algorithms for other problems do

Surprising claim: a slight change to 0-1 integer linear inequalities does the job!
▶ Enables proof logging for advanced SAT techniques so far beyond reach for efficient DRAT

proof logging:
▶ Cardinality reasoning
▶ Gaussian elimination
▶ Symmetry breaking

▶ Supports use of SAT solvers for optimisation problems (MaxSAT)
▶ Can justify graph reasoning without knowing what a graph is
▶ Can justify constraint programming inference without knowing what an integer variable is

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 21/61

Pseudo-Boolean Proof Logging

WHY AREN’T WE DONE?

Practical limitations of current SAT proof logging technology:
▶ Difficulties dealing with stronger reasoning efficiently (even for SAT solving)
▶ Clausal proofs can’t easily reflect what algorithms for other problems do

Surprising claim: a slight change to 0-1 integer linear inequalities does the job!
▶ Enables proof logging for advanced SAT techniques so far beyond reach for efficient DRAT

proof logging:
▶ Cardinality reasoning
▶ Gaussian elimination
▶ Symmetry breaking

▶ Supports use of SAT solvers for optimisation problems (MaxSAT)
▶ Can justify graph reasoning without knowing what a graph is
▶ Can justify constraint programming inference without knowing what an integer variable is

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 21/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . .)
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024

Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

PSEUDO-BOOLEAN CONSTRAINTS

0–1 integer linear inequalities or (linear) pseudo-Boolean constraints:∑︁
𝑖

𝑎𝑖ℓ𝑖 ≥ 𝐴

▶ 𝑎𝑖 , 𝐴 ∈ Z
▶ literals ℓ𝑖 : 𝑥𝑖 or 𝑥𝑖 (where 𝑥𝑖 + 𝑥𝑖 = 1)

Sometimes convenient to use normalized form [Bar95] with all 𝑎𝑖 , 𝐴 positive
(without loss of generality)

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 22/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

PSEUDO-BOOLEAN CONSTRAINTS

0–1 integer linear inequalities or (linear) pseudo-Boolean constraints:∑︁
𝑖

𝑎𝑖ℓ𝑖 ≥ 𝐴

▶ 𝑎𝑖 , 𝐴 ∈ Z
▶ literals ℓ𝑖 : 𝑥𝑖 or 𝑥𝑖 (where 𝑥𝑖 + 𝑥𝑖 = 1)

Sometimes convenient to use normalized form [Bar95] with all 𝑎𝑖 , 𝐴 positive
(without loss of generality)

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 22/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

SOME TYPES OF PSEUDO-BOOLEAN CONSTRAINTS

1. Clauses
𝑥1 ∨ 𝑥2 ∨ 𝑥3 ⇔ 𝑥1 + 𝑥2 + 𝑥3 ≥ 1

2. Cardinality constraints
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≥ 2

3. General pseudo-Boolean constraints

𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 23/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

PSEUDO-BOOLEAN REASONING: CUTTING PLANES

Input/model axioms From the input

Literal axioms ℓ𝑖 ≥ 0

Addition
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴
∑

𝑖 𝑏𝑖ℓ𝑖 ≥ 𝐵∑
𝑖 (𝑎𝑖 + 𝑏𝑖)ℓ𝑖 ≥ 𝐴 + 𝐵

Multiplication for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖 𝑐𝑎𝑖ℓ𝑖 ≥ 𝑐𝐴

Division for any 𝑐 ∈ N+

(assumes normalized form)

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑

𝑖

⌈
𝑎𝑖
𝑐

⌉
ℓ𝑖 ≥

⌈
𝐴
𝑐

⌉
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 24/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

PSEUDO-BOOLEAN REASONING: CUTTING PLANES

Input/model axioms From the input

Literal axioms ℓ𝑖 ≥ 0

Addition
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴
∑

𝑖 𝑏𝑖ℓ𝑖 ≥ 𝐵∑
𝑖 (𝑎𝑖 + 𝑏𝑖)ℓ𝑖 ≥ 𝐴 + 𝐵

Multiplication for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖 𝑐𝑎𝑖ℓ𝑖 ≥ 𝑐𝐴

Division for any 𝑐 ∈ N+

(assumes normalized form)

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑

𝑖

⌈
𝑎𝑖
𝑐

⌉
ℓ𝑖 ≥

⌈
𝐴
𝑐

⌉
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 24/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

PSEUDO-BOOLEAN REASONING: CUTTING PLANES

Input/model axioms From the input

Literal axioms ℓ𝑖 ≥ 0

Addition
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴
∑

𝑖 𝑏𝑖ℓ𝑖 ≥ 𝐵∑
𝑖 (𝑎𝑖 + 𝑏𝑖)ℓ𝑖 ≥ 𝐴 + 𝐵

Multiplication for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖 𝑐𝑎𝑖ℓ𝑖 ≥ 𝑐𝐴

Division for any 𝑐 ∈ N+

(assumes normalized form)

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑

𝑖

⌈
𝑎𝑖
𝑐

⌉
ℓ𝑖 ≥

⌈
𝐴
𝑐

⌉
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 24/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

PSEUDO-BOOLEAN REASONING: CUTTING PLANES

Input/model axioms From the input

Literal axioms ℓ𝑖 ≥ 0

Addition
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴
∑

𝑖 𝑏𝑖ℓ𝑖 ≥ 𝐵∑
𝑖 (𝑎𝑖 + 𝑏𝑖)ℓ𝑖 ≥ 𝐴 + 𝐵

Multiplication for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖 𝑐𝑎𝑖ℓ𝑖 ≥ 𝑐𝐴

Division for any 𝑐 ∈ N+

(assumes normalized form)

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑

𝑖

⌈
𝑎𝑖
𝑐

⌉
ℓ𝑖 ≥

⌈
𝐴
𝑐

⌉
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 24/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

PSEUDO-BOOLEAN REASONING: CUTTING PLANES

Input/model axioms From the input

Literal axioms ℓ𝑖 ≥ 0

Addition
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴
∑

𝑖 𝑏𝑖ℓ𝑖 ≥ 𝐵∑
𝑖 (𝑎𝑖 + 𝑏𝑖)ℓ𝑖 ≥ 𝐴 + 𝐵

Multiplication for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖 𝑐𝑎𝑖ℓ𝑖 ≥ 𝑐𝐴

Division for any 𝑐 ∈ N+

(assumes normalized form)

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑

𝑖

⌈
𝑎𝑖
𝑐

⌉
ℓ𝑖 ≥

⌈
𝐴
𝑐

⌉
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 24/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

CUTTING PLANES TOY EXAMPLE
𝑤 + 2𝑥 + 𝑦 ≥ 2

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 25/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

CUTTING PLANES TOY EXAMPLE
𝑤 + 2𝑥 + 𝑦 ≥ 2

Multiply by 2
2𝑤 + 4𝑥 + 2𝑦 ≥ 4

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 25/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

CUTTING PLANES TOY EXAMPLE
𝑤 + 2𝑥 + 𝑦 ≥ 2

Multiply by 2
2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 25/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

CUTTING PLANES TOY EXAMPLE
𝑤 + 2𝑥 + 𝑦 ≥ 2

Multiply by 2
2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5

Add
3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 25/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

CUTTING PLANES TOY EXAMPLE
𝑤 + 2𝑥 + 𝑦 ≥ 2

Multiply by 2
2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5

Add
3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9

𝑧 ≥ 0

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 25/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

CUTTING PLANES TOY EXAMPLE
𝑤 + 2𝑥 + 𝑦 ≥ 2

Multiply by 2
2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5

Add
3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9

𝑧 ≥ 0
Multiply by 2

2𝑧 ≥ 0

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 25/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

CUTTING PLANES TOY EXAMPLE
𝑤 + 2𝑥 + 𝑦 ≥ 2

Multiply by 2
2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5

Add
3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9

𝑧 ≥ 0
Multiply by 2

2𝑧 ≥ 0
Add

3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 + 2𝑧 ≥ 9

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 25/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

CUTTING PLANES TOY EXAMPLE
𝑤 + 2𝑥 + 𝑦 ≥ 2

Multiply by 2
2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5

Add
3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9

𝑧 ≥ 0
Multiply by 2

2𝑧 ≥ 0
Add

3𝑤 + 6𝑥 + 6𝑦 + 2 ≥ 9

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 25/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

CUTTING PLANES TOY EXAMPLE
𝑤 + 2𝑥 + 𝑦 ≥ 2

Multiply by 2
2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5

Add
3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9

𝑧 ≥ 0
Multiply by 2

2𝑧 ≥ 0
Add

3𝑤 + 6𝑥 + 6𝑦 ≥ 7

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 25/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

CUTTING PLANES TOY EXAMPLE
𝑤 + 2𝑥 + 𝑦 ≥ 2

Multiply by 2
2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5

Add
3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9

𝑧 ≥ 0
Multiply by 2

2𝑧 ≥ 0
Add

3𝑤 + 6𝑥 + 6𝑦 ≥ 7
Divide by 3

𝑤 + 2𝑥 + 2𝑦 ≥ 2 1
3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 25/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

CUTTING PLANES TOY EXAMPLE
𝑤 + 2𝑥 + 𝑦 ≥ 2

Multiply by 2
2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5

Add
3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9

𝑧 ≥ 0
Multiply by 2

2𝑧 ≥ 0
Add

3𝑤 + 6𝑥 + 6𝑦 ≥ 7
Divide by 3

𝑤 + 2𝑥 + 2𝑦 ≥ 3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 25/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

CUTTING PLANES TOY EXAMPLE
𝑤 + 2𝑥 + 𝑦 ≥ 2

Multiply by 2
2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5

Add
3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9

𝑧 ≥ 0
Multiply by 2

2𝑧 ≥ 0
Add

3𝑤 + 6𝑥 + 6𝑦 ≥ 7
Divide by 3

𝑤 + 2𝑥 + 2𝑦 ≥ 3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 25/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

CUTTING PLANES TOY EXAMPLE
𝑤 + 2𝑥 + 𝑦 ≥ 2

Multiply by 2
2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5

Add
3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9

𝑧 ≥ 0
Multiply by 2

2𝑧 ≥ 0
Add

3𝑤 + 6𝑥 + 6𝑦 ≥ 7
Divide by 3

𝑤 + 2𝑥 + 2𝑦 ≥ 3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 25/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Proof Logging for SAT Solving

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . .)
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024

Pseudo-Boolean Proof Logging Pseudo-Boolean Proof Logging for SAT Solving

RESOLUTION AND CUTTING PLANES
To simulate resolution step such as

𝑦 ∨ 𝑧 𝑥 ∨ 𝑦 ∨ 𝑧
𝑥 ∨ 𝑦

we can perform the cutting planes steps

𝑦 + 𝑧 ≥ 1 𝑥 + 𝑦 + 𝑧 ≥ 1
Add

𝑥 + 2𝑦 ≥ 1
Divide by 2

𝑥 + 𝑦 ≥ 1

Given that the premises are clauses 7 and 5 in our example CNF formula, using references

Constraint 7 � 𝑦 + 𝑧 ≥ 1
Constraint 5 � 𝑥 + 𝑦 + 𝑧 ≥ 1

we can write this in the proof log as

pol 7 5 + 2 d

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 26/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Proof Logging for SAT Solving

RESOLUTION AND CUTTING PLANES
To simulate resolution step such as

𝑦 ∨ 𝑧 𝑥 ∨ 𝑦 ∨ 𝑧
𝑥 ∨ 𝑦

we can perform the cutting planes steps

𝑦 + 𝑧 ≥ 1 𝑥 + 𝑦 + 𝑧 ≥ 1
Add

𝑥 + 2𝑦 ≥ 1
Divide by 2

𝑥 + 𝑦 ≥ 1

Given that the premises are clauses 7 and 5 in our example CNF formula, using references

Constraint 7 � 𝑦 + 𝑧 ≥ 1
Constraint 5 � 𝑥 + 𝑦 + 𝑧 ≥ 1

we can write this in the proof log as

pol 7 5 + 2 d

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 26/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Proof Logging for SAT Solving

PSEUDO-BOOLEAN PROOF LOGGING FOR CDCL EXAMPLE

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

𝑝∨𝑢
⊥

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟)2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧
(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

pol 7 5 + 2 d 4 + 2 d ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
pol 8 6 + 2 d ⇝ Constraint 11 � 𝑥 ≥ 1
pol 9 1 + 2 d 10 + 2 d 11 + 2 d ⇝ Constraint 12 � 0 ≥ 1 E

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 27/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Proof Logging for SAT Solving

PSEUDO-BOOLEAN PROOF LOGGING FOR CDCL EXAMPLE

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟)2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧
(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

pol 7 5 + 2 d 4 + 2 d ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
pol 8 6 + 2 d ⇝ Constraint 11 � 𝑥 ≥ 1
pol 9 1 + 2 d 10 + 2 d 11 + 2 d ⇝ Constraint 12 � 0 ≥ 1 E

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 27/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Proof Logging for SAT Solving

PSEUDO-BOOLEAN PROOF LOGGING FOR CDCL EXAMPLE

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟)2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧
(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

pol 7 5 + 2 d 4 + 2 d ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
pol 8 6 + 2 d ⇝ Constraint 11 � 𝑥 ≥ 1
pol 9 1 + 2 d 10 + 2 d 11 + 2 d ⇝ Constraint 12 � 0 ≥ 1 E

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 27/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Proof Logging for SAT Solving

PSEUDO-BOOLEAN PROOF LOGGING FOR CDCL EXAMPLE

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟)2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧
(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

pol 7 5 + 2 d 4 + 2 d ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
pol 8 6 + 2 d ⇝ Constraint 11 � 𝑥 ≥ 1
pol 9 1 + 2 d 10 + 2 d 11 + 2 d ⇝ Constraint 12 � 0 ≥ 1 E

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 27/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Proof Logging for SAT Solving

PSEUDO-BOOLEAN PROOF LOGGING FOR CDCL EXAMPLE

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟)2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧
(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

pol 7 5 + 2 d 4 + 2 d ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
pol 8 6 + 2 d ⇝ Constraint 11 � 𝑥 ≥ 1
pol 9 1 + 2 d 10 + 2 d 11 + 2 d ⇝ Constraint 12 � 0 ≥ 1 E

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 27/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Proof Logging for SAT Solving

RUP REVISITED

Can define (reverse) unit propagation in a pseudo-Boolean setting

Constraint 𝐶 propagates variable 𝑥 if setting 𝑥 to “wrong value” would make 𝐶 unsatisfiable

E.g., if 𝑥5 is false,
𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

would propagate 𝑥4 (since other coefficients do not add up to 7)

Risk for confusion:
▶ Constraint programming people might call this (reverse) integer bounds consistency

▶ Does the same thing if we’re working with clauses
▶ More interesting for general pseudo-Boolean constraints

▶ SAT people beware: constraints can propagate multiple times and multiple variables

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 28/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Proof Logging for SAT Solving

RUP REVISITED

Can define (reverse) unit propagation in a pseudo-Boolean setting

Constraint 𝐶 propagates variable 𝑥 if setting 𝑥 to “wrong value” would make 𝐶 unsatisfiable

E.g., if 𝑥5 is false,
𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

would propagate 𝑥4 (since other coefficients do not add up to 7)

Risk for confusion:
▶ Constraint programming people might call this (reverse) integer bounds consistency

▶ Does the same thing if we’re working with clauses
▶ More interesting for general pseudo-Boolean constraints

▶ SAT people beware: constraints can propagate multiple times and multiple variables

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 28/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Proof Logging for SAT Solving

PB PROOF LOGGING FOR EXAMPLE CDCL EXECUTION WITH RUP

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟)2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧
(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

rup 1 u 1 x >= 1 ; ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
rup 1 ∼x >= 1 ; ⇝ Constraint 11 � 𝑥 ≥ 1
rup >= 1 ; ⇝ Constraint 12 � 0 ≥ 1 E

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 29/61

Pseudo-Boolean Proof Logging Pseudo-Boolean Proof Logging for SAT Solving

PB PROOF LOGGING FOR EXAMPLE CDCL EXECUTION WITH RUP

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟)2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧
(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

rup 1 u 1 x >= 1 ; ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
rup 1 ∼x >= 1 ; ⇝ Constraint 11 � 𝑥 ≥ 1
rup >= 1 ; ⇝ Constraint 12 � 0 ≥ 1 E

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 29/61

Pseudo-Boolean Proof Logging More Pseudo-Boolean Proof Logging Rules

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . .)
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024

Pseudo-Boolean Proof Logging More Pseudo-Boolean Proof Logging Rules

EXTENSION VARIABLES, PART 2

Suppose we want new, fresh variable 𝑎 encoding

𝑎 ⇔ (3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3)

This time, introduce constraints

3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3 5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5

Again, needs support from the proof system

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 30/61

Pseudo-Boolean Proof Logging More Pseudo-Boolean Proof Logging Rules

PROOF LOGS FOR “EXTENDED CUTTING PLANES”

For satisfiable instances: just specify a satisfying assignment.

For unsatisfiability: a sequence of pseudo-Boolean constraints in (slight extension of) OPB
format [RM16]
▶ Each constraint follows “obviously” from what is known so far
▶ Either implicitly, by RUP. . .
▶ Or by an explicit cutting planes derivation. . .
▶ Or as an extension variable reifying a new constraint∗

▶ Final constraint is 0 ≥ 1

(*) Not actually implemented this way — details to come later. . .

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 31/61

Pseudo-Boolean Proof Logging More Pseudo-Boolean Proof Logging Rules

PROOF LOGS FOR “EXTENDED CUTTING PLANES”

For satisfiable instances: just specify a satisfying assignment.

For unsatisfiability: a sequence of pseudo-Boolean constraints in (slight extension of) OPB
format [RM16]
▶ Each constraint follows “obviously” from what is known so far
▶ Either implicitly, by RUP. . .
▶ Or by an explicit cutting planes derivation. . .
▶ Or as an extension variable reifying a new constraint∗

▶ Final constraint is 0 ≥ 1

(*) Not actually implemented this way — details to come later. . .

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 31/61

Pseudo-Boolean Proof Logging More Pseudo-Boolean Proof Logging Rules

DELETING CONSTRAINTS

In practice, important to erase constraints to save memory and time during verification

Fairly straightforward to deal with from the point of view of proof logging

So ignored in this tutorial for simplicity and clarity

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 32/61

Pseudo-Boolean Proof Logging More Pseudo-Boolean Proof Logging Rules

ENUMERATION AND OPTIMISATION PROBLEMS

Enumeration:
▶ When a solution is found, can log it
▶ Introduces a new constraint saying “not this solution”
▶ So the proof semantics is “infeasible, except for all the solutions I told you about”

For optimisation:
▶ Define an objective 𝑓 =

∑
𝑖 𝑤𝑖ℓ𝑖 ,𝑤𝑖 ∈ Z, to minimise subject to the contraints in the formula

▶ To maximise, negate objective
▶ Log a solution 𝛼 ; get an objective-improving constraint

∑
𝑖 𝑤𝑖ℓ𝑖 ≤ −1 +∑

𝑖 𝑤𝑖𝛼 (ℓ𝑖)
▶ Semantics for proof of optimality: “infeasible to find better solution than best so far”

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 33/61

Pseudo-Boolean Proof Logging More Pseudo-Boolean Proof Logging Rules

ENUMERATION AND OPTIMISATION PROBLEMS

Enumeration:
▶ When a solution is found, can log it
▶ Introduces a new constraint saying “not this solution”
▶ So the proof semantics is “infeasible, except for all the solutions I told you about”

For optimisation:
▶ Define an objective 𝑓 =

∑
𝑖 𝑤𝑖ℓ𝑖 ,𝑤𝑖 ∈ Z, to minimise subject to the contraints in the formula

▶ To maximise, negate objective
▶ Log a solution 𝛼 ; get an objective-improving constraint

∑
𝑖 𝑤𝑖ℓ𝑖 ≤ −1 +∑

𝑖 𝑤𝑖𝛼 (ℓ𝑖)
▶ Semantics for proof of optimality: “infeasible to find better solution than best so far”

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 33/61

Pseudo-Boolean Proof Logging More Pseudo-Boolean Proof Logging Rules

PSEUDO-BOOLEAN PROOF LOGGING — HOW AND WHY?
If problem is (special case of) 0–1 integer linear program (ILP)
▶ just do proof logging

Otherwise
▶ do trusted or verified translation to 0–1 ILP
▶ provide proof logging for 0–1 ILP formulation

Proof logging philosophy:
▶ do not change input for

solver
▶ do not change reasoning in

solver
▶ only add print statements

(in PB format) here and there

Goldilocks compromise between expressivity and simplicity:

1. 0–1 ILP expressive formalism for combinatorial problems (including objective)

2. Powerful reasoning capturing many combinatorial arguments (even for SAT)

3. Efficient reification of constraints — example:

𝑟 ⇒ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
𝑟 ⇐ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

7𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
9𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 9

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 34/61

Pseudo-Boolean Proof Logging More Pseudo-Boolean Proof Logging Rules

PSEUDO-BOOLEAN PROOF LOGGING — HOW AND WHY?
If problem is (special case of) 0–1 integer linear program (ILP)
▶ just do proof logging

Otherwise
▶ do trusted or verified translation to 0–1 ILP
▶ provide proof logging for 0–1 ILP formulation

Proof logging philosophy:
▶ do not change input for

solver
▶ do not change reasoning in

solver
▶ only add print statements

(in PB format) here and there

Goldilocks compromise between expressivity and simplicity:

1. 0–1 ILP expressive formalism for combinatorial problems (including objective)

2. Powerful reasoning capturing many combinatorial arguments (even for SAT)

3. Efficient reification of constraints — example:

𝑟 ⇒ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
𝑟 ⇐ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

7𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
9𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 9

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 34/61

Pseudo-Boolean Proof Logging More Pseudo-Boolean Proof Logging Rules

PSEUDO-BOOLEAN PROOF LOGGING — HOW AND WHY?
If problem is (special case of) 0–1 integer linear program (ILP)
▶ just do proof logging

Otherwise
▶ do trusted or verified translation to 0–1 ILP
▶ provide proof logging for 0–1 ILP formulation

Proof logging philosophy:
▶ do not change input for

solver
▶ do not change reasoning in

solver
▶ only add print statements

(in PB format) here and there
Goldilocks compromise between expressivity and simplicity:

1. 0–1 ILP expressive formalism for combinatorial problems (including objective)

2. Powerful reasoning capturing many combinatorial arguments (even for SAT)

3. Efficient reification of constraints — example:

𝑟 ⇒ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
𝑟 ⇐ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

7𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
9𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 9

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 34/61

Pseudo-Boolean Proof Logging More Pseudo-Boolean Proof Logging Rules

PSEUDO-BOOLEAN PROOF LOGGING — HOW AND WHY?
If problem is (special case of) 0–1 integer linear program (ILP)
▶ just do proof logging

Otherwise
▶ do trusted or verified translation to 0–1 ILP
▶ provide proof logging for 0–1 ILP formulation

Proof logging philosophy:
▶ do not change input for

solver
▶ do not change reasoning in

solver
▶ only add print statements

(in PB format) here and there
Goldilocks compromise between expressivity and simplicity:

1. 0–1 ILP expressive formalism for combinatorial problems (including objective)

2. Powerful reasoning capturing many combinatorial arguments (even for SAT)

3. Efficient reification of constraints — example:

𝑟 ⇒ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
𝑟 ⇐ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

7𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
9𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 9

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 34/61

Pseudo-Boolean Proof Logging More Pseudo-Boolean Proof Logging Rules

PSEUDO-BOOLEAN PROOF LOGGING — HOW AND WHY?
If problem is (special case of) 0–1 integer linear program (ILP)
▶ just do proof logging

Otherwise
▶ do trusted or verified translation to 0–1 ILP
▶ provide proof logging for 0–1 ILP formulation

Proof logging philosophy:
▶ do not change input for

solver
▶ do not change reasoning in

solver
▶ only add print statements

(in PB format) here and there
Goldilocks compromise between expressivity and simplicity:

1. 0–1 ILP expressive formalism for combinatorial problems (including objective)

2. Powerful reasoning capturing many combinatorial arguments (even for SAT)

3. Efficient reification of constraints — example:

𝑟 ⇒ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
𝑟 ⇐ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

7𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
9𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 9

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 34/61

Pseudo-Boolean Proof Logging More Pseudo-Boolean Proof Logging Rules

PSEUDO-BOOLEAN PROOF LOGGING — HOW AND WHY?
If problem is (special case of) 0–1 integer linear program (ILP)
▶ just do proof logging

Otherwise
▶ do trusted or verified translation to 0–1 ILP
▶ provide proof logging for 0–1 ILP formulation

Proof logging philosophy:
▶ do not change input for

solver
▶ do not change reasoning in

solver
▶ only add print statements

(in PB format) here and there
Goldilocks compromise between expressivity and simplicity:

1. 0–1 ILP expressive formalism for combinatorial problems (including objective)

2. Powerful reasoning capturing many combinatorial arguments (even for SAT)

3. Efficient reification of constraints — example:

𝑟 ⇒ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
𝑟 ⇐ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

7𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
9𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 9

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 34/61

Pseudo-Boolean Proof Logging More Pseudo-Boolean Proof Logging Rules

THE VeriPB FORMAT AND TOOL

https://gitlab.com/MIAOresearch/software/VeriPB

Released under MIT Licence

Various features to help development:
▶ Extended variable name syntax allowing human-readable names
▶ Proof tracing
▶ “Trust me” assertions for incremental proof logging

Documentation:
▶ Description of VeriPB checker [BMM+23] used in SAT 2023 competition

(https://satcompetition.github.io/2023/checkers.html)
▶ Specific details on different proof logging techniques covered in research papers

[EGMN20, GMN20, GMM+20, GN21, GMN22, GMNO22, VDB22, BBN+23, BGMN23,MM23]
▶ Lots of concrete example files at https://gitlab.com/MIAOresearch/software/VeriPB

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 35/61

https://gitlab.com/MIAOresearch/software/VeriPB
https://satcompetition.github.io/2023/checkers.html
https://gitlab.com/MIAOresearch/software/VeriPB

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . .)
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

CERTIFIED MAXIMUM SATISFIABILITY (MAXSAT) SOLVING
Minimize linear objective subject to satisfying formula in conjunctive normal form (CNF)

min 2𝑥1 + 𝑥2
s.t. 𝑥1 ∨ 𝑧

𝑧 ∨ 𝑥2
MaxSAT solver

Result:
optimum 1

Many MaxSAT solvers internally make use of SAT solver. Idea:
▶ Find optimal solution (checking that it is a solution is easy)

▶ Add clauses claiming a better solution exists
Requires proof logging — can be done with VeriPB

▶ Use one extra SAT call to get proof of optimality (with standard SAT proof logging)
Causes serious overhead

Does not work Only proves answer correct, not reasoning within solver!
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 36/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

CERTIFIED MAXIMUM SATISFIABILITY (MAXSAT) SOLVING
Minimize linear objective subject to satisfying formula in conjunctive normal form (CNF)

min 2𝑥1 + 𝑥2
s.t. 𝑥1 ∨ 𝑧

𝑧 ∨ 𝑥2
MaxSAT solver

Result:
optimum 1

Many MaxSAT solvers internally make use of SAT solver. Idea:
▶ Find optimal solution (checking that it is a solution is easy)

▶ Add clauses claiming a better solution exists
Requires proof logging — can be done with VeriPB

▶ Use one extra SAT call to get proof of optimality (with standard SAT proof logging)
Causes serious overhead

Does not work Only proves answer correct, not reasoning within solver!
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 36/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

CERTIFIED MAXIMUM SATISFIABILITY (MAXSAT) SOLVING
Minimize linear objective subject to satisfying formula in conjunctive normal form (CNF)

min 2𝑥1 + 𝑥2
s.t. 𝑥1 ∨ 𝑧

𝑧 ∨ 𝑥2
MaxSAT solver

Result:
optimum 1

Many MaxSAT solvers internally make use of SAT solver. Idea:
▶ Find optimal solution (checking that it is a solution is easy)

▶ Add clauses claiming a better solution exists
Requires proof logging — can be done with VeriPB

▶ Use one extra SAT call to get proof of optimality (with standard SAT proof logging)
Causes serious overhead

Does not work Only proves answer correct, not reasoning within solver!
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 36/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

CERTIFIED MAXIMUM SATISFIABILITY (MAXSAT) SOLVING
Minimize linear objective subject to satisfying formula in conjunctive normal form (CNF)

min 2𝑥1 + 𝑥2
s.t. 𝑥1 ∨ 𝑧

𝑧 ∨ 𝑥2
MaxSAT solver

Result:
optimum 1

Many MaxSAT solvers internally make use of SAT solver. Idea:
▶ Find optimal solution (checking that it is a solution is easy)

▶ Add clauses claiming a better solution exists
Requires proof logging — can be done with VeriPB

▶ Use one extra SAT call to get proof of optimality (with standard SAT proof logging)
Causes serious overhead

Does not work Only proves answer correct, not reasoning within solver!
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 36/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

CERTIFIED MAXIMUM SATISFIABILITY (MAXSAT) SOLVING
Minimize linear objective subject to satisfying formula in conjunctive normal form (CNF)

min 2𝑥1 + 𝑥2
s.t. 𝑥1 ∨ 𝑧

𝑧 ∨ 𝑥2
MaxSAT solver

Result:
optimum 1

Many MaxSAT solvers internally make use of SAT solver. Idea:
▶ Find optimal solution (checking that it is a solution is easy)

▶ Add clauses claiming a better solution exists
Requires proof logging — can be done with VeriPB

▶ Use one extra SAT call to get proof of optimality (with standard SAT proof logging)
Causes serious overhead

Does not work Only proves answer correct, not reasoning within solver!
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 36/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

MAXSAT SOLVERS
Main categories:
▶ Linear SAT-UNSAT search (proof logging [VDB22, Van23, BBN+24])

1. Call SAT solver to find some solution
2. Add clauses encoding “I want a better solution”
3. Repeat (last found solution is optimal)

▶ Core-guided search (proof logging [BBN+23])
1. Call SAT solver to find solution under most optimistic assumptions
2. If impossible, rewrite objective given output of SAT solver
3. Repeat (first solution is optimal)

▶ Branch-and-bound search (proof logging coming soon)
1. Run CDCL SAT solver
2. While running, add bounding constraints

▶ Implicit Hitting Set (No proof logging available yet)
1. Call SAT solver to find solution under most optimistic assumptions
2. Use hitting set solver (MIP solver) to recompute what most possible optimistic assumptions are
3. Repeat (first solution is optimal)
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 37/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

MAXSAT SOLVERS
Main categories:
▶ Linear SAT-UNSAT search (proof logging [VDB22, Van23, BBN+24])

1. Call SAT solver to find some solution
2. Add clauses encoding “I want a better solution”
3. Repeat (last found solution is optimal)

▶ Core-guided search (proof logging [BBN+23])
1. Call SAT solver to find solution under most optimistic assumptions
2. If impossible, rewrite objective given output of SAT solver
3. Repeat (first solution is optimal)

▶ Branch-and-bound search (proof logging coming soon)
1. Run CDCL SAT solver
2. While running, add bounding constraints

▶ Implicit Hitting Set (No proof logging available yet)
1. Call SAT solver to find solution under most optimistic assumptions
2. Use hitting set solver (MIP solver) to recompute what most possible optimistic assumptions are
3. Repeat (first solution is optimal)
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 37/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

MAXSAT SOLVERS
Main categories:
▶ Linear SAT-UNSAT search (proof logging [VDB22, Van23, BBN+24])

1. Call SAT solver to find some solution
2. Add clauses encoding “I want a better solution”
3. Repeat (last found solution is optimal)

▶ Core-guided search (proof logging [BBN+23])
1. Call SAT solver to find solution under most optimistic assumptions
2. If impossible, rewrite objective given output of SAT solver
3. Repeat (first solution is optimal)

▶ Branch-and-bound search (proof logging coming soon)
1. Run CDCL SAT solver
2. While running, add bounding constraints

▶ Implicit Hitting Set (No proof logging available yet)
1. Call SAT solver to find solution under most optimistic assumptions
2. Use hitting set solver (MIP solver) to recompute what most possible optimistic assumptions are
3. Repeat (first solution is optimal)
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 37/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving)

MAXSAT SOLVERS
Main categories:
▶ Linear SAT-UNSAT search (proof logging [VDB22, Van23, BBN+24])

1. Call SAT solver to find some solution
2. Add clauses encoding “I want a better solution”
3. Repeat (last found solution is optimal)

▶ Core-guided search (proof logging [BBN+23])
1. Call SAT solver to find solution under most optimistic assumptions
2. If impossible, rewrite objective given output of SAT solver
3. Repeat (first solution is optimal)

▶ Branch-and-bound search (proof logging coming soon)
1. Run CDCL SAT solver
2. While running, add bounding constraints

▶ Implicit Hitting Set (No proof logging available yet)
1. Call SAT solver to find solution under most optimistic assumptions
2. Use hitting set solver (MIP solver) to recompute what most possible optimistic assumptions are
3. Repeat (first solution is optimal)
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 37/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . .)
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

LINEAR SAT-UNSAT SEARCH

Run SAT solver to
find model

Encode model
improving con-
straints

Last found model
is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 38/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

𝑥1, 𝑥2, 𝑥3, 𝑥4
𝑟 1, 𝑟2, 𝑟3

UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

𝑥1, 𝑥2, 𝑥3, 𝑥4
𝑟 1, 𝑟2, 𝑟3

UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
PB(𝑝1 ⇔ (∑𝑖 𝑟𝑖 ≥ 1)) Fresh variable
PB(𝑝2 ⇔ (∑𝑖 𝑟𝑖 ≥ 2))
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

𝑥1, 𝑥2, 𝑥3, 𝑥4
𝑟 1, 𝑟2, 𝑟 3

UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61

LSU EXAMPLE IN VeriPB SYNTAX
pseudo-Boolean proof version 2.0
f 7
* Clauses derived by solver
rup 1 x1 1 r2 >= 1 ;
* Log incumbent solution
soli ~x1 ~x2 ~x3 ~x4 ~r1 r2 r3
* introduce fresh variables
red 2 ~p2 1 r1 1 r2 1 r3 >= 2 ; p2 -> 0 ;
red 2 p2 1 ~r1 1 ~r2 1 ~r3 >= 2; p2 -> 1 ;
red 1 ~p1 1 r1 1 r2 1 r3 >= 1; p1 -> 0 ;
red 3 p1 1 ~r1 1 ~r2 1 ~r3 >= 3; p1 -> 1 ;
* Derive CNF encoding of totalizer
. . . - coming soon
* Derive counter falsity
pol 9 10 + s
* Clauses derived by solver
rup 1 x4 >= 1 ;

* Log incumbent solution
soli ~x1 ~x2 ~x3 x4 ~r1 r2 ~r3
* Derive counter falsity
pol -1 12 +
* Inconsistency derived by solver
rup >= 1 ;
* Conclusion
output NONE
conclusion BOUNDS 1 1
end pseudo-Boolean proof

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED ENCODING OF THE MODEL-IMPROVING CONSTRAINT

How to encode 𝑝 𝑗 ⇔
∑

𝑖 𝑟𝑖 ≥ 𝑗 in CNF?

Different MaxSAT solvers use different PB-to-CNF encodings, e.g.,
▶ Totalizer Encoding [BB03]
▶ Binary Adder [War98]
▶ Modulo-Based Totalizer [OLH+13]
▶ Sorting Networks [ES06, ANOR09]
▶ (Dynamic) Polynomial Watchdog (DPW) [PRB18]

Totalizer encoding demonstrated here; ideas generalize to other encodings [Van23]

Except... DPW turns out to use complicated without-loss-of-generality reasoning [BBN+24]

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 41/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED ENCODING OF THE MODEL-IMPROVING CONSTRAINT

How to encode 𝑝 𝑗 ⇔
∑

𝑖 𝑟𝑖 ≥ 𝑗 in CNF?

Different MaxSAT solvers use different PB-to-CNF encodings, e.g.,
▶ Totalizer Encoding [BB03]
▶ Binary Adder [War98]
▶ Modulo-Based Totalizer [OLH+13]
▶ Sorting Networks [ES06, ANOR09]
▶ (Dynamic) Polynomial Watchdog (DPW) [PRB18]

Totalizer encoding demonstrated here; ideas generalize to other encodings [Van23]

Except... DPW turns out to use complicated without-loss-of-generality reasoning [BBN+24]

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 41/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED ENCODING OF THE MODEL-IMPROVING CONSTRAINT

How to encode 𝑝 𝑗 ⇔
∑

𝑖 𝑟𝑖 ≥ 𝑗 in CNF?

Different MaxSAT solvers use different PB-to-CNF encodings, e.g.,
▶ Totalizer Encoding [BB03]
▶ Binary Adder [War98]
▶ Modulo-Based Totalizer [OLH+13]
▶ Sorting Networks [ES06, ANOR09]
▶ (Dynamic) Polynomial Watchdog (DPW) [PRB18]

Totalizer encoding demonstrated here; ideas generalize to other encodings [Van23]

Except... DPW turns out to use complicated without-loss-of-generality reasoning [BBN+24]

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 41/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED ENCODING OF THE MODEL-IMPROVING CONSTRAINT

How to encode 𝑝 𝑗 ⇔
∑

𝑖 𝑟𝑖 ≥ 𝑗 in CNF?

Different MaxSAT solvers use different PB-to-CNF encodings, e.g.,
▶ Totalizer Encoding [BB03]
▶ Binary Adder [War98]
▶ Modulo-Based Totalizer [OLH+13]
▶ Sorting Networks [ES06, ANOR09]
▶ (Dynamic) Polynomial Watchdog (DPW) [PRB18]

Totalizer encoding demonstrated here; ideas generalize to other encodings [Van23]

Except... DPW turns out to use complicated without-loss-of-generality reasoning [BBN+24]

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 41/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

TOTALIZER ENCODING OF CARDINALITY CONSTRAINTS
How to encode 𝑝𝐼𝑗 ⇔

∑
𝑖∈𝐼 𝑟𝑖 ≥ 𝑗?

▶ Totalizer encoding [BB03]
▶ Create binary tree (leaves are the 𝑟𝑖); and

introduce counter variables in all nodes
▶ Example: 𝐼 = {1, · · · , 8}, 𝐼1 = {1, · · · , 4} and
𝐼2 = {5, · · · , 8}

𝑝𝐼1, 𝑝
𝐼
2, 𝑝

𝐼
3, 𝑝

𝐼
4, 𝑝

𝐼
5, 𝑝

𝐼
6, 𝑝

𝐼
7, 𝑝

𝐼
8

𝑝
𝐼1
1 , 𝑝

𝐼1
2 , 𝑝

𝐼1
3 , 𝑝

𝐼1
4 𝑝

𝐼2
1 , 𝑝

𝐼2
2 , 𝑝

𝐼2
3 , 𝑝

𝐼2
4

Clauses encoding 𝑝𝐼6 ⇐
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝𝐼24 ∨ 𝑝𝐼6 𝑝

𝐼1
3 ∨ 𝑝𝐼23 ∨ 𝑝𝐼6 𝑝

𝐼1
4 ∨ 𝑝𝐼22 ∨ 𝑝𝐼6

Clauses encoding 𝑝𝐼6 ⇒
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝𝐼6 𝑝

𝐼1
3 ∨ 𝑝𝐼24 ∨ 𝑝𝐼6 𝑝

𝐼1
4 ∨ 𝑝𝐼23 ∨ 𝑝𝐼6 𝑝

𝐼2
2 ∨ 𝑝𝐼6

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 42/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

TOTALIZER ENCODING OF CARDINALITY CONSTRAINTS
How to encode 𝑝𝐼𝑗 ⇔

∑
𝑖∈𝐼 𝑟𝑖 ≥ 𝑗?

▶ Totalizer encoding [BB03]
▶ Create binary tree (leaves are the 𝑟𝑖); and

introduce counter variables in all nodes
▶ Example: 𝐼 = {1, · · · , 8}, 𝐼1 = {1, · · · , 4} and
𝐼2 = {5, · · · , 8}

𝑝𝐼1, 𝑝
𝐼
2, 𝑝

𝐼
3, 𝑝

𝐼
4, 𝑝

𝐼
5, 𝑝

𝐼
6, 𝑝

𝐼
7, 𝑝

𝐼
8

𝑝
𝐼1
1 , 𝑝

𝐼1
2 , 𝑝

𝐼1
3 , 𝑝

𝐼1
4 𝑝

𝐼2
1 , 𝑝

𝐼2
2 , 𝑝

𝐼2
3 , 𝑝

𝐼2
4

Clauses encoding 𝑝𝐼6 ⇐
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝𝐼24 ∨ 𝑝𝐼6 𝑝

𝐼1
3 ∨ 𝑝𝐼23 ∨ 𝑝𝐼6 𝑝

𝐼1
4 ∨ 𝑝𝐼22 ∨ 𝑝𝐼6

Clauses encoding 𝑝𝐼6 ⇒
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝𝐼6 𝑝

𝐼1
3 ∨ 𝑝𝐼24 ∨ 𝑝𝐼6 𝑝

𝐼1
4 ∨ 𝑝𝐼23 ∨ 𝑝𝐼6 𝑝

𝐼2
2 ∨ 𝑝𝐼6

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 42/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

TOTALIZER ENCODING OF CARDINALITY CONSTRAINTS
How to encode 𝑝𝐼𝑗 ⇔

∑
𝑖∈𝐼 𝑟𝑖 ≥ 𝑗?

▶ Totalizer encoding [BB03]
▶ Create binary tree (leaves are the 𝑟𝑖); and

introduce counter variables in all nodes
▶ Example: 𝐼 = {1, · · · , 8}, 𝐼1 = {1, · · · , 4} and
𝐼2 = {5, · · · , 8}

𝑝𝐼1, 𝑝
𝐼
2, 𝑝

𝐼
3, 𝑝

𝐼
4, 𝑝

𝐼
5, 𝑝

𝐼
6, 𝑝

𝐼
7, 𝑝

𝐼
8

𝑝
𝐼1
1 , 𝑝

𝐼1
2 , 𝑝

𝐼1
3 , 𝑝

𝐼1
4 𝑝

𝐼2
1 , 𝑝

𝐼2
2 , 𝑝

𝐼2
3 , 𝑝

𝐼2
4

Clauses encoding 𝑝𝐼6 ⇐
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝𝐼24 ∨ 𝑝𝐼6 𝑝

𝐼1
3 ∨ 𝑝𝐼23 ∨ 𝑝𝐼6 𝑝

𝐼1
4 ∨ 𝑝𝐼22 ∨ 𝑝𝐼6

Clauses encoding 𝑝𝐼6 ⇒
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝𝐼6 𝑝

𝐼1
3 ∨ 𝑝𝐼24 ∨ 𝑝𝐼6 𝑝

𝐼1
4 ∨ 𝑝𝐼23 ∨ 𝑝𝐼6 𝑝

𝐼2
2 ∨ 𝑝𝐼6

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 42/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

TOTALIZER ENCODING OF CARDINALITY CONSTRAINTS
How to encode 𝑝𝐼𝑗 ⇔

∑
𝑖∈𝐼 𝑟𝑖 ≥ 𝑗?

▶ Totalizer encoding [BB03]
▶ Create binary tree (leaves are the 𝑟𝑖); and

introduce counter variables in all nodes
▶ Example: 𝐼 = {1, · · · , 8}, 𝐼1 = {1, · · · , 4} and
𝐼2 = {5, · · · , 8}

𝑝𝐼1, 𝑝
𝐼
2, 𝑝

𝐼
3, 𝑝

𝐼
4, 𝑝

𝐼
5, 𝑝

𝐼
6, 𝑝

𝐼
7, 𝑝

𝐼
8

𝑝
𝐼1
1 , 𝑝

𝐼1
2 , 𝑝

𝐼1
3 , 𝑝

𝐼1
4 𝑝

𝐼2
1 , 𝑝

𝐼2
2 , 𝑝

𝐼2
3 , 𝑝

𝐼2
4

Clauses encoding 𝑝𝐼6 ⇐
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:(
𝑝
𝐼1
2 ∧ 𝑝𝐼24

)
⇒ 𝑝𝐼6

(
𝑝
𝐼1
3 ∧ 𝑝𝐼23

)
⇒ 𝑝𝐼6

(
𝑝
𝐼1
4 ∧ 𝑝𝐼22

)
⇒ 𝑝𝐼6

Clauses encoding 𝑝𝐼6 ⇒
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝𝐼6 𝑝

𝐼1
3 ∨ 𝑝𝐼24 ∨ 𝑝𝐼6 𝑝

𝐼1
4 ∨ 𝑝𝐼23 ∨ 𝑝𝐼6 𝑝

𝐼2
2 ∨ 𝑝𝐼6

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 42/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

TOTALIZER ENCODING OF CARDINALITY CONSTRAINTS
How to encode 𝑝𝐼𝑗 ⇔

∑
𝑖∈𝐼 𝑟𝑖 ≥ 𝑗?

▶ Totalizer encoding [BB03]
▶ Create binary tree (leaves are the 𝑟𝑖); and

introduce counter variables in all nodes
▶ Example: 𝐼 = {1, · · · , 8}, 𝐼1 = {1, · · · , 4} and
𝐼2 = {5, · · · , 8}

𝑝𝐼1, 𝑝
𝐼
2, 𝑝

𝐼
3, 𝑝

𝐼
4, 𝑝

𝐼
5, 𝑝

𝐼
6, 𝑝

𝐼
7, 𝑝

𝐼
8

𝑝
𝐼1
1 , 𝑝

𝐼1
2 , 𝑝

𝐼1
3 , 𝑝

𝐼1
4 𝑝

𝐼2
1 , 𝑝

𝐼2
2 , 𝑝

𝐼2
3 , 𝑝

𝐼2
4

Clauses encoding 𝑝𝐼6 ⇐
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝𝐼24 ∨ 𝑝𝐼6 𝑝

𝐼1
3 ∨ 𝑝𝐼23 ∨ 𝑝𝐼6 𝑝

𝐼1
4 ∨ 𝑝𝐼22 ∨ 𝑝𝐼6

Clauses encoding 𝑝𝐼6 ⇒
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝𝐼6 𝑝

𝐼1
3 ∨ 𝑝𝐼24 ∨ 𝑝𝐼6 𝑝

𝐼1
4 ∨ 𝑝𝐼23 ∨ 𝑝𝐼6 𝑝

𝐼2
2 ∨ 𝑝𝐼6

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 42/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

TOTALIZER ENCODING OF CARDINALITY CONSTRAINTS
How to encode 𝑝𝐼𝑗 ⇔

∑
𝑖∈𝐼 𝑟𝑖 ≥ 𝑗?

▶ Totalizer encoding [BB03]
▶ Create binary tree (leaves are the 𝑟𝑖); and

introduce counter variables in all nodes
▶ Example: 𝐼 = {1, · · · , 8}, 𝐼1 = {1, · · · , 4} and
𝐼2 = {5, · · · , 8}

𝑝𝐼1, 𝑝
𝐼
2, 𝑝

𝐼
3, 𝑝

𝐼
4, 𝑝

𝐼
5, 𝑝

𝐼
6, 𝑝

𝐼
7, 𝑝

𝐼
8

𝑝
𝐼1
1 , 𝑝

𝐼1
2 , 𝑝

𝐼1
3 , 𝑝

𝐼1
4 𝑝

𝐼2
1 , 𝑝

𝐼2
2 , 𝑝

𝐼2
3 , 𝑝

𝐼2
4

Clauses encoding 𝑝𝐼6 ⇐
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝𝐼24 ∨ 𝑝𝐼6 𝑝

𝐼1
3 ∨ 𝑝𝐼23 ∨ 𝑝𝐼6 𝑝

𝐼1
4 ∨ 𝑝𝐼22 ∨ 𝑝𝐼6

Clauses encoding 𝑝𝐼6 ⇒
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ⇒ 𝑝

𝐼
6

(
𝑝
𝐼1
3 ∧ 𝑝𝐼24

)
⇒ 𝑝

𝐼
6

(
𝑝
𝐼1
4 ∧ 𝑝𝐼23

)
⇒ 𝑝

𝐼
6 𝑝

𝐼2
2 ⇒ 𝑝

𝐼
6

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 42/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

TOTALIZER ENCODING OF CARDINALITY CONSTRAINTS
How to encode 𝑝𝐼𝑗 ⇔

∑
𝑖∈𝐼 𝑟𝑖 ≥ 𝑗?

▶ Totalizer encoding [BB03]
▶ Create binary tree (leaves are the 𝑟𝑖); and

introduce counter variables in all nodes
▶ Example: 𝐼 = {1, · · · , 8}, 𝐼1 = {1, · · · , 4} and
𝐼2 = {5, · · · , 8}

𝑝𝐼1, 𝑝
𝐼
2, 𝑝

𝐼
3, 𝑝

𝐼
4, 𝑝

𝐼
5, 𝑝

𝐼
6, 𝑝

𝐼
7, 𝑝

𝐼
8

𝑝
𝐼1
1 , 𝑝

𝐼1
2 , 𝑝

𝐼1
3 , 𝑝

𝐼1
4 𝑝

𝐼2
1 , 𝑝

𝐼2
2 , 𝑝

𝐼2
3 , 𝑝

𝐼2
4

Clauses encoding 𝑝𝐼6 ⇐
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝𝐼24 ∨ 𝑝𝐼6 𝑝

𝐼1
3 ∨ 𝑝𝐼23 ∨ 𝑝𝐼6 𝑝

𝐼1
4 ∨ 𝑝𝐼22 ∨ 𝑝𝐼6

Clauses encoding 𝑝𝐼6 ⇒
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝𝐼6 𝑝

𝐼1
3 ∨ 𝑝𝐼24 ∨ 𝑝𝐼6 𝑝

𝐼1
4 ∨ 𝑝𝐼23 ∨ 𝑝𝐼6 𝑝

𝐼2
2 ∨ 𝑝𝐼6

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 42/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFYING THE TOTALIZER ENCODING USING CUTTING PLANES

▶ To be derived: 𝑝𝐼14 ∨ 𝑝𝐼22 ∨ 𝑝𝐼6
▶ Counting variables introduced using

4 · 𝑝𝐼14 +
∑︁
𝑖∈𝐼1

𝑟𝑖 ≥ 4

2 · 𝑝𝐼22 +
∑︁
𝑖∈𝐼2

𝑟𝑖 ≥ 2

3 · 𝑝𝐼6 +
∑︁
𝑖∈𝐼

𝑟 𝑖 ≥ 3

▶ Adding these three constraints yields

4 · 𝑝𝐼14 + 2 · 𝑝𝐼22 + 3 · 𝑝𝐼6 + 8 ≥ 9

1

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 43/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFYING THE TOTALIZER ENCODING USING CUTTING PLANES

▶ To be derived: 𝑝𝐼14 ∨ 𝑝𝐼22 ∨ 𝑝𝐼6
▶ Counting variables introduced using

4 · 𝑝𝐼14 +
∑︁
𝑖∈𝐼1

𝑟𝑖 ≥ 4

2 · 𝑝𝐼22 +
∑︁
𝑖∈𝐼2

𝑟𝑖 ≥ 2

3 · 𝑝𝐼6 +
∑︁
𝑖∈𝐼

𝑟 𝑖 ≥ 3

▶ Adding these three constraints yields

4 · 𝑝𝐼14 + 2 · 𝑝𝐼22 + 3 · 𝑝𝐼6 + 8 ≥ 9

1

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 43/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFYING THE TOTALIZER ENCODING USING CUTTING PLANES

▶ To be derived: 𝑝𝐼14 ∨ 𝑝𝐼22 ∨ 𝑝𝐼6
▶ Counting variables introduced using

4 · 𝑝𝐼14 +
∑︁
𝑖∈𝐼1

𝑟𝑖 ≥ 4

2 · 𝑝𝐼22 +
∑︁
𝑖∈𝐼2

𝑟𝑖 ≥ 2

3 · 𝑝𝐼6 +
∑︁
𝑖∈𝐼

𝑟 𝑖 ≥ 3

▶ Adding these three constraints yields

4 · 𝑝𝐼14 + 2 · 𝑝𝐼22 + 3 · 𝑝𝐼6 + 8 ≥ 9

1

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 43/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFYING THE TOTALIZER ENCODING USING CUTTING PLANES

▶ To be derived: 𝑝𝐼14 ∨ 𝑝𝐼22 ∨ 𝑝𝐼6
▶ Counting variables introduced using

4 · 𝑝𝐼14 +
∑︁
𝑖∈𝐼1

𝑟𝑖 ≥ 4

2 · 𝑝𝐼22 +
∑︁
𝑖∈𝐼2

𝑟𝑖 ≥ 2

3 · 𝑝𝐼6 +
∑︁
𝑖∈𝐼

𝑟 𝑖 ≥ 3

▶ Adding these three constraints yields

4 · 𝑝𝐼14 + 2 · 𝑝𝐼22 + 3 · 𝑝𝐼6 + 8 ≥ 9 1

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 43/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFYING THE TOTALIZER ENCODING USING CUTTING PLANES

▶ To be derived: 𝑝𝐼14 ∨ 𝑝𝐼22 ∨ 𝑝𝐼6
▶ Counting variables introduced using

4 · 𝑝𝐼14 +
∑︁
𝑖∈𝐼1

𝑟𝑖 ≥ 4

2 · 𝑝𝐼22 +
∑︁
𝑖∈𝐼2

𝑟𝑖 ≥ 2

3 · 𝑝𝐼6 +
∑︁
𝑖∈𝐼

𝑟 𝑖 ≥ 3

▶ Adding these three constraints and saturating yields

4 · 𝑝𝐼14 + 2 · 𝑝𝐼22 + 3 · 𝑝𝐼6 + 8 ≥ 9 1

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 43/61

COMPLETE LSU EXAMPLE IN VeriPB SYNTAX
pseudo-Boolean proof version 2.0
f 7
* Clauses derived by solver
rup 1 x1 1 r2 >= 1 ;
* Log incumbent solution
soli ~x1 ~x2 ~x3 ~x4 ~r1 r2 r3
* introduce fresh variables
red 2 ~p2 1 r1 1 r2 1 r3 >= 2 ; p2 -> 0 ;
red 2 p2 1 ~r1 1 ~r2 1 ~r3 >= 2; p2 -> 1 ;
red 1 ~p1 1 r1 1 r2 1 r3 >= 1; p1 -> 0 ;
red 3 p1 1 ~r1 1 ~r2 1 ~r3 >= 3; p1 -> 1 ;
* Auxiliary variables for CNF encoding
red 2 ~p_1-2_2 1 r1 1 r2 >= 2 ; p_1-2_2 -> 0 ;
red 1 p_1-2_2 1 ~r1 1 ~r2 >= 1; p_1-2_2 -> 1 ;
red 1 ~p_1-2_1 1 r1 1 r2 >= 1; p_1-2_1 -> 0 ;
red 2 p_1-2_1 1 ~r1 1 ~r2 >= 2; p_1-2_1 -> 1 ;
* Cutting planes derivation of totalizer clauses
pol 10 15 + s
pol 10 17 + ~r3 + s

pol 11 14 + r3 + s
pol 11 16 + s
pol 12 17 + s
pol 13 16 + r3 + s
pol 13 r1 + r2 + s
* Derive counter falsity
pol 9 10 + s
* Clauses derived by solver
rup 1 x4 >= 1 ;
* Log incumbent solution
soli ~x1 ~x2 ~x3 x4 ~r1 r2 ~r3
* Derive counter falsity
pol -1 12 +
* Inconsistency derived by solver
rup >= 1 ;
* Conclusion
output NONE
conclusion BOUNDS 1 1
end pseudo-Boolean proof

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . .)
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

CORE-GUIDED SEARCH

Run SAT solver
under optimistic
assumptions

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 45/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

CERTIFIED CORE-GUIDED SEARCH (EXAMPLE)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟 1 + 𝑟 2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟 2, 𝑟 3} Solution
𝑟 1 + 𝑟 2 + 𝑟 3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
𝑟1 ∨ 𝑟2
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions
𝑟1 = 𝑟2 = 𝑟3 = 0

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 46/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

CERTIFIED CORE-GUIDED SEARCH (EXAMPLE)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟 1 + 𝑟 2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟 2, 𝑟 3} Solution
𝑟 1 + 𝑟 2 + 𝑟 3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
𝑟1 ∨ 𝑟2
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions
𝑟1 = 𝑟2 = 𝑟3 = 0

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 46/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

CERTIFIED CORE-GUIDED SEARCH (EXAMPLE)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2) Fresh variable
𝑝2 + 𝑟 1 + 𝑟 2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟 2, 𝑟 3} Solution
𝑟 1 + 𝑟 2 + 𝑟 3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
𝑟1 ∨ 𝑟2
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 46/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

CERTIFIED CORE-GUIDED SEARCH (EXAMPLE)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟 1 + 𝑟 2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟 2, 𝑟 3} Solution
𝑟 1 + 𝑟 2 + 𝑟 3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
𝑟1 ∨ 𝑟2
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 46/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

CERTIFIED CORE-GUIDED SEARCH (EXAMPLE)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟 1 + 𝑟 2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟 2, 𝑟 3} Solution
𝑟 1 + 𝑟 2 + 𝑟 3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
𝑟1 ∨ 𝑟2
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 46/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

CERTIFIED CORE-GUIDED SEARCH (EXAMPLE)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟 1 + 𝑟 2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟 2, 𝑟 3} Solution
𝑟 1 + 𝑟 2 + 𝑟 3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
𝑟1 ∨ 𝑟2
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 46/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

CERTIFIED CORE-GUIDED SEARCH (EXAMPLE)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟 1 + 𝑟 2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟 2, 𝑟 3} Solution
𝑟 1 + 𝑟 2 + 𝑟 3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
𝑟1 ∨ 𝑟2
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions
𝑝2 = 𝑟3 = 0

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 46/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

CERTIFIED CORE-GUIDED SEARCH (EXAMPLE)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟 1 + 𝑟 2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟 2, 𝑟 3} Solution
𝑟 1 + 𝑟 2 + 𝑟 3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
𝑟1 ∨ 𝑟2
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 46/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

CERTIFIED CORE-GUIDED SEARCH (EXAMPLE)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟 1 + 𝑟 2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟 2, 𝑟 3} Solution
𝑟 1 + 𝑟 2 + 𝑟 3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
𝑟1 ∨ 𝑟2
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 46/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

CERTIFIED CORE-GUIDED SEARCH (EXAMPLE)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟 1 + 𝑟 2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟 2, 𝑟 3} Solution
𝑟 1 + 𝑟 2 + 𝑟 3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
𝑟1 ∨ 𝑟2
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 46/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

CERTIFIED CORE-GUIDED SEARCH (EXAMPLE)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟 1 + 𝑟 2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟 2, 𝑟 3} Solution
𝑟 1 + 𝑟 2 + 𝑟 3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

Explicit CP derivations:

CNF encoding (totalizer): cf. LSU

Adding up definition of 𝑝2 and core
constraint yields

2 · 𝑝2 + 2 · 𝑟1 + 2 · 𝑟2 ≥ 3

2

.

which is the same as 𝑟1 + 𝑟2 ≥ 1 + 𝑝2.
Other direction already given

Previously derived cores guarantee
that objective is at least 1:
𝑟1 + 𝑟2 (+ 𝑟3) ≥ 1
Adding this to objective improvement
constraint gives contradiction

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 47/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

CERTIFIED CORE-GUIDED SEARCH (EXAMPLE)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟 1 + 𝑟 2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟 2, 𝑟 3} Solution
𝑟 1 + 𝑟 2 + 𝑟 3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

Explicit CP derivations:

CNF encoding (totalizer): cf. LSU

Adding up definition of 𝑝2 and core
constraint yields

2 · 𝑝2 + 2 · 𝑟1 + 2 · 𝑟2 ≥ 3

2

.

which is the same as 𝑟1 + 𝑟2 ≥ 1 + 𝑝2.
Other direction already given

Previously derived cores guarantee
that objective is at least 1:
𝑟1 + 𝑟2 (+ 𝑟3) ≥ 1
Adding this to objective improvement
constraint gives contradiction

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 47/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

CERTIFIED CORE-GUIDED SEARCH (EXAMPLE)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟 1 + 𝑟 2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟 2, 𝑟 3} Solution
𝑟 1 + 𝑟 2 + 𝑟 3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

Explicit CP derivations:

CNF encoding (totalizer): cf. LSU

Adding up definition of 𝑝2 and core
constraint and dividing by 2 yields

2 · 𝑝2 + 2 · 𝑟1 + 2 · 𝑟2 ≥ 32.

which is the same as 𝑟1 + 𝑟2 ≥ 1 + 𝑝2.
Other direction already given

Previously derived cores guarantee
that objective is at least 1:
𝑟1 + 𝑟2 (+ 𝑟3) ≥ 1
Adding this to objective improvement
constraint gives contradiction

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 47/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

CERTIFIED CORE-GUIDED SEARCH (EXAMPLE)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟 1 + 𝑟 2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟 2, 𝑟 3} Solution
𝑟 1 + 𝑟 2 + 𝑟 3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

Explicit CP derivations:

CNF encoding (totalizer): cf. LSU

Adding up definition of 𝑝2 and core
constraint and dividing by 2 yields

2 · 𝑝2 + 2 · 𝑟1 + 2 · 𝑟2 ≥ 32.

which is the same as 𝑟1 + 𝑟2 ≥ 1 + 𝑝2.
Other direction already given

Previously derived cores guarantee
that objective is at least 1:
𝑟1 + 𝑟2 (+ 𝑟3) ≥ 1
Adding this to objective improvement
constraint gives contradiction

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 47/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

CERTIFIED CORE-GUIDED SEARCH (EXAMPLE)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟 1 + 𝑟 2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟 2, 𝑟 3} Solution
𝑟 1 + 𝑟 2 + 𝑟 3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

Explicit CP derivations:

CNF encoding (totalizer): cf. LSU

Adding up definition of 𝑝2 and core
constraint and dividing by 2 yields

2 · 𝑝2 + 2 · 𝑟1 + 2 · 𝑟2 ≥ 32.

which is the same as 𝑟1 + 𝑟2 ≥ 1 + 𝑝2.
Other direction already given

Previously derived cores guarantee
that objective is at least 1:
𝑟1 + 𝑟2 (+ 𝑟3) ≥ 1

Adding this to objective improvement
constraint gives contradiction

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 47/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

CERTIFIED CORE-GUIDED SEARCH (EXAMPLE)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟 1 + 𝑟 2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟 2, 𝑟 3} Solution
𝑟 1 + 𝑟 2 + 𝑟 3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

Explicit CP derivations:

CNF encoding (totalizer): cf. LSU

Adding up definition of 𝑝2 and core
constraint and dividing by 2 yields

2 · 𝑝2 + 2 · 𝑟1 + 2 · 𝑟2 ≥ 32.

which is the same as 𝑟1 + 𝑟2 ≥ 1 + 𝑝2.
Other direction already given

Previously derived cores guarantee
that objective is at least 1:
𝑟1 + 𝑟2 (+ 𝑟3) ≥ 1
Adding this to objective improvement
constraint gives contradiction

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 47/61

COMPLETE CG EXAMPLE IN VeriPB SYNTAX
pseudo-Boolean proof version 2.0
f 7
* Clauses derived by solver (inc core)
rup 1 x1 1 r2 >= 1 ;
rup 1 r1 1 r2 >= 1 ;
* Introduce fresh variable
red 2 ~p2 1 r1 1 r2 >= 2 ; p2 -> 0 ;
red 1 p2 1 ~r1 1 ~r2 >= 1; p2 -> 1 ;
* Encode this in CNF
pol 10 ~r1 +
pol 10 ~r2 +
* Rewriting the objective
pol 9 10 + 2 d
* Check that we have indeed
* derived that r1 + r2 = 1 + p2
e 14 : 1 r1 1 r2 -1 p2 >= 1 ;
e 11 : -1 r1 -1 r2 1 p2 >= -1 ;

* Solution found
soli x1 x2 x3 x4 r1 ~r2 ~r3
* Prove optimality of solution:
pol -1 9 +
ia -1 : >= 1 ;
* Conclusion
output NONE
conclusion BOUNDS 1 1
end pseudo-Boolean proof

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

ADVANCED TECHNIQUES FOR CORE-GUIDED MAXSAT

▶ Important to deal with all state-of-the-art solver techniques
▶ Additional techniques that are skipped in this example

▶ Intrinsic at-most-one constraints [IMM19]
▶ Hardening [ABGL12]
▶ Lazy counter variables [MJML14]

▶ VeriPB Proof logging also convenient for these techniques [BBN+23]

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 49/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

ADVANCED TECHNIQUES FOR CORE-GUIDED MAXSAT

▶ Important to deal with all state-of-the-art solver techniques
▶ Additional techniques that are skipped in this example

▶ Intrinsic at-most-one constraints [IMM19]
▶ Hardening [ABGL12]
▶ Lazy counter variables [MJML14]

▶ VeriPB Proof logging also convenient for these techniques [BBN+23]

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 49/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

ADVANCED TECHNIQUES FOR CORE-GUIDED MAXSAT

▶ Important to deal with all state-of-the-art solver techniques
▶ Additional techniques that are skipped in this example

▶ Intrinsic at-most-one constraints [IMM19]
▶ Hardening [ABGL12]
▶ Lazy counter variables [MJML14]

▶ VeriPB Proof logging also convenient for these techniques [BBN+23]

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 49/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

ADVANCED TECHNIQUES FOR CORE-GUIDED MAXSAT

▶ Important to deal with all state-of-the-art solver techniques
▶ Additional techniques that are skipped in this example

▶ Intrinsic at-most-one constraints [IMM19]
▶ Hardening [ABGL12]
▶ Lazy counter variables [MJML14]

▶ VeriPB Proof logging also convenient for these techniques [BBN+23]

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 49/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

ADVANCED TECHNIQUES FOR CORE-GUIDED MAXSAT

▶ Important to deal with all state-of-the-art solver techniques
▶ Additional techniques that are skipped in this example

▶ Intrinsic at-most-one constraints [IMM19]
▶ Hardening [ABGL12]
▶ Lazy counter variables [MJML14]

▶ VeriPB Proof logging also convenient for these techniques [BBN+23]

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 49/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . .)
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

BRANCH AND BOUND

Branch and Bound:
▶ Explore the search tree for solutions
▶ Update Upper Bound𝑈𝐵 when solution with better objective value is found
▶ Underestimate Lower Bound 𝐿𝐵 at every node
▶ Prune branch when conflict found or when 𝐿𝐵 ≥ 𝑈𝐵

SAT
𝑈𝐵 = 10

X 𝐿𝐵 = 10 ≥ 𝑈𝐵

SAT
𝑈𝐵 = 8

X 𝐿𝐵 = 8 ≥ 𝑈𝐵

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 50/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

MAXCDCL AS BRANCH AND BOUND

Branch and Bound in MaxCDCL:
▶ Explore the search tree for solutions
▶ Update Upper Bound𝑈𝐵 when solution with better objective value is found
▶ Underestimate Lower Bound 𝐿𝐵 at every node using lookahead with UP
▶ Prune branch when conflict found or when 𝐿𝐵 ≥ 𝑈𝐵 and learn a clause

SAT
𝑈𝐵 = 10

X 𝐿𝐵 = 10 ≥ 𝑈𝐵

SAT
𝑈𝐵 = 8

X 𝐿𝐵 = 8 ≥ 𝑈𝐵

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 51/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

MAXCDCL AS CDCL GENERALIZATION

MaxCDCL conflicts:

▶ Hard conflict:
▶ A clause is falsified

▶ Soft conflict:
▶ (underestimated) LB ≥ UB

In both cases: conflict analysis for learning new clause (CDCL)

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 52/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

MAXCDCL AS CDCL GENERALIZATION

MaxCDCL conflicts:

▶ Hard conflict:
▶ A clause is falsified

▶ Soft conflict:
▶ (underestimated) LB ≥ UB

In both cases: conflict analysis for learning new clause (CDCL)

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 52/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

LOOKAHEAD: LB UNDERESTIMATION (UNWEIGHTED CASE)

Lookahead with UP for underestimating LB:

1. Assume unassigned objective literals false and apply UP until:
▶ A hard clause is falsified
▶ Or a not yet assigned objective literal is assigned 1

2. We have found a local unsatisfiable core

3. Since unweighted case: Each disjoint core increases the LB by 1

4. When 𝐿𝐵 ≥ 𝑈𝐵, a soft conflict is found

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 53/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

𝑓 𝑡 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Find one core:
𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑥

𝑝

9 𝑥
𝑝

10 𝑦
𝑎
2 𝑥11

𝑝 𝑦𝑎3 𝑦
𝑎
4 𝑥

𝑝

12 (𝑥12 ∨ 𝑥11 ∈ 𝐹 falsified)

𝑥𝑑1 𝑥2
𝑝 𝑥

𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑦𝑎2 𝑦𝑎3 𝑦

𝑎
4 (Assumptions suffice)

𝑥2
𝑝 𝑥4

𝑑 𝑦𝑎1 𝑦𝑎4 (Conflict analysis)

Local core:
𝑥2 ∧ 𝑥4 ∧ 𝑦1 ∧ 𝑦4 → □

𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦4 (Reasons→ Core)

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 54/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

𝑓 𝑡 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Find one core:
𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑥

𝑝

9 𝑥
𝑝

10 𝑦
𝑎
2 𝑥11

𝑝 𝑦𝑎3 𝑦
𝑎
4 𝑥

𝑝

12 (𝑥12 ∨ 𝑥11 ∈ 𝐹 falsified)

𝑥𝑑1 𝑥2
𝑝 𝑥

𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑦𝑎2 𝑦𝑎3 𝑦

𝑎
4 (Assumptions suffice)

𝑥2
𝑝 𝑥4

𝑑 𝑦𝑎1 𝑦𝑎4 (Conflict analysis)

Local core:
𝑥2 ∧ 𝑥4 ∧ 𝑦1 ∧ 𝑦4 → □

𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦4 (Reasons→ Core)

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 54/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

𝑓 𝑡 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Find one core:
𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑥

𝑝

9 𝑥
𝑝

10 𝑦
𝑎
2 𝑥11

𝑝 𝑦𝑎3 𝑦
𝑎
4 𝑥

𝑝

12 (𝑥12 ∨ 𝑥11 ∈ 𝐹 falsified)

𝑥𝑑1 𝑥2
𝑝 𝑥

𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑦𝑎2 𝑦𝑎3 𝑦

𝑎
4 (Assumptions suffice)

𝑥2
𝑝 𝑥4

𝑑 𝑦𝑎1 𝑦𝑎4 (Conflict analysis)

Local core:
𝑥2 ∧ 𝑥4 ∧ 𝑦1 ∧ 𝑦4 → □

𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦4 (Reasons→ Core)

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 54/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

𝑓 𝑡 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Find one core:
𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑥

𝑝

9 𝑥
𝑝

10 𝑦
𝑎
2 𝑥11

𝑝 𝑦𝑎3 𝑦
𝑎
4 𝑥

𝑝

12 (𝑥12 ∨ 𝑥11 ∈ 𝐹 falsified)

𝑥𝑑1 𝑥2
𝑝 𝑥

𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑦𝑎2 𝑦𝑎3 𝑦

𝑎
4 (Assumptions suffice)

𝑥2
𝑝 𝑥4

𝑑 𝑦𝑎1 𝑦𝑎4 (Conflict analysis)

Local core:
𝑥2 ∧ 𝑥4 ∧ 𝑦1 ∧ 𝑦4 → □

𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦4 (Reasons→ Core)

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 54/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

𝑓 𝑡 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Find one core:
𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑥

𝑝

9 𝑥
𝑝

10 𝑦
𝑎
2 𝑥11

𝑝 𝑦𝑎3 𝑦
𝑎
4 𝑥

𝑝

12 (𝑥12 ∨ 𝑥11 ∈ 𝐹 falsified)

𝑥𝑑1 𝑥2
𝑝 𝑥

𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑦𝑎2 𝑦𝑎3 𝑦

𝑎
4 (Assumptions suffice)

𝑥2
𝑝 𝑥4

𝑑 𝑦𝑎1 𝑦𝑎4 (Conflict analysis)

Local core:
𝑥2 ∧ 𝑥4 ∧ 𝑦1 ∧ 𝑦4 → □

𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦4 (Reasons→ Core)

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 54/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

𝑓 𝑡 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Find one core:
𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑥

𝑝

9 𝑥
𝑝

10 𝑦
𝑎
2 𝑥11

𝑝 𝑦𝑎3 𝑦
𝑎
4 𝑥

𝑝

12 (𝑥12 ∨ 𝑥11 ∈ 𝐹 falsified)

𝑥𝑑1 𝑥2
𝑝 𝑥

𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑦𝑎2 𝑦𝑎3 𝑦

𝑎
4 (Assumptions suffice)

𝑥2
𝑝 𝑥4

𝑑 𝑦𝑎1 𝑦𝑎4 (Conflict analysis)

Local core:
𝑥2 ∧ 𝑥4 ∧ 𝑦1 ∧ 𝑦4 → □

𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦4 (Reasons→ Core)

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 54/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

𝑓 𝑡 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Find one core:
𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑥

𝑝

9 𝑥
𝑝

10 𝑦
𝑎
2 𝑥11

𝑝 𝑦𝑎3 𝑦
𝑎
4 𝑥

𝑝

12 (𝑥12 ∨ 𝑥11 ∈ 𝐹 falsified)

𝑥𝑑1 𝑥2
𝑝 𝑥

𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑦𝑎2 𝑦𝑎3 𝑦

𝑎
4 (Assumptions suffice)

𝑥2
𝑝 𝑥4

𝑑 𝑦𝑎1 𝑦𝑎4 (Conflict analysis)

Local core:
𝑥2 ∧ 𝑥4 ∧ 𝑦1 ∧ 𝑦4 → □

𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦4 (Reasons→ Core)

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 54/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

𝑓 𝑡 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Find one core:
𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑥

𝑝

9 𝑥
𝑝

10 𝑦
𝑎
2 𝑥11

𝑝 𝑦𝑎3 𝑦
𝑎
4 𝑥

𝑝

12 (𝑥12 ∨ 𝑥11 ∈ 𝐹 falsified)

𝑥𝑑1 𝑥2
𝑝 𝑥

𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑦𝑎2 𝑦𝑎3 𝑦

𝑎
4 (Assumptions suffice)

𝑥2
𝑝 𝑥4

𝑑 𝑦𝑎1 𝑦𝑎4 (Conflict analysis)

Local core:
𝑥2 ∧ 𝑥4 ∧ 𝑦1 ∧ 𝑦4 → □

𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦4 (Reasons→ Core)

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 54/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION: FULL EXAMPLE (UNWEIGHTED CASE)

𝑓 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Found disjoint local cores
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦4
Core 2: 𝑥2 ∧ 𝑥7 → 𝑦2 ∨ 𝑦3 ∨ 𝑦5
Core 3: 𝑥1 ∧ 𝑥4 ∧ 𝑥7 → 𝑦6 ∨ 𝑦7

𝑥1 ∧ 𝑥2 ∧ 𝑥4 ∧ 𝑥7 → (𝑦1 ∨ 𝑦4) ∧ (𝑦2 ∨ 𝑦3 ∨ 𝑦5) ∧ (𝑦6 ∨ 𝑦7)
𝑥1 ∧ 𝑥2 ∧ 𝑥4 ∧ 𝑥7 → 𝐿𝐵 = 3 ≥ 3 = 𝑈𝐵

Soft conflict:
𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 , Conflict 𝑥1 ∨ 𝑥2 ∨ 𝑥4 ∨ 𝑥7 (soft conflict)

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 55/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION: FULL EXAMPLE (UNWEIGHTED CASE)

𝑓 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Found disjoint local cores
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦4
Core 2: 𝑥2 ∧ 𝑥7 → 𝑦2 ∨ 𝑦3 ∨ 𝑦5
Core 3: 𝑥1 ∧ 𝑥4 ∧ 𝑥7 → 𝑦6 ∨ 𝑦7

𝑥1 ∧ 𝑥2 ∧ 𝑥4 ∧ 𝑥7 → (𝑦1 ∨ 𝑦4) ∧ (𝑦2 ∨ 𝑦3 ∨ 𝑦5) ∧ (𝑦6 ∨ 𝑦7)
𝑥1 ∧ 𝑥2 ∧ 𝑥4 ∧ 𝑥7 → 𝐿𝐵 = 3 ≥ 3 = 𝑈𝐵

Soft conflict:
𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 , Conflict 𝑥1 ∨ 𝑥2 ∨ 𝑥4 ∨ 𝑥7 (soft conflict)

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 55/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION: FULL EXAMPLE (UNWEIGHTED CASE)

𝑓 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Found disjoint local cores
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦4
Core 2: 𝑥2 ∧ 𝑥7 → 𝑦2 ∨ 𝑦3 ∨ 𝑦5
Core 3: 𝑥1 ∧ 𝑥4 ∧ 𝑥7 → 𝑦6 ∨ 𝑦7

𝑥1 ∧ 𝑥2 ∧ 𝑥4 ∧ 𝑥7 → (𝑦1 ∨ 𝑦4) ∧ (𝑦2 ∨ 𝑦3 ∨ 𝑦5) ∧ (𝑦6 ∨ 𝑦7)
𝑥1 ∧ 𝑥2 ∧ 𝑥4 ∧ 𝑥7 → 𝐿𝐵 = 3 ≥ 3 = 𝑈𝐵

Soft conflict:
𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 , Conflict 𝑥1 ∨ 𝑥2 ∨ 𝑥4 ∨ 𝑥7 (soft conflict)

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 55/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION: FULL EXAMPLE (UNWEIGHTED CASE)

𝑓 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Found disjoint local cores
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦4
Core 2: 𝑥2 ∧ 𝑥7 → 𝑦2 ∨ 𝑦3 ∨ 𝑦5
Core 3: 𝑥1 ∧ 𝑥4 ∧ 𝑥7 → 𝑦6 ∨ 𝑦7

𝑥1 ∧ 𝑥2 ∧ 𝑥4 ∧ 𝑥7 → (𝑦1 ∨ 𝑦4) ∧ (𝑦2 ∨ 𝑦3 ∨ 𝑦5) ∧ (𝑦6 ∨ 𝑦7)
𝑥1 ∧ 𝑥2 ∧ 𝑥4 ∧ 𝑥7 → 𝐿𝐵 = 3 ≥ 3 = 𝑈𝐵

Soft conflict:
𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 , Conflict 𝑥1 ∨ 𝑥2 ∨ 𝑥4 ∨ 𝑥7 (soft conflict)

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 55/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
▶ Weight of Local Core 𝐾 = smallest weight of objective literals in 𝐾
▶ Each objective literal can contribute to many cores
▶ The total contribution of a literal cannot exceed its weight

𝑓 𝑡 = 𝑦1 + 𝑦2 + 1𝑦3 + 1𝑦4 + 𝑦5 + 𝑦6 + 1𝑦7 + 𝑦8 UB = 4
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Found local cores
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (weight 2)
Core 2: 𝑥3 ∧ 𝑥4 → 𝑦1 ∨ 𝑦5 (weight 1)
Core 3: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (weight 3)
Conclusion: 𝑥1 ∧ 𝑥2 ∧ 𝑥4 → 𝐿𝐵 = 5 ≥ 4 = 𝑈𝐵 Soft Conflict clause: 𝑥1 ∨ 𝑥2 ∨ 𝑥4

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 56/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
▶ Weight of Local Core 𝐾 = smallest weight of objective literals in 𝐾
▶ Each objective literal can contribute to many cores
▶ The total contribution of a literal cannot exceed its weight

𝑓 𝑡 = 7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 UB = 4
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Found local cores
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (weight 2)
Core 2: 𝑥3 ∧ 𝑥4 → 𝑦1 ∨ 𝑦5 (weight 1)
Core 3: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (weight 3)
Conclusion: 𝑥1 ∧ 𝑥2 ∧ 𝑥4 → 𝐿𝐵 = 5 ≥ 4 = 𝑈𝐵 Soft Conflict clause: 𝑥1 ∨ 𝑥2 ∨ 𝑥4

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 56/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
▶ Weight of Local Core 𝐾 = smallest weight of objective literals in 𝐾
▶ Each objective literal can contribute to many cores
▶ The total contribution of a literal cannot exceed its weight

𝑓 𝑡 = 7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 UB = 4
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Found local cores
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (weight 2)
Core 2: 𝑥3 ∧ 𝑥4 → 𝑦1 ∨ 𝑦5 (weight 1)
Core 3: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (weight 3)
Conclusion: 𝑥1 ∧ 𝑥2 ∧ 𝑥4 → 𝐿𝐵 = 5 ≥ 4 = 𝑈𝐵 Soft Conflict clause: 𝑥1 ∨ 𝑥2 ∨ 𝑥4

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 56/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
▶ Weight of Local Core 𝐾 = smallest weight of objective literals in 𝐾
▶ Each objective literal can contribute to many cores
▶ The total contribution of a literal cannot exceed its weight

𝑓 𝑡 = 7 5𝑦1 + 2 0𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 UB = 4
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Found local cores
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (weight 2)
Core 2: 𝑥3 ∧ 𝑥4 → 𝑦1 ∨ 𝑦5 (weight 1)
Core 3: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (weight 3)
Conclusion: 𝑥1 ∧ 𝑥2 ∧ 𝑥4 → 𝐿𝐵 = 5 ≥ 4 = 𝑈𝐵 Soft Conflict clause: 𝑥1 ∨ 𝑥2 ∨ 𝑥4

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 56/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
▶ Weight of Local Core 𝐾 = smallest weight of objective literals in 𝐾
▶ Each objective literal can contribute to many cores
▶ The total contribution of a literal cannot exceed its weight

𝑓 𝑡 = 7 5𝑦1 + 2 0𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 UB = 4
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Found local cores
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (weight 2)
Core 2: 𝑥3 ∧ 𝑥4 → 𝑦1 ∨ 𝑦5 (weight 1)
Core 3: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (weight 3)
Conclusion: 𝑥1 ∧ 𝑥2 ∧ 𝑥4 → 𝐿𝐵 = 5 ≥ 4 = 𝑈𝐵 Soft Conflict clause: 𝑥1 ∨ 𝑥2 ∨ 𝑥4

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 56/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
▶ Weight of Local Core 𝐾 = smallest weight of objective literals in 𝐾
▶ Each objective literal can contribute to many cores
▶ The total contribution of a literal cannot exceed its weight

𝑓 𝑡 = 7 5 4𝑦1 + 2 0𝑦2 + 1𝑦3 + 1𝑦4 + 1 0𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 UB = 4
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Found local cores
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (weight 2)
Core 2: 𝑥3 ∧ 𝑥4 → 𝑦1 ∨ 𝑦5 (weight 1)
Core 3: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (weight 3)
Conclusion: 𝑥1 ∧ 𝑥2 ∧ 𝑥4 → 𝐿𝐵 = 5 ≥ 4 = 𝑈𝐵 Soft Conflict clause: 𝑥1 ∨ 𝑥2 ∨ 𝑥4

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 56/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
▶ Weight of Local Core 𝐾 = smallest weight of objective literals in 𝐾
▶ Each objective literal can contribute to many cores
▶ The total contribution of a literal cannot exceed its weight

𝑓 𝑡 = 7 5 4 1𝑦1 + 2 0𝑦2 + 1𝑦3 + 1𝑦4 + 1 0𝑦5 + 4 1𝑦6 + 1𝑦7 + 3 0𝑦8 UB = 4
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Found local cores
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (weight 2)
Core 2: 𝑥3 ∧ 𝑥4 → 𝑦1 ∨ 𝑦5 (weight 1)
Core 3: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (weight 3)
Conclusion: 𝑥1 ∧ 𝑥2 ∧ 𝑥4 → 𝐿𝐵 = 5 ≥ 4 = 𝑈𝐵 Soft Conflict clause: 𝑥1 ∨ 𝑥2 ∨ 𝑥4

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 56/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
▶ Weight of Local Core 𝐾 = smallest weight of objective literals in 𝐾
▶ Each objective literal can contribute to many cores
▶ The total contribution of a literal cannot exceed its weight

𝑓 𝑡 = 7 5 2𝑦1 + 2 0𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4 1𝑦6 + 1𝑦7 + 3 0𝑦8 UB = 4
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Found local cores
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (weight 2)
Core 2: 𝑥3 ∧ 𝑥4 → 𝑦1 ∨ 𝑦5 (weight 1)
Core 3: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (weight 3)
Conclusion: 𝑥1 ∧ 𝑥2 ∧ 𝑥4 → 𝐿𝐵 = 5 ≥ 4 = 𝑈𝐵 Soft Conflict clause: 𝑥1 ∨ 𝑥2 ∨ 𝑥4

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 56/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
▶ Weight of Local Core 𝐾 = smallest weight of objective literals in 𝐾
▶ Each objective literal can contribute to many cores
▶ The total contribution of a literal cannot exceed its weight

𝑓 𝑡 = 7 5 2𝑦1 + 2 0𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4 1𝑦6 + 1𝑦7 + 3 0𝑦8 UB = 4
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Found local cores
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (weight 2)
Core 3: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (weight 3)
Core 3: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (weight 3)
Conclusion: 𝑥1 ∧ 𝑥2 ∧ 𝑥4 → 𝐿𝐵 = 5 ≥ 4 = 𝑈𝐵 Soft Conflict clause: 𝑥1 ∨ 𝑥2 ∨ 𝑥4

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 56/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
▶ Weight of Local Core 𝐾 = smallest weight of objective literals in 𝐾
▶ Each objective literal can contribute to many cores
▶ The total contribution of a literal cannot exceed its weight

𝑓 𝑡 = 7 5 2𝑦1 + 2 0𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4 1𝑦6 + 1𝑦7 + 3 0𝑦8 UB = 4
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Found local cores
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (weight 2)
Core 3: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (weight 3)
Core 3: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (weight 3)
Conclusion: 𝑥1 ∧ 𝑥2 ∧ 𝑥4 → 𝐿𝐵 = 5 ≥ 4 = 𝑈𝐵 Soft Conflict clause: 𝑥1 ∨ 𝑥2 ∨ 𝑥4

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 56/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

PROOF LOGGING SOFT CONFLICTS
To Derive: 𝑥1 + 𝑥2 + 𝑥4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (2) id 101
PB: 2𝑥2 + 2𝑥4 + 2𝑦1 + 2𝑦2 ≥ 1

Core 2: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (3) id 102
PB: 3𝑥1 + 3𝑦1 + 3𝑦6 + 3𝑦8 ≥ 1

Multiplication by their weight and addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 5

Model improving constraint

7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≤ 3

In normalized form: id 99
7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≥ 20− 3

By adding literal axioms:
5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 13 − 3

Addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 5𝑦1 + 2𝑦2 + 2𝑦2 + 3𝑦6 + 3𝑦6 + 3𝑦8 + 3𝑦8 ≥ 13 + 5 − 3

Division by a large enough number (and rounding up): 𝑥1 + 𝑥2 + 𝑥4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d sBart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 57/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

PROOF LOGGING SOFT CONFLICTS
To Derive: 𝑥1 + 𝑥2 + 𝑥4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (2) id 101
PB: 2𝑥2 + 2𝑥4 + 2𝑦1 + 2𝑦2 ≥ 1

Core 2: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (3) id 102
PB: 3𝑥1 + 3𝑦1 + 3𝑦6 + 3𝑦8 ≥ 1

Multiplication by their weight and addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 5

Model improving constraint

7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≤ 3

In normalized form: id 99
7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≥ 20− 3

By adding literal axioms:
5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 13 − 3

Addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 5𝑦1 + 2𝑦2 + 2𝑦2 + 3𝑦6 + 3𝑦6 + 3𝑦8 + 3𝑦8 ≥ 13 + 5 − 3

Division by a large enough number (and rounding up): 𝑥1 + 𝑥2 + 𝑥4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d sBart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 57/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

PROOF LOGGING SOFT CONFLICTS
To Derive: 𝑥1 + 𝑥2 + 𝑥4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (2) id 101
PB: 2𝑥2 + 2𝑥4 + 2𝑦1 + 2𝑦2 ≥ 1

Core 2: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (3) id 102
PB: 3𝑥1 + 3𝑦1 + 3𝑦6 + 3𝑦8 ≥ 1

Multiplication by their weight and addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 5

Model improving constraint

7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≤ 3

In normalized form: id 99
7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≥ 20− 3

By adding literal axioms:
5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 13 − 3

Addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 5𝑦1 + 2𝑦2 + 2𝑦2 + 3𝑦6 + 3𝑦6 + 3𝑦8 + 3𝑦8 ≥ 13 + 5 − 3

Division by a large enough number (and rounding up): 𝑥1 + 𝑥2 + 𝑥4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d sBart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 57/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

PROOF LOGGING SOFT CONFLICTS
To Derive: 𝑥1 + 𝑥2 + 𝑥4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (2) id 101

PB: 2𝑥2 + 2𝑥4 + 2𝑦1 + 2𝑦2 ≥ 1

Core 2: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (3) id 102
PB: 3𝑥1 + 3𝑦1 + 3𝑦6 + 3𝑦8 ≥ 1

Multiplication by their weight and addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 5

Model improving constraint

7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≤ 3

In normalized form: id 99
7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≥ 20− 3

By adding literal axioms:
5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 13 − 3

Addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 5𝑦1 + 2𝑦2 + 2𝑦2 + 3𝑦6 + 3𝑦6 + 3𝑦8 + 3𝑦8 ≥ 13 + 5 − 3

Division by a large enough number (and rounding up): 𝑥1 + 𝑥2 + 𝑥4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d sBart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 57/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

PROOF LOGGING SOFT CONFLICTS
To Derive: 𝑥1 + 𝑥2 + 𝑥4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (2) id 101

PB: 2𝑥2 + 2𝑥4 + 2𝑦1 + 2𝑦2 ≥ 2 1

Core 2: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (3) id 102
PB: 3𝑥1 + 3𝑦1 + 3𝑦6 + 3𝑦8 ≥ 3 1

Multiplication by their weight and addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 5

Model improving constraint

7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≤ 3

In normalized form: id 99
7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≥ 20− 3

By adding literal axioms:
5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 13 − 3

Addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 5𝑦1 + 2𝑦2 + 2𝑦2 + 3𝑦6 + 3𝑦6 + 3𝑦8 + 3𝑦8 ≥ 13 + 5 − 3

Division by a large enough number (and rounding up): 𝑥1 + 𝑥2 + 𝑥4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d sBart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 57/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

PROOF LOGGING SOFT CONFLICTS
To Derive: 𝑥1 + 𝑥2 + 𝑥4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (2) id 101

PB: 2𝑥2 + 2𝑥4 + 2𝑦1 + 2𝑦2 ≥ 2 1

Core 2: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (3) id 102
PB: 3𝑥1 + 3𝑦1 + 3𝑦6 + 3𝑦8 ≥ 3 1

Multiplication by their weight and addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 5

Model improving constraint

7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≤ 3

In normalized form: id 99
7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≥ 20− 3

By adding literal axioms:
5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 13 − 3

Addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 5𝑦1 + 2𝑦2 + 2𝑦2 + 3𝑦6 + 3𝑦6 + 3𝑦8 + 3𝑦8 ≥ 13 + 5 − 3

Division by a large enough number (and rounding up): 𝑥1 + 𝑥2 + 𝑥4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d sBart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 57/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

PROOF LOGGING SOFT CONFLICTS
To Derive: 𝑥1 + 𝑥2 + 𝑥4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (2) id 101

PB: 2𝑥2 + 2𝑥4 + 2𝑦1 + 2𝑦2 ≥ 2 1

Core 2: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (3) id 102
PB: 3𝑥1 + 3𝑦1 + 3𝑦6 + 3𝑦8 ≥ 3 1

Multiplication by their weight and addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 5

Model improving constraint

7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≤ 3

In normalized form: id 99
7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≥ 20− 3

By adding literal axioms:
5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 13 − 3

Addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 5𝑦1 + 2𝑦2 + 2𝑦2 + 3𝑦6 + 3𝑦6 + 3𝑦8 + 3𝑦8 ≥ 13 + 5 − 3

Division by a large enough number (and rounding up): 𝑥1 + 𝑥2 + 𝑥4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d sBart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 57/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

PROOF LOGGING SOFT CONFLICTS
To Derive: 𝑥1 + 𝑥2 + 𝑥4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (2) id 101

PB: 2𝑥2 + 2𝑥4 + 2𝑦1 + 2𝑦2 ≥ 2 1

Core 2: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (3) id 102
PB: 3𝑥1 + 3𝑦1 + 3𝑦6 + 3𝑦8 ≥ 3 1

Multiplication by their weight and addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 5

Model improving constraint

7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≤ 3

In normalized form: id 99
7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≥ 20− 3

By adding literal axioms:
5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 13 − 3

Addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 5𝑦1 + 2𝑦2 + 2𝑦2 + 3𝑦6 + 3𝑦6 + 3𝑦8 + 3𝑦8 ≥ 13 + 5 − 3

Division by a large enough number (and rounding up): 𝑥1 + 𝑥2 + 𝑥4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d sBart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 57/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

PROOF LOGGING SOFT CONFLICTS
To Derive: 𝑥1 + 𝑥2 + 𝑥4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (2) id 101

PB: 2𝑥2 + 2𝑥4 + 2𝑦1 + 2𝑦2 ≥ 2 1

Core 2: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (3) id 102
PB: 3𝑥1 + 3𝑦1 + 3𝑦6 + 3𝑦8 ≥ 3 1

Multiplication by their weight and addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 5

Model improving constraint

7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≤ 3

In normalized form: id 99
7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≥ 20− 3

By adding literal axioms:
5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 13 − 3

Addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 5𝑦1 + 2𝑦2 + 2𝑦2 + 3𝑦6 + 3𝑦6 + 3𝑦8 + 3𝑦8 ≥ 13 + 5 − 3

Division by a large enough number (and rounding up): 𝑥1 + 𝑥2 + 𝑥4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d sBart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 57/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

PROOF LOGGING SOFT CONFLICTS
To Derive: 𝑥1 + 𝑥2 + 𝑥4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (2) id 101

PB: 2𝑥2 + 2𝑥4 + 2𝑦1 + 2𝑦2 ≥ 2 1

Core 2: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (3) id 102
PB: 3𝑥1 + 3𝑦1 + 3𝑦6 + 3𝑦8 ≥ 3 1

Multiplication by their weight and addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 5

Model improving constraint

7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≤ 3

In normalized form: id 99
7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≥ 20− 3

By adding literal axioms:
5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 13 − 3

Addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 5𝑦1 + 2𝑦2 + 2𝑦2 + 3𝑦6 + 3𝑦6 + 3𝑦8 + 3𝑦8 ≥ 13 + 5 − 3

Division by a large enough number (and rounding up): 𝑥1 + 𝑥2 + 𝑥4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d sBart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 57/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

PROOF LOGGING SOFT CONFLICTS
To Derive: 𝑥1 + 𝑥2 + 𝑥4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (2) id 101

PB: 2𝑥2 + 2𝑥4 + 2𝑦1 + 2𝑦2 ≥ 2 1

Core 2: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (3) id 102
PB: 3𝑥1 + 3𝑦1 + 3𝑦6 + 3𝑦8 ≥ 3 1

Multiplication by their weight and addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 5

Model improving constraint

7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≤ 3

In normalized form: id 99
7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≥ 20− 3

By adding literal axioms:
5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 13 − 3

Addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 5𝑦1 + 2𝑦2 + 2𝑦2 + 3𝑦6 + 3𝑦6 + 3𝑦8 + 3𝑦8 ≥ 13 + 5 − 3

Division by a large enough number (and rounding up): 𝑥1 + 𝑥2 + 𝑥4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d sBart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 57/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

PROOF LOGGING SOFT CONFLICTS
To Derive: 𝑥1 + 𝑥2 + 𝑥4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (2) id 101

PB: 2𝑥2 + 2𝑥4 + 2𝑦1 + 2𝑦2 ≥ 2 1

Core 2: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (3) id 102
PB: 3𝑥1 + 3𝑦1 + 3𝑦6 + 3𝑦8 ≥ 3 1

Multiplication by their weight and addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 5

Model improving constraint

7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≤ 3

In normalized form: id 99
7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≥ 20− 3

By adding literal axioms:
5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 13 − 3

Addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 5𝑦1 + 2𝑦2 + 2𝑦2 + 3𝑦6 + 3𝑦6 + 3𝑦8 + 3𝑦8 ≥ 13 + 5 − 3

Division by a large enough number (and rounding up): 𝑥1 + 𝑥2 + 𝑥4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d sBart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 57/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

PROOF LOGGING MAXCDCL

Certifying Optimality:
▶ Unit propagation in MaxCDCL derives conflict at DL = 0
▶ Proof: RUP 0 ≥ 1

Extra techniques included in paper:
▶ Literal Unlocking for unweighted case

▶ Find cardinality constraints over disjoint set literals as “local cores”

▶ Encoding Solution-Improving Constraint using Multi-Valued Decision Diagram encoding

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 58/61

Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

PROOF LOGGING MAXCDCL

Certifying Optimality:
▶ Unit propagation in MaxCDCL derives conflict at DL = 0
▶ Proof: RUP 0 ≥ 1

Extra techniques included in paper:
▶ Literal Unlocking for unweighted case

▶ Find cardinality constraints over disjoint set literals as “local cores”

▶ Encoding Solution-Improving Constraint using Multi-Valued Decision Diagram encoding

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 58/61

Conclusion

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . .)
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024

Conclusion

SUMMING UP

▶ Combinatorial solving and optimization is a true success story

▶ But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

▶ Certifying solvers producing machine-verifiable proofs of correctness seems like most
promising approach

▶ Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet spot between
simplicity and expressivity

▶ Here demonstrated for MaxSAT, but also used in many other applications

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 59/61

Conclusion

CERTIFIED FIRST-ORDER MODEL EXPANSION (CERTIFOX)

▶ Start from first-order problem representation

▶ Study various forms of proof composition and without-loss-of-generality reasoning

▶ Interested? I’m looking for PostDocs to join the proof logging revolution.

https://www.bartbogaerts.eu/projects/CertiFOX/

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 60/61

https://www.bartbogaerts.eu/projects/CertiFOX/

Conclusion

CERTIFIED FIRST-ORDER MODEL EXPANSION (CERTIFOX)

▶ Start from first-order problem representation

▶ Study various forms of proof composition and without-loss-of-generality reasoning

▶ Interested? I’m looking for PostDocs to join the proof logging revolution.

https://www.bartbogaerts.eu/projects/CertiFOX/

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 60/61

https://www.bartbogaerts.eu/projects/CertiFOX/

Conclusion

CERTIFIED FIRST-ORDER MODEL EXPANSION (CERTIFOX)

▶ Start from first-order problem representation

▶ Study various forms of proof composition and without-loss-of-generality reasoning

▶ Interested? I’m looking for PostDocs to join the proof logging revolution.

https://www.bartbogaerts.eu/projects/CertiFOX/

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 60/61

https://www.bartbogaerts.eu/projects/CertiFOX/

REFERENCES I

[ABGL12] Carlos Ansótegui, María Luisa Bonet, Joel Gabàs, and Jordi Levy. Improving SAT-based weighted MaxSAT solvers. In
Proceedings of the 18th International Conference on Principles and Practice of Constraint Programming (CP ’12), volume
7514 of Lecture Notes in Computer Science, pages 86–101. Springer, October 2012.

[ABM+11] Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn, Christine Rizkallah, and Pascal Schweitzer. An introduction to certifying
algorithms. it - Information Technology Methoden und innovative Anwendungen der Informatik und Informationstechnik,
53(6):287–293, December 2011.

[AGJ+18] Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Metamorphic testing of constraint
solvers. In Proceedings of the 24th International Conference on Principles and Practice of Constraint Programming (CP ’18),
volume 11008 of Lecture Notes in Computer Science, pages 727–736. Springer, August 2018.

[ANOR09] Roberto Asín, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell. Cardinality networks and their
applications. In Oliver Kullmann, editor, Theory and Applications of Satisfiability Testing - SAT 2009, 12th International
Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, volume 5584 of Lecture Notes in Computer Science,
pages 167–180. Springer, 2009.

[AW13] Tobias Achterberg and Roland Wunderling. Mixed integer programming: Analyzing 12 years of progress. In Michael
Jünger and Gerhard Reinelt, editors, Facets of Combinatorial Optimization, pages 449–481. Springer, 2013.

[Bar95] Peter Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean optimization. Technical Report
MPI-I-95-2-003, Max-Planck-Institut für Informatik, January 1995.

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 61/61

REFERENCES II

[BB03] Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of Boolean cardinality constraints. In Proceedings of the
9th International Conference on Principles and Practice of Constraint Programming (CP ’03), volume 2833 of Lecture Notes
in Computer Science, pages 108–122. Springer, September 2003.

[BBN+23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande. Certified core-guided MaxSAT
solving. In Proceedings of the 29th International Conference on Automated Deduction (CADE-29), volume 14132 of Lecture
Notes in Computer Science, pages 1–22. Springer, July 2023.

[BBN+24] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, and Dieter Vandesande. Certifying without
loss of generality reasoning in solution-improving maximum satisfiability. In CP, volume 307 of LIPIcs, pages 4:1–4:28.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

[BGMN23] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified symmetry and dominance breaking
for combinatorial optimisation. Journal of Artificial Intelligence Research, 77:1539–1589, August 2023. Preliminary version
in AAAI ’22.

[BHvMW21] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Satisfiability, volume 336 of
Frontiers in Artificial Intelligence and Applications. IOS Press, 2nd edition, February 2021.

[Bla37] Archie Blake. Canonical Expressions in Boolean Algebra. PhD thesis, University of Chicago, 1937.

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 62/61

REFERENCES III

[BLB10] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging of SAT and QBF solvers. In
Proceedings of the 13th International Conference on Theory and Applications of Satisfiability Testing (SAT ’10), volume
6175 of Lecture Notes in Computer Science, pages 44–57. Springer, July 2010.

[BMM+23] Bart Bogaerts, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and Yong Kiam Tan.
Documentation of VeriPB and CakePB for the SAT competition 2023. Available at
https://satcompetition.github.io/2023/checkers.html, March 2023.

[BMN22] Bart Bogaerts, Ciaran McCreesh, and Jakob Nordström. Solving with provably correct results: Beyond satisfiability, and
towards constraint programming. Tutorial at the 28th International Conference on Principles and Practice of Constraint
Programming. Slides available at http://www.jakobnordstrom.se/presentations/, August 2022.

[BN21] Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In Biere et al. [BHvMW21], chapter 7, pages
233–350.

[BR07] Robert Bixby and Edward Rothberg. Progress in computational mixed integer programming—A look back from the
other side of the tipping point. Annals of Operations Research, 149(1):37–41, February 2007.

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to solve real-world SAT instances. In
Proceedings of the 14th National Conference on Artificial Intelligence (AAAI ’97), pages 203–208, July 1997.

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 63/61

https://satcompetition.github.io/2023/checkers.html
http://www.jakobnordstrom.se/presentations/

REFERENCES IV

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane proofs. Discrete Applied
Mathematics, 18(1):25–38, November 1987.

[CHH+17] Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter Schneider-Kamp. Efficient certified
RAT verification. In Proceedings of the 26th International Conference on Automated Deduction (CADE-26), volume 10395
of Lecture Notes in Computer Science, pages 220–236. Springer, August 2017.

[CKSW13] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A hybrid branch-and-bound approach for exact rational
mixed-integer programming. Mathematical Programming Computation, 5(3):305–344, September 2013.

[CMS17] Luís Cruz-Filipe, João P. Marques-Silva, and Peter Schneider-Kamp. Efficient certified resolution proof checking. In
Proceedings of the 23rd International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS ’17), volume 10205 of Lecture Notes in Computer Science, pages 118–135. Springer, April 2017.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem proving. Communications of
the ACM, 5(7):394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of the ACM, 7(3):201–215,
1960.

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 64/61

REFERENCES V

[EG21] Leon Eifler and Ambros Gleixner. A computational status update for exact rational mixed integer programming. In
Proceedings of the 22nd International Conference on Integer Programming and Combinatorial Optimization (IPCO ’21),
volume 12707 of Lecture Notes in Computer Science, pages 163–177. Springer, May 2021.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differences using pseudo-Boolean
reasoning. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI ’20), pages 1486–1494, February
2020.

[ES06] Niklas Eén and Niklas Sörensson. Translating pseudo-Boolean constraints into SAT. Journal on Satisfiability, Boolean
Modeling and Computation, 2(1-4):1–26, March 2006.

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James Trimble. Certifying
solvers for clique and maximum common (connected) subgraph problems. In Proceedings of the 26th International
Conference on Principles and Practice of Constraint Programming (CP ’20), volume 12333 of Lecture Notes in Computer
Science, pages 338–357. Springer, September 2020.

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets cutting planes: Solving with
certified solutions. In Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI ’20), pages
1134–1140, July 2020.

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 65/61

REFERENCES VI

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming solver. In Proceedings of
the 28th International Conference on Principles and Practice of Constraint Programming (CP ’22), volume 235 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 25:1–25:18, August 2022.

[GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel. Certified CNF translations for pseudo-Boolean
solving. In Proceedings of the 25th International Conference on Theory and Applications of Satisfiability Testing (SAT ’22),
volume 236 of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1–16:25, August 2022.

[GN03] Evgueni Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for CNF formulas. In Proceedings of the
Conference on Design, Automation and Test in Europe (DATE ’03), pages 886–891, March 2003.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-Boolean proofs. In
Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3768–3777, February 2021.

[Goc22] Stephan Gocht. Certifying Correctness for Combinatorial Algorithms by Using Pseudo-Boolean Reasoning. PhD thesis,
Lund University, June 2022. Available at https://portal.research.lu.se/en/publications/
certifying-correctness-for-combinatorial-algorithms-by-using-pseu.

[GS19] Graeme Gange and Peter Stuckey. Certifying optimality in constraint programming. Presentation at KTH Royal
Institute of Technology. Slides available at
https://www.kth.se/polopoly_fs/1.879851.1550484700!/CertifiedCP.pdf, February 2019.

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 66/61

https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://www.kth.se/polopoly_fs/1.879851.1550484700!/CertifiedCP.pdf

REFERENCES VII

[GSD19] Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing of constraints. In Proceedings of the
25th International Conference on Principles and Practice of Constraint Programming (CP ’19), volume 11802 of Lecture
Notes in Computer Science, pages 565–582. Springer, October 2019.

[HHW13a] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal proofs. In Proceedings of
the 13th International Conference on Formal Methods in Computer-Aided Design (FMCAD ’13), pages 181–188, October
2013.

[HHW13b] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with extended resolution. In
Proceedings of the 24th International Conference on Automated Deduction (CADE-24), volume 7898 of Lecture Notes in
Computer Science, pages 345–359. Springer, June 2013.

[IMM19] Alexey Ignatiev, António Morgado, and João Marques-Silva. RC2: an efficient maxsat solver. J. Satisf. Boolean Model.
Comput., 11(1):53–64, 2019.

[KM21] Sonja Kraiczy and Ciaran McCreesh. Solving graph homomorphism and subgraph isomorphism problems faster
through clique neighbourhood constraints. In Proceedings of the 30th International Joint Conference on Artificial
Intelligence (IJCAI ’21), pages 1396–1402, August 2021.

[MJML14] Ruben Martins, Saurabh Joshi, Vasco M. Manquinho, and Inês Lynce. Incremental cardinality constraints for MaxSAT.
In Proceedings of the 20th International Conference on Principles and Practice of Constraint Programming (CP ’14), volume
8656 of Lecture Notes in Computer Science, pages 531–548. Springer, September 2014.

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 67/61

REFERENCES VIII

[MM23] Matthew McIlree and Ciaran McCreesh. Proof logging for smart extensional constraints. In Proceedings of the 29th
International Conference on Principles and Practice of Constraint Programming (CP ’23), volume 280 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 26:1–26:17, August 2023.

[MMNS11] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying algorithms. Computer Science
Review, 5(2):119–161, May 2011.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff: Engineering an
efficient SAT solver. In Proceedings of the 38th Design Automation Conference (DAC ’01), pages 530–535, June 2001.

[MS99] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional satisfiability. IEEE
Transactions on Computers, 48(5):506–521, May 1999. Preliminary version in ICCAD ’96.

[OLH+13] Toru Ogawa, Yangyang Liu, Ryuzo Hasegawa, Miyuki Koshimura, and Hiroshi Fujita. Modulo based CNF encoding of
cardinality constraints and its application to maxsat solvers. In 25th IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2013, Herndon, VA, USA, November 4-6, 2013, pages 9–17. IEEE Computer Society, 2013.

[PRB18] Tobias Paxian, Sven Reimer, and Bernd Becker. Dynamic polynomial watchdog encoding for solving weighted MaxSAT.
In Proceedings of the 21st International Conference on Theory and Applications of Satisfiability Testing (SAT ’18), volume
10929 of Lecture Notes in Computer Science, pages 37–53. Springer, July 2018.

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 68/61

REFERENCES IX

[RM16] Olivier Roussel and Vasco M. Manquinho. Input/output format and solver requirements for the competitions of
pseudo-Boolean solvers. Revision 2324. Available at http://www.cril.univ-artois.fr/PB16/format.pdf, January
2016.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM, 12(1):23–41,
January 1965.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint Programming, volume 2 of
Foundations of Artificial Intelligence. Elsevier, 2006.

[Tse68] Grigori Tseitin. On the complexity of derivation in propositional calculus. In A. O. Silenko, editor, Structures in
Constructive Mathematics and Mathematical Logic, Part II, pages 115–125. Consultants Bureau, New York-London, 1968.

[Van08] Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In 10th International Symposium on Artificial
Intelligence and Mathematics (ISAIM ’08), 2008. Available at
http://isaim2008.unl.edu/index.php?page=proceedings.

[Van23] Dieter Vandesande. Towards certified MaxSAT solving — certified MaxSAT solving with SAT oracles and encodings of
pseudo-Boolean constraints. Master’s thesis, Vrije Universiteit Brussel, 2023. To appear.

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 69/61

http://www.cril.univ-artois.fr/PB16/format.pdf
http://isaim2008.unl.edu/index.php?page=proceedings

REFERENCES X

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb: A certified MaxSAT solver. In Proceedings of the
16th International Conference on Logic Programming and Non-monotonic Reasoning (LPNMR ’22), volume 13416 of Lecture
Notes in Computer Science, pages 429–442. Springer, September 2022.

[War98] Joost P. Warners. A linear-time transformation of linear inequalities into conjunctive normal form. Information
Processing Letters, 68(2):63–69, October 1998.

[WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and trimming using
expressive clausal proofs. In Proceedings of the 17th International Conference on Theory and Applications of Satisfiability
Testing (SAT ’14), volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer, July 2014.

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 70/61

ACKNOWLEDGEMENTS

This work was partially supported by Fonds Wetenschappelijk Onderzoek – Vlaanderen (project
G070521N).

Co-funded by the European Union (ERC, CertiFOX, 101122653). Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of the European Union or
the European Research Council. Neither the European Union nor the granting authority can be
held responsible for them.

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024

	Introduction
	The Success of Combinatorial Solving (and the Dirty Little Secret…)
	Ensuring Correctness with the Help of Proof Logging

	Proof Logging for SAT
	SAT Basics
	DPLL and CDCL
	Proof System for SAT Proof Logging

	Pseudo-Boolean Proof Logging
	Pseudo-Boolean Constraints and Cutting Planes Reasoning
	Pseudo-Boolean Proof Logging for SAT Solving
	More Pseudo-Boolean Proof Logging Rules

	Proof Logging for SAT-Based Optimisation (MaxSAT solving)
	Linear SAT-UNSAT Search
	Core-Guided Search
	Branch-And-Bound Search

	Conclusion
	Appendix

