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Introduction The Success of Combinatorial Solving (and the Dirty Little Secret. . . )

COMBINATORIAL SOLVING AND OPTIMISATION

▶ Revolution last couple of decades in combinatorial solvers for
▶ Boolean satisfiability (SAT) solving [BHvMW21]1
▶ Constraint programming (CP) [RvBW06]
▶ Mixed integer linear programming (MIP) [AW13, BR07]

▶ Solve NP-complete problems (or worse) very successfully in practice!

▶ Except solvers are sometimes wrong. . . (Even best commercial ones)
[BLB10, CKSW13, AGJ+18, GSD19, GS19, BMN22, BBN+23]

▶ Even get feasibility of solutions wrong (though this should be straightforward!)

▶ And how to check the absence of solutions?

▶ Or that a solution is optimal? (Even off-by-one mistakes can snowball into large errors if
solver used as subroutine)

1See end of slides for all references with bibliographic details
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Introduction The Success of Combinatorial Solving (and the Dirty Little Secret. . . )

WHAT CAN BE DONE ABOUT SOLVER BUGS?

▶ Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

▶ Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

▶ Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting
1. not only answer but also
2. simple, machine-verifiable proof that answer is correct
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Introduction Ensuring Correctness with the Help of Proof Logging

PROOF LOGGING WITH CERTIFYING SOLVERS: WORKFLOW

Checker

Input Answer
Solver

1. Run combinatorial solving algorithm on problem input

2. Get as output not only answer but also proof

3. Feed input + answer + proof to proof checker

4. Verify that proof checker says answer is correct
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Introduction Ensuring Correctness with the Help of Proof Logging

PROOF LOGGING DESIDERATA

Proof

Input Answer
Solver

Checker
✓ / ✗

Proof format for certifying solver
should be
▶ very powerful: minimal overhead for sophisticated reasoning
▶ dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?
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Introduction Ensuring Correctness with the Help of Proof Logging

TAKE-AWAY MESSAGE

Proof logging for combinatorial optimisation is possible with single, unified method!

▶ Build on successes in proof logging for SAT solvers with proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .

▶ But represent constraints as 0–1 integer linear inequalities

▶ Formalize reasoning using cutting planes [CCT87] proof system

▶ Add well-chosen strengthening rules [Goc22, GN21, BGMN23]

▶ Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 5/61
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Introduction Ensuring Correctness with the Help of Proof Logging

THE SALES PITCH FOR PROOF LOGGING

1. Certifies correctness of computed results

2. Detects errors even if due to compiler bugs, hardware failures, or cosmic rays

3. Provides debugging support during development [EG21, GMM+20, KM21, BBN+23]

4. Facilitates performance analysis

5. Helps identify potential for further improvements

6. Enables auditability

7. Serves as stepping stone towards explainability

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 6/61



Introduction Ensuring Correctness with the Help of Proof Logging

APPLICATIONS OF VeriPB

VeriPB has been used to do proof logging for

▶ SAT solving (including advanced techniques)

▶ SAT-based optimisation (MaxSAT) (this talk!)

▶ Subgraph algorithms

▶ Constraint programming

▶ Symmetry and dominance reasoning

in a unified way

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 7/61
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Proof Logging for SAT SAT Basics

THE SAT PROBLEM
▶ Variable 𝑥 : takes value true (=1) or false (=0)

▶ Literal ℓ : variable 𝑥 or its negation 𝑥

▶ Clause 𝐶 = ℓ1 ∨ · · · ∨ ℓ𝑘 : disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

▶ Conjunctive normal form (CNF) formula 𝐹 = 𝐶1 ∧ · · · ∧𝐶𝑚 : conjunction of clauses

The SAT Problem
Given a CNF formula 𝐹 , is it satisfiable?

For instance, what about:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧
(𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 8/61



Proof Logging for SAT SAT Basics

PROOFS FOR SAT

For satisfiable instances: just specify satisfying assignment

For unsatisfiability: a sequence of clauses (CNF constraints)
▶ Each clause follows “obviously” from everything we know so far
▶ Final clause is empty, meaning contradiction (written ⊥)
▶ Means original formula must be inconsistent

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 9/61



Proof Logging for SAT SAT Basics

WHAT IS OBVIOUS? UNIT PROPAGATION

Unit Propagation

Clause 𝐶 unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies all literals in 𝐶 except ℓ

Example: Unit propagate for 𝜌 = {𝑝 ↦→ 0, 𝑞 ↦→ 0} on

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨𝑢)

▶ 𝑝 ∨ 𝑢 propagates 𝑢 ↦→ 0
▶ 𝑞 ∨ 𝑟 propagates 𝑟 ↦→ 1
▶ Then 𝑟 ∨𝑤 propagates𝑤 ↦→ 1
▶ No further unit propagations

Proof checker should know how to unit propagate until saturation
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 10/61
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Proof Logging for SAT DPLL and CDCL

DAVIS-PUTMAN-LOGEMANN-LOVELAND (DPLL)

DPLL [DP60, DLL62]: Assign variables and propagate; backtrack when clause violated

“Proof trace”: when backtracking, write negation of guesses made

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

1. 𝑥 ∨ 𝑦

2. 𝑥 ∨ 𝑦

3. 𝑥

4. 𝑥

5. ⊥

𝑥

𝑦

E

0

E

1

0

E

1
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Proof Logging for SAT DPLL and CDCL

REVERSE UNIT PROPAGATION (RUP)

To make this a proof, need backtrack clauses to be easily verifiable

Reverse unit propagation (RUP) clause [GN03, Van08]
𝐶 is a reverse unit propagation (RUP) clause with respect to 𝐹 if
▶ assigning 𝐶 to false
▶ then unit propagating on 𝐹 until saturation
▶ leads to contradiction

If so, 𝐹 clearly implies 𝐶 , and this condition is easy to verify efficiently

Fact
Backtrack clauses from DPLL solver generate a RUP proof
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Proof Logging for SAT DPLL and CDCL

WHAT ABOUT CONFLICT-DRIVEN CLAUSE LEARNING (CDCL)?
Run CDCL [BS97, MS99, MMZ+01] on our favourite CNF formula:

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict
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d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1

Decision
Free choice to assign value to variable

Notation 𝑝
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given 𝑝 = 0, clause 𝑝 ∨ 𝑢 forces 𝑢 = 0
Notation 𝑢

𝑝∨𝑢
= 0 (𝑝 ∨ 𝑢 is reason clause)

Always propagate if possible, otherwise decide
Add to assignment trail
Continue until satisfying assignment or conflict
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Proof Logging for SAT DPLL and CDCL

CONFLICT ANALYSIS
Time to analyse this conflict and learn from it!

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by erasing conflict level & flipping last
decision

But want to learn from conflict and cut away as much of search
space as possible

Case analysis over 𝑧 for last two clauses:
▶ 𝑥 ∨ 𝑦 ∨ 𝑧 wants 𝑧 = 1
▶ 𝑦 ∨ 𝑧 wants 𝑧 = 0
▶ Resolve clauses by merging them & removing 𝑧 — must

satisfy 𝑥 ∨ 𝑦

Repeat until UIP clause with only 1 variable at conflict level
after last decision — learn and backjumpBart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 14/61
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Proof Logging for SAT DPLL and CDCL

COMPLETE EXAMPLE OF CDCL EXECUTION
Backjump: undo max #decisions while learned clause propagates

(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
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𝑦
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𝑧
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= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

Assertion level 1 (2nd largest level in learned clause) — trim trail
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Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
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𝑦
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𝑧
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= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
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Proof Logging for SAT DPLL and CDCL

COMPLETE EXAMPLE OF CDCL EXECUTION
Backjump: undo max #decisions while learned clause propagates
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𝑦
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= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
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COMPLETE EXAMPLE OF CDCL EXECUTION
Backjump: undo max #decisions while learned clause propagates
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𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥Assertion level 1 (2nd largest level in learned clause) — trim trail

to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
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COMPLETE EXAMPLE OF CDCL EXECUTION
Backjump: undo max #decisions while learned clause propagates
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𝑥
d
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𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level
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Then continue as before. . .
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Proof Logging for SAT DPLL and CDCL

COMPLETE EXAMPLE OF CDCL EXECUTION
Backjump: undo max #decisions while learned clause propagates
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𝑝
d
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𝑢
𝑝∨𝑢
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𝑞
d
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𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
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COMPLETE EXAMPLE OF CDCL EXECUTION
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(𝑝 ∨ 𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)
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Assertion level 1 (2nd largest level in learned clause) — trim trail
to that level

Now UIP literal guaranteed to flip (assert) — but this is a
propagation, not a decision

Then continue as before. . .
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Proof Logging for SAT Proof System for SAT Proof Logging

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . . )
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion
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Proof Logging for SAT Proof System for SAT Proof Logging

CDCL REASONING AND THE RESOLUTION PROOF SYSTEM

To describe CDCL reasoning, need formal proof system for unsatisfiable formulas

Resolution proof system [Bla37, Rob65]

▶ Start with clauses of formula (axioms)
▶ Derive new clauses by resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ 𝑥
𝐶 ∨ 𝐷

▶ Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 16/61
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Proof Logging for SAT Proof System for SAT Proof Logging

RESOLUTION PROOFS FROM CDCL EXECUTIONS

Obtain resolution proof. . .
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Proof Logging for SAT Proof System for SAT Proof Logging

RESOLUTION PROOFS FROM CDCL EXECUTIONS

Obtain resolution proof from our example CDCL execution. . .
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Proof Logging for SAT Proof System for SAT Proof Logging

RESOLUTION PROOFS FROM CDCL EXECUTIONS

Obtain resolution proof from our example CDCL execution by stringing together conflict analyses:
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Proof Logging for SAT Proof System for SAT Proof Logging

RESOLUTION PROOFS FROM CDCL EXECUTIONS
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Proof Logging for SAT Proof System for SAT Proof Logging

RUP PROOFS AND CDCL

But it turns out we can be lazier. . .

Fact
All learned clauses generated by CDCL solver are RUP clauses

So shorter short proof of unsatisfiability for

(𝑝 ∨𝑢) ∧ (𝑞 ∨ 𝑟 ) ∧ (𝑟 ∨𝑤) ∧ (𝑢 ∨ 𝑥 ∨𝑦) ∧ (𝑥 ∨𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧) ∧ (𝑝 ∨ 𝑢)

is sequence of reverse unit propagation (RUP) clauses

1. 𝑢 ∨ 𝑥
2. 𝑥

3. ⊥

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 18/61
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Proof Logging for SAT Proof System for SAT Proof Logging

MORE INGREDIENTS IN PROOF LOGGING FOR SAT

Fact
RUP proofs can be viewed as shorthand for resolution proofs

See [BN21] for more on this and connections to SAT solving

But RUP and resolution are not enough for preprocessing, inprocessing, and some other kinds of
reasoning
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Proof Logging for SAT Proof System for SAT Proof Logging

EXTENSION VARIABLES, PART 1
Suppose we want a variable 𝑎 encoding

𝑎 ⇔ (𝑥 ∧ 𝑦)

Extended resolution [Tse68]
Resolution rule plus extension rule introducing clauses

𝑎 ∨ 𝑥 ∨ 𝑦 𝑎 ∨ 𝑥 𝑎 ∨ 𝑦

for fresh variable 𝑎 (this is fine since 𝑎 doesn’t appear anywhere previously)

Fact
Extended resolution (RUP + definition of new variables) is essentially equivalent to the DRAT
proof logging system most commonly used for SAT solving
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Pseudo-Boolean Proof Logging

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . . )
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024



Pseudo-Boolean Proof Logging

WHY AREN’T WE DONE?

Practical limitations of current SAT proof logging technology:
▶ Difficulties dealing with stronger reasoning efficiently (even for SAT solving)
▶ Clausal proofs can’t easily reflect what algorithms for other problems do

Surprising claim: a slight change to 0-1 integer linear inequalities does the job!
▶ Enables proof logging for advanced SAT techniques so far beyond reach for efficient DRAT

proof logging:
▶ Cardinality reasoning
▶ Gaussian elimination
▶ Symmetry breaking

▶ Supports use of SAT solvers for optimisation problems (MaxSAT)
▶ Can justify graph reasoning without knowing what a graph is
▶ Can justify constraint programming inference without knowing what an integer variable is
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Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning
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Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

PSEUDO-BOOLEAN CONSTRAINTS

0–1 integer linear inequalities or (linear) pseudo-Boolean constraints:∑︁
𝑖

𝑎𝑖ℓ𝑖 ≥ 𝐴

▶ 𝑎𝑖 , 𝐴 ∈ Z
▶ literals ℓ𝑖 : 𝑥𝑖 or 𝑥𝑖 (where 𝑥𝑖 + 𝑥𝑖 = 1)

Sometimes convenient to use normalized form [Bar95] with all 𝑎𝑖 , 𝐴 positive
(without loss of generality)
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Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

SOME TYPES OF PSEUDO-BOOLEAN CONSTRAINTS

1. Clauses
𝑥1 ∨ 𝑥2 ∨ 𝑥3 ⇔ 𝑥1 + 𝑥2 + 𝑥3 ≥ 1

2. Cardinality constraints
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≥ 2

3. General pseudo-Boolean constraints

𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
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Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

PSEUDO-BOOLEAN REASONING: CUTTING PLANES

Input/model axioms From the input

Literal axioms ℓ𝑖 ≥ 0

Addition
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴
∑

𝑖 𝑏𝑖ℓ𝑖 ≥ 𝐵∑
𝑖 (𝑎𝑖 + 𝑏𝑖)ℓ𝑖 ≥ 𝐴 + 𝐵

Multiplication for any 𝑐 ∈ N+
∑

𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑
𝑖 𝑐𝑎𝑖ℓ𝑖 ≥ 𝑐𝐴

Division for any 𝑐 ∈ N+

(assumes normalized form)

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴∑

𝑖

⌈
𝑎𝑖
𝑐

⌉
ℓ𝑖 ≥

⌈
𝐴
𝑐

⌉
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Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

CUTTING PLANES TOY EXAMPLE
𝑤 + 2𝑥 + 𝑦 ≥ 2

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d
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pol 1 2 * 2 + ∼z 2 * + 3 d

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 25/61



Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

CUTTING PLANES TOY EXAMPLE
𝑤 + 2𝑥 + 𝑦 ≥ 2

Multiply by 2
2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5

Add
3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9

𝑧 ≥ 0
Multiply by 2

2𝑧 ≥ 0
Add

3𝑤 + 6𝑥 + 6𝑦 ≥ 7
Divide by 3

𝑤 + 2𝑥 + 2𝑦 ≥ 3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 25/61



Pseudo-Boolean Proof Logging Pseudo-Boolean Constraints and Cutting Planes Reasoning

CUTTING PLANES TOY EXAMPLE
𝑤 + 2𝑥 + 𝑦 ≥ 2

Multiply by 2
2𝑤 + 4𝑥 + 2𝑦 ≥ 4 𝑤 + 2𝑥 + 4𝑦 + 2𝑧 ≥ 5

Add
3𝑤 + 6𝑥 + 6𝑦 + 2𝑧 ≥ 9

𝑧 ≥ 0
Multiply by 2

2𝑧 ≥ 0
Add

3𝑤 + 6𝑥 + 6𝑦 ≥ 7
Divide by 3

𝑤 + 2𝑥 + 2𝑦 ≥ 3

Naming constraints by integers and literal axioms by the literal involved (with ∼ for negation) as

Constraint 1 � 2𝑥 + 𝑦 +𝑤 ≥ 2
Constraint 2 � 2𝑥 + 4𝑦 + 2𝑧 +𝑤 ≥ 5

∼z � 𝑧 ≥ 0

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 + ∼z 2 * + 3 d

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 25/61



Pseudo-Boolean Proof Logging Pseudo-Boolean Proof Logging for SAT Solving

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . . )
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion
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Pseudo-Boolean Proof Logging Pseudo-Boolean Proof Logging for SAT Solving

RESOLUTION AND CUTTING PLANES
To simulate resolution step such as

𝑦 ∨ 𝑧 𝑥 ∨ 𝑦 ∨ 𝑧
𝑥 ∨ 𝑦

we can perform the cutting planes steps

𝑦 + 𝑧 ≥ 1 𝑥 + 𝑦 + 𝑧 ≥ 1
Add

𝑥 + 2𝑦 ≥ 1
Divide by 2

𝑥 + 𝑦 ≥ 1

Given that the premises are clauses 7 and 5 in our example CNF formula, using references

Constraint 7 � 𝑦 + 𝑧 ≥ 1
Constraint 5 � 𝑥 + 𝑦 + 𝑧 ≥ 1

we can write this in the proof log as

pol 7 5 + 2 d
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Pseudo-Boolean Proof Logging Pseudo-Boolean Proof Logging for SAT Solving

PSEUDO-BOOLEAN PROOF LOGGING FOR CDCL EXAMPLE

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑞
d
=0

𝑟
𝑞∨𝑟
= 1

𝑤
𝑟∨𝑤
= 1

𝑥
d
=0

𝑦
𝑢∨𝑥∨𝑦
= 1

𝑧
𝑥∨𝑦∨𝑧
= 1
𝑦∨𝑧
⊥

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑝
d
=0

𝑢
𝑝∨𝑢
= 0

𝑥
𝑢∨𝑥
= 1

𝑧
𝑥∨𝑧
= 1
𝑥∨𝑧
⊥

𝑥

𝑥
𝑥
=0

𝑢
𝑢∨𝑥
= 1

𝑝
𝑝∨𝑢
= 1

𝑝∨𝑢
⊥

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟 )2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧
(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

pol 7 5 + 2 d 4 + 2 d ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
pol 8 6 + 2 d ⇝ Constraint 11 � 𝑥 ≥ 1
pol 9 1 + 2 d 10 + 2 d 11 + 2 d ⇝ Constraint 12 � 0 ≥ 1 E
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Pseudo-Boolean Proof Logging Pseudo-Boolean Proof Logging for SAT Solving

RUP REVISITED

Can define (reverse) unit propagation in a pseudo-Boolean setting

Constraint 𝐶 propagates variable 𝑥 if setting 𝑥 to “wrong value” would make 𝐶 unsatisfiable

E.g., if 𝑥5 is false,
𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

would propagate 𝑥4 (since other coefficients do not add up to 7)

Risk for confusion:
▶ Constraint programming people might call this (reverse) integer bounds consistency

▶ Does the same thing if we’re working with clauses
▶ More interesting for general pseudo-Boolean constraints

▶ SAT people beware: constraints can propagate multiple times and multiple variables
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Pseudo-Boolean Proof Logging Pseudo-Boolean Proof Logging for SAT Solving

PB PROOF LOGGING FOR EXAMPLE CDCL EXECUTION WITH RUP

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟 )2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧
(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

rup 1 u 1 x >= 1 ; ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
rup 1 ∼x >= 1 ; ⇝ Constraint 11 � 𝑥 ≥ 1
rup >= 1 ; ⇝ Constraint 12 � 0 ≥ 1 E

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 29/61



Pseudo-Boolean Proof Logging Pseudo-Boolean Proof Logging for SAT Solving

PB PROOF LOGGING FOR EXAMPLE CDCL EXECUTION WITH RUP

𝑢 ∨ 𝑥 ∨ 𝑦

𝑥 ∨ 𝑦 ∨ 𝑧

𝑦 ∨ 𝑧

𝑥 ∨ 𝑦

𝑢 ∨ 𝑥

𝑥 ∨ 𝑧

𝑥 ∨ 𝑧

𝑥

𝑝 ∨ 𝑢

𝑝 ∨ 𝑢

𝑢

𝑥

⊥

(𝑝 ∨ 𝑢)1 ∧ (𝑞 ∨ 𝑟 )2 ∧ (𝑟 ∨𝑤)3 ∧ (𝑢 ∨ 𝑥 ∨ 𝑦)4 ∧
(𝑥 ∨ 𝑦 ∨ 𝑧)5 ∧ (𝑥 ∨ 𝑧)6 ∧ (𝑦 ∨ 𝑧)7 ∧ (𝑥 ∨ 𝑧)8 ∧ (𝑝 ∨ 𝑢)9

rup 1 u 1 x >= 1 ; ⇝ Constraint 10 � 𝑢 + 𝑥 ≥ 1
rup 1 ∼x >= 1 ; ⇝ Constraint 11 � 𝑥 ≥ 1
rup >= 1 ; ⇝ Constraint 12 � 0 ≥ 1 E

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 29/61



Pseudo-Boolean Proof Logging More Pseudo-Boolean Proof Logging Rules

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . . )
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion
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Pseudo-Boolean Proof Logging More Pseudo-Boolean Proof Logging Rules

EXTENSION VARIABLES, PART 2

Suppose we want new, fresh variable 𝑎 encoding

𝑎 ⇔ (3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3)

This time, introduce constraints

3𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 3 5𝑎 + 3𝑥 + 2𝑦 + 𝑧 +𝑤 ≥ 5

Again, needs support from the proof system
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Pseudo-Boolean Proof Logging More Pseudo-Boolean Proof Logging Rules

PROOF LOGS FOR “EXTENDED CUTTING PLANES”

For satisfiable instances: just specify a satisfying assignment.

For unsatisfiability: a sequence of pseudo-Boolean constraints in (slight extension of) OPB
format [RM16]
▶ Each constraint follows “obviously” from what is known so far
▶ Either implicitly, by RUP. . .
▶ Or by an explicit cutting planes derivation. . .
▶ Or as an extension variable reifying a new constraint∗

▶ Final constraint is 0 ≥ 1

(*) Not actually implemented this way — details to come later. . .
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Pseudo-Boolean Proof Logging More Pseudo-Boolean Proof Logging Rules

DELETING CONSTRAINTS

In practice, important to erase constraints to save memory and time during verification

Fairly straightforward to deal with from the point of view of proof logging

So ignored in this tutorial for simplicity and clarity
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Pseudo-Boolean Proof Logging More Pseudo-Boolean Proof Logging Rules

ENUMERATION AND OPTIMISATION PROBLEMS

Enumeration:
▶ When a solution is found, can log it
▶ Introduces a new constraint saying “not this solution”
▶ So the proof semantics is “infeasible, except for all the solutions I told you about”

For optimisation:
▶ Define an objective 𝑓 =

∑
𝑖 𝑤𝑖ℓ𝑖 ,𝑤𝑖 ∈ Z, to minimise subject to the contraints in the formula

▶ To maximise, negate objective
▶ Log a solution 𝛼 ; get an objective-improving constraint

∑
𝑖 𝑤𝑖ℓ𝑖 ≤ −1 +∑

𝑖 𝑤𝑖𝛼 (ℓ𝑖)
▶ Semantics for proof of optimality: “infeasible to find better solution than best so far”
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Pseudo-Boolean Proof Logging More Pseudo-Boolean Proof Logging Rules

PSEUDO-BOOLEAN PROOF LOGGING — HOW AND WHY?
If problem is (special case of) 0–1 integer linear program (ILP)
▶ just do proof logging

Otherwise
▶ do trusted or verified translation to 0–1 ILP
▶ provide proof logging for 0–1 ILP formulation

Proof logging philosophy:
▶ do not change input for

solver
▶ do not change reasoning in

solver
▶ only add print statements

(in PB format) here and there

Goldilocks compromise between expressivity and simplicity:

1. 0–1 ILP expressive formalism for combinatorial problems (including objective)

2. Powerful reasoning capturing many combinatorial arguments (even for SAT)

3. Efficient reification of constraints — example:

𝑟 ⇒ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
𝑟 ⇐ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

7𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
9𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 9
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▶ provide proof logging for 0–1 ILP formulation

Proof logging philosophy:
▶ do not change input for

solver
▶ do not change reasoning in

solver
▶ only add print statements

(in PB format) here and there
Goldilocks compromise between expressivity and simplicity:

1. 0–1 ILP expressive formalism for combinatorial problems (including objective)

2. Powerful reasoning capturing many combinatorial arguments (even for SAT)

3. Efficient reification of constraints — example:

𝑟 ⇒ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
𝑟 ⇐ 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7

7𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 7
9𝑟 + 𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 ≥ 9
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Pseudo-Boolean Proof Logging More Pseudo-Boolean Proof Logging Rules

THE VeriPB FORMAT AND TOOL

https://gitlab.com/MIAOresearch/software/VeriPB

Released under MIT Licence

Various features to help development:
▶ Extended variable name syntax allowing human-readable names
▶ Proof tracing
▶ “Trust me” assertions for incremental proof logging

Documentation:
▶ Description of VeriPB checker [BMM+23] used in SAT 2023 competition

(https://satcompetition.github.io/2023/checkers.html)
▶ Specific details on different proof logging techniques covered in research papers

[EGMN20, GMN20, GMM+20, GN21, GMN22, GMNO22, VDB22, BBN+23, BGMN23,MM23]
▶ Lots of concrete example files at https://gitlab.com/MIAOresearch/software/VeriPB
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Proof Logging for SAT-Based Optimisation (MaxSAT solving)

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . . )
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion
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Proof Logging for SAT-Based Optimisation (MaxSAT solving)

CERTIFIED MAXIMUM SATISFIABILITY (MAXSAT) SOLVING
Minimize linear objective subject to satisfying formula in conjunctive normal form (CNF)

min 2𝑥1 + 𝑥2
s.t. 𝑥1 ∨ 𝑧

𝑧 ∨ 𝑥2
MaxSAT solver

Result:
optimum 1

Many MaxSAT solvers internally make use of SAT solver. Idea:
▶ Find optimal solution (checking that it is a solution is easy)

▶ Add clauses claiming a better solution exists
Requires proof logging — can be done with VeriPB

▶ Use one extra SAT call to get proof of optimality (with standard SAT proof logging)
Causes serious overhead

Does not work Only proves answer correct, not reasoning within solver!
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Proof Logging for SAT-Based Optimisation (MaxSAT solving)

MAXSAT SOLVERS
Main categories:
▶ Linear SAT-UNSAT search (proof logging [VDB22, Van23, BBN+24])

1. Call SAT solver to find some solution
2. Add clauses encoding “I want a better solution”
3. Repeat (last found solution is optimal)

▶ Core-guided search (proof logging [BBN+23])
1. Call SAT solver to find solution under most optimistic assumptions
2. If impossible, rewrite objective given output of SAT solver
3. Repeat (first solution is optimal)

▶ Branch-and-bound search (proof logging coming soon)
1. Run CDCL SAT solver
2. While running, add bounding constraints

▶ Implicit Hitting Set ( No proof logging available yet)
1. Call SAT solver to find solution under most optimistic assumptions
2. Use hitting set solver (MIP solver) to recompute what most possible optimistic assumptions are
3. Repeat (first solution is optimal)
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 37/61
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . . )
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
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4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
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5. Conclusion
Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024



Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

LINEAR SAT-UNSAT SEARCH

Run SAT solver to
find model

Encode model
improving con-
straints

Last found model
is optimal

SAT UNSAT
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT
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𝑥1, 𝑥2, 𝑥3, 𝑥4
𝑟 1, 𝑟2, 𝑟3

UNSAT
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search
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𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

𝑥1, 𝑥2, 𝑥3, 𝑥4
𝑟 1, 𝑟2, 𝑟3

UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61



Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61



Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
PB(𝑝1 ⇔ (∑𝑖 𝑟𝑖 ≥ 1)) Fresh variable
PB(𝑝2 ⇔ (∑𝑖 𝑟𝑖 ≥ 2))
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61



Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61



Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61



Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61



Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61



Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61



Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61



Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61



Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

𝑥1, 𝑥2, 𝑥3, 𝑥4
𝑟 1, 𝑟2, 𝑟 3

UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61



Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
𝑗 · 𝑝 𝑗 +

∑
𝑖 𝑟𝑖 ≥ 𝑗 Fresh variable

(4 − 𝑗) · 𝑝 𝑗 +
∑

𝑖 𝑟 𝑖 ≥ 4 − 𝑗

CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗)) Explicit CP derivation
𝑝2 ≥ 1 Explicit CP derivation
𝑥4 ≥ 1 Reverse Unit Propagation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟 1, 𝑟2, 𝑟 3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 0 Objective Improvement Rule
𝑝1 ≥ 1 Explicit CP derivation
0 ≥ 1 Reverse Unit Propagation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
𝑝2 𝑥4
𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT

Bart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 39/61



Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED LSU SEARCH (EXAMPLE)

Objective: min
∑

𝑖 𝑟𝑖

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
{𝑥1, . . . , 𝑥4, 𝑟 1, 𝑟2, 𝑟3} Incumbent solution∑

𝑖 𝑟𝑖 ≤ 1 Objective Improvement Rule
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CNF(𝑝 𝑗 ⇔ (∑𝑖 𝑟𝑖 ≥ 𝑗))
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𝑝1 ⊥

Run SAT solver to
find model

Encode model
improving con-
straints

Last found solu-
tion is optimal

SAT UNSAT
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LSU EXAMPLE IN VeriPB SYNTAX
pseudo-Boolean proof version 2.0
f 7
* Clauses derived by solver
rup 1 x1 1 r2 >= 1 ;
* Log incumbent solution
soli ~x1 ~x2 ~x3 ~x4 ~r1 r2 r3
* introduce fresh variables
red 2 ~p2 1 r1 1 r2 1 r3 >= 2 ; p2 -> 0 ;
red 2 p2 1 ~r1 1 ~r2 1 ~r3 >= 2; p2 -> 1 ;
red 1 ~p1 1 r1 1 r2 1 r3 >= 1; p1 -> 0 ;
red 3 p1 1 ~r1 1 ~r2 1 ~r3 >= 3; p1 -> 1 ;
* Derive CNF encoding of totalizer
. . . - coming soon
* Derive counter falsity
pol 9 10 + s
* Clauses derived by solver
rup 1 x4 >= 1 ;

* Log incumbent solution
soli ~x1 ~x2 ~x3 x4 ~r1 r2 ~r3
* Derive counter falsity
pol -1 12 +
* Inconsistency derived by solver
rup >= 1 ;
* Conclusion
output NONE
conclusion BOUNDS 1 1
end pseudo-Boolean proof



Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

CERTIFIED ENCODING OF THE MODEL-IMPROVING CONSTRAINT

How to encode 𝑝 𝑗 ⇔
∑

𝑖 𝑟𝑖 ≥ 𝑗 in CNF?

Different MaxSAT solvers use different PB-to-CNF encodings, e.g.,
▶ Totalizer Encoding [BB03]
▶ Binary Adder [War98]
▶ Modulo-Based Totalizer [OLH+13]
▶ Sorting Networks [ES06, ANOR09]
▶ (Dynamic) Polynomial Watchdog (DPW) [PRB18]

Totalizer encoding demonstrated here; ideas generalize to other encodings [Van23]

Except... DPW turns out to use complicated without-loss-of-generality reasoning [BBN+24]
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Linear SAT-UNSAT Search

TOTALIZER ENCODING OF CARDINALITY CONSTRAINTS
How to encode 𝑝𝐼𝑗 ⇔

∑
𝑖∈𝐼 𝑟𝑖 ≥ 𝑗?

▶ Totalizer encoding [BB03]
▶ Create binary tree (leaves are the 𝑟𝑖 ); and

introduce counter variables in all nodes
▶ Example: 𝐼 = {1, · · · , 8}, 𝐼1 = {1, · · · , 4} and
𝐼2 = {5, · · · , 8}

𝑝𝐼1, 𝑝
𝐼
2, 𝑝

𝐼
3, 𝑝

𝐼
4, 𝑝

𝐼
5, 𝑝

𝐼
6, 𝑝

𝐼
7, 𝑝

𝐼
8

𝑝
𝐼1
1 , 𝑝

𝐼1
2 , 𝑝

𝐼1
3 , 𝑝

𝐼1
4 𝑝

𝐼2
1 , 𝑝

𝐼2
2 , 𝑝

𝐼2
3 , 𝑝

𝐼2
4

Clauses encoding 𝑝𝐼6 ⇐
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝𝐼24 ∨ 𝑝𝐼6 𝑝

𝐼1
3 ∨ 𝑝𝐼23 ∨ 𝑝𝐼6 𝑝

𝐼1
4 ∨ 𝑝𝐼22 ∨ 𝑝𝐼6

Clauses encoding 𝑝𝐼6 ⇒
∑

𝑖∈𝐼 𝑟𝑖 ≥ 6:

𝑝
𝐼1
2 ∨ 𝑝𝐼6 𝑝

𝐼1
3 ∨ 𝑝𝐼24 ∨ 𝑝𝐼6 𝑝

𝐼1
4 ∨ 𝑝𝐼23 ∨ 𝑝𝐼6 𝑝

𝐼2
2 ∨ 𝑝𝐼6
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▶ Example: 𝐼 = {1, · · · , 8}, 𝐼1 = {1, · · · , 4} and
𝐼2 = {5, · · · , 8}

𝑝𝐼1, 𝑝
𝐼
2, 𝑝

𝐼
3, 𝑝

𝐼
4, 𝑝

𝐼
5, 𝑝

𝐼
6, 𝑝

𝐼
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𝐼
8

𝑝
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1 , 𝑝
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2 , 𝑝
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3 , 𝑝
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1 , 𝑝
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𝑝
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𝐼
6
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CERTIFYING THE TOTALIZER ENCODING USING CUTTING PLANES

▶ To be derived: 𝑝𝐼14 ∨ 𝑝𝐼22 ∨ 𝑝𝐼6
▶ Counting variables introduced using

4 · 𝑝𝐼14 +
∑︁
𝑖∈𝐼1

𝑟𝑖 ≥ 4

2 · 𝑝𝐼22 +
∑︁
𝑖∈𝐼2

𝑟𝑖 ≥ 2

3 · 𝑝𝐼6 +
∑︁
𝑖∈𝐼

𝑟 𝑖 ≥ 3

▶ Adding these three constraints yields

4 · 𝑝𝐼14 + 2 · 𝑝𝐼22 + 3 · 𝑝𝐼6 + 8 ≥ 9

1
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CERTIFYING THE TOTALIZER ENCODING USING CUTTING PLANES

▶ To be derived: 𝑝𝐼14 ∨ 𝑝𝐼22 ∨ 𝑝𝐼6
▶ Counting variables introduced using

4 · 𝑝𝐼14 +
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COMPLETE LSU EXAMPLE IN VeriPB SYNTAX
pseudo-Boolean proof version 2.0
f 7
* Clauses derived by solver
rup 1 x1 1 r2 >= 1 ;
* Log incumbent solution
soli ~x1 ~x2 ~x3 ~x4 ~r1 r2 r3
* introduce fresh variables
red 2 ~p2 1 r1 1 r2 1 r3 >= 2 ; p2 -> 0 ;
red 2 p2 1 ~r1 1 ~r2 1 ~r3 >= 2; p2 -> 1 ;
red 1 ~p1 1 r1 1 r2 1 r3 >= 1; p1 -> 0 ;
red 3 p1 1 ~r1 1 ~r2 1 ~r3 >= 3; p1 -> 1 ;
* Auxiliary variables for CNF encoding
red 2 ~p_1-2_2 1 r1 1 r2 >= 2 ; p_1-2_2 -> 0 ;
red 1 p_1-2_2 1 ~r1 1 ~r2 >= 1; p_1-2_2 -> 1 ;
red 1 ~p_1-2_1 1 r1 1 r2 >= 1; p_1-2_1 -> 0 ;
red 2 p_1-2_1 1 ~r1 1 ~r2 >= 2; p_1-2_1 -> 1 ;
* Cutting planes derivation of totalizer clauses
pol 10 15 + s
pol 10 17 + ~r3 + s

pol 11 14 + r3 + s
pol 11 16 + s
pol 12 17 + s
pol 13 16 + r3 + s
pol 13 r1 + r2 + s
* Derive counter falsity
pol 9 10 + s
* Clauses derived by solver
rup 1 x4 >= 1 ;
* Log incumbent solution
soli ~x1 ~x2 ~x3 x4 ~r1 r2 ~r3
* Derive counter falsity
pol -1 12 +
* Inconsistency derived by solver
rup >= 1 ;
* Conclusion
output NONE
conclusion BOUNDS 1 1
end pseudo-Boolean proof



Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . . )
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
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4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
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CORE-GUIDED SEARCH

Run SAT solver
under optimistic
assumptions

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT
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CERTIFIED CORE-GUIDED SEARCH (EXAMPLE)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟 1 + 𝑟 2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟 2, 𝑟 3} Solution
𝑟 1 + 𝑟 2 + 𝑟 3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟1
𝑥1 ∨ 𝑥2 𝑥1 ∨ 𝑥2 ∨ 𝑟2
𝑥2 ∨ 𝑥3 𝑥2 ∨ 𝑥4 ∨ 𝑟3
𝑥3 ∨ 𝑥4 𝑥2 ∨ 𝑟2
𝑟1 ∨ 𝑟2
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions
𝑟1 = 𝑟2 = 𝑟3 = 0

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT
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CERTIFIED CORE-GUIDED SEARCH (EXAMPLE)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3

VeriPB proof:

derived justification
𝑥2 + 𝑟2 ≥ 1 Reverse Unit Propagation
Core returned by solver:
𝑟1 + 𝑟2 ≥ 1 Reverse Unit Propagation
2 · 𝑝2 + 𝑟1 + 𝑟2 ≥ 2 Fresh variable
𝑝2 + 𝑟 1 + 𝑟 2 ≥ 1
CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2)) Explicit CP derivation
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CNF(𝑝2 ⇔ (𝑟1 + 𝑟2 ≥ 2))

Run SAT solver
under optimistic
assumptions
𝑝2 = 𝑟3 = 0

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT
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CERTIFIED CORE-GUIDED SEARCH (EXAMPLE)

Objective (min): 𝑟1 + 𝑟2 + 𝑟3 = 1 + 𝑝2 + 𝑟3
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Run SAT solver
under optimistic
assumptions

Use core to
reformulate
instance & relax
assumptions

Model is optimal

UNSAT
SAT
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

CERTIFIED CORE-GUIDED SEARCH (EXAMPLE)
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𝑟1 + 𝑟2 = 1 + 𝑝2 Explicit CP derivation
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑟1, 𝑟 2, 𝑟 3} Solution
𝑟 1 + 𝑟 2 + 𝑟 3 ≥ 3 Objective Improvement
0 ≥ 1 Explicit CP derivation

Explicit CP derivations:

CNF encoding (totalizer): cf. LSU

Adding up definition of 𝑝2 and core
constraint yields

2 · 𝑝2 + 2 · 𝑟1 + 2 · 𝑟2 ≥ 3

2

.

which is the same as 𝑟1 + 𝑟2 ≥ 1 + 𝑝2.
Other direction already given

Previously derived cores guarantee
that objective is at least 1:
𝑟1 + 𝑟2 ( + 𝑟3) ≥ 1
Adding this to objective improvement
constraint gives contradiction
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COMPLETE CG EXAMPLE IN VeriPB SYNTAX
pseudo-Boolean proof version 2.0
f 7
* Clauses derived by solver (inc core)
rup 1 x1 1 r2 >= 1 ;
rup 1 r1 1 r2 >= 1 ;
* Introduce fresh variable
red 2 ~p2 1 r1 1 r2 >= 2 ; p2 -> 0 ;
red 1 p2 1 ~r1 1 ~r2 >= 1; p2 -> 1 ;
* Encode this in CNF
pol 10 ~r1 +
pol 10 ~r2 +
* Rewriting the objective
pol 9 10 + 2 d
* Check that we have indeed
* derived that r1 + r2 = 1 + p2
e 14 : 1 r1 1 r2 -1 p2 >= 1 ;
e 11 : -1 r1 -1 r2 1 p2 >= -1 ;

* Solution found
soli x1 x2 x3 x4 r1 ~r2 ~r3
* Prove optimality of solution:
pol -1 9 +
ia -1 : >= 1 ;
* Conclusion
output NONE
conclusion BOUNDS 1 1
end pseudo-Boolean proof



Proof Logging for SAT-Based Optimisation (MaxSAT solving) Core-Guided Search

ADVANCED TECHNIQUES FOR CORE-GUIDED MAXSAT

▶ Important to deal with all state-of-the-art solver techniques
▶ Additional techniques that are skipped in this example

▶ Intrinsic at-most-one constraints [IMM19]
▶ Hardening [ABGL12]
▶ Lazy counter variables [MJML14]

▶ VeriPB Proof logging also convenient for these techniques [BBN+23]
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . . )
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

BRANCH AND BOUND

Branch and Bound:
▶ Explore the search tree for solutions
▶ Update Upper Bound𝑈𝐵 when solution with better objective value is found
▶ Underestimate Lower Bound 𝐿𝐵 at every node
▶ Prune branch when conflict found or when 𝐿𝐵 ≥ 𝑈𝐵

SAT
𝑈𝐵 = 10

X 𝐿𝐵 = 10 ≥ 𝑈𝐵

SAT
𝑈𝐵 = 8

X 𝐿𝐵 = 8 ≥ 𝑈𝐵
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

MAXCDCL AS BRANCH AND BOUND

Branch and Bound in MaxCDCL:
▶ Explore the search tree for solutions
▶ Update Upper Bound𝑈𝐵 when solution with better objective value is found
▶ Underestimate Lower Bound 𝐿𝐵 at every node using lookahead with UP
▶ Prune branch when conflict found or when 𝐿𝐵 ≥ 𝑈𝐵 and learn a clause

SAT
𝑈𝐵 = 10

X 𝐿𝐵 = 10 ≥ 𝑈𝐵

SAT
𝑈𝐵 = 8

X 𝐿𝐵 = 8 ≥ 𝑈𝐵
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

MAXCDCL AS CDCL GENERALIZATION

MaxCDCL conflicts:

▶ Hard conflict:
▶ A clause is falsified

▶ Soft conflict:
▶ (underestimated) LB ≥ UB

In both cases: conflict analysis for learning new clause (CDCL)
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

LOOKAHEAD: LB UNDERESTIMATION (UNWEIGHTED CASE)

Lookahead with UP for underestimating LB:

1. Assume unassigned objective literals false and apply UP until:
▶ A hard clause is falsified
▶ Or a not yet assigned objective literal is assigned 1

2. We have found a local unsatisfiable core

3. Since unweighted case: Each disjoint core increases the LB by 1

4. When 𝐿𝐵 ≥ 𝑈𝐵, a soft conflict is found
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

𝑓 𝑡 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Find one core:
𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑥

𝑝

9 𝑥
𝑝

10 𝑦
𝑎
2 𝑥11

𝑝 𝑦𝑎3 𝑦
𝑎
4 𝑥

𝑝

12 (𝑥12 ∨ 𝑥11 ∈ 𝐹 falsified)

𝑥𝑑1 𝑥2
𝑝 𝑥

𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑦𝑎2 𝑦𝑎3 𝑦

𝑎
4 (Assumptions suffice)

𝑥2
𝑝 𝑥4

𝑑 𝑦𝑎1 𝑦𝑎4 (Conflict analysis)

Local core:
𝑥2 ∧ 𝑥4 ∧ 𝑦1 ∧ 𝑦4 → □

𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦4 (Reasons→ Core)
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𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑥

𝑝

9 𝑥
𝑝

10 𝑦
𝑎
2 𝑥11

𝑝 𝑦𝑎3 𝑦
𝑎
4 𝑥

𝑝

12 (𝑥12 ∨ 𝑥11 ∈ 𝐹 falsified)

𝑥𝑑1 𝑥2
𝑝 𝑥

𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑦𝑎2 𝑦𝑎3 𝑦

𝑎
4 (Assumptions suffice)

𝑥2
𝑝 𝑥4

𝑑 𝑦𝑎1 𝑦𝑎4 (Conflict analysis)

Local core:
𝑥2 ∧ 𝑥4 ∧ 𝑦1 ∧ 𝑦4 → □

𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦4 (Reasons→ Core)
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

𝑓 𝑡 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
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𝑑 𝑥
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𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑥

𝑝

9 𝑥
𝑝

10 𝑦
𝑎
2 𝑥11

𝑝 𝑦𝑎3 𝑦
𝑎
4 𝑥

𝑝

12 (𝑥12 ∨ 𝑥11 ∈ 𝐹 falsified)

𝑥𝑑1 𝑥2
𝑝 𝑥

𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑦𝑎2 𝑦𝑎3 𝑦

𝑎
4 (Assumptions suffice)

𝑥2
𝑝 𝑥4

𝑑 𝑦𝑎1 𝑦𝑎4 (Conflict analysis)

Local core:
𝑥2 ∧ 𝑥4 ∧ 𝑦1 ∧ 𝑦4 → □

𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦4 (Reasons→ Core)
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

𝑓 𝑡 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
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𝑝

9 𝑥
𝑝
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𝑎
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𝑎
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𝑝
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𝑝 𝑥

𝑝
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𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑦𝑎2 𝑦𝑎3 𝑦

𝑎
4 (Assumptions suffice)

𝑥2
𝑝 𝑥4

𝑑 𝑦𝑎1 𝑦𝑎4 (Conflict analysis)

Local core:
𝑥2 ∧ 𝑥4 ∧ 𝑦1 ∧ 𝑦4 → □
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

𝑓 𝑡 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
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𝑝
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𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑦𝑎2 𝑦𝑎3 𝑦

𝑎
4 (Assumptions suffice)

𝑥2
𝑝 𝑥4

𝑑 𝑦𝑎1 𝑦𝑎4 (Conflict analysis)

Local core:
𝑥2 ∧ 𝑥4 ∧ 𝑦1 ∧ 𝑦4 → □
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

𝑓 𝑡 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
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𝑝
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𝑎
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𝑝
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𝑝 𝑥

𝑝
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𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑦𝑎2 𝑦𝑎3 𝑦

𝑎
4 (Assumptions suffice)

𝑥2
𝑝 𝑥4

𝑑 𝑦𝑎1 𝑦𝑎4 (Conflict analysis)

Local core:
𝑥2 ∧ 𝑥4 ∧ 𝑦1 ∧ 𝑦4 → □
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

𝑓 𝑡 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝
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𝑑 𝑥
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𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑥

𝑝

9 𝑥
𝑝

10 𝑦
𝑎
2 𝑥11

𝑝 𝑦𝑎3 𝑦
𝑎
4 𝑥

𝑝

12 (𝑥12 ∨ 𝑥11 ∈ 𝐹 falsified)

𝑥𝑑1 𝑥2
𝑝 𝑥

𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑦𝑎2 𝑦𝑎3 𝑦

𝑎
4 (Assumptions suffice)

𝑥2
𝑝 𝑥4

𝑑 𝑦𝑎1 𝑦𝑎4 (Conflict analysis)

Local core:
𝑥2 ∧ 𝑥4 ∧ 𝑦1 ∧ 𝑦4 → □

𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦4 (Reasons→ Core)
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION BY EXAMPLE (UNWEIGHTED CASE)

𝑓 𝑡 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Find one core:
𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑥

𝑝

9 𝑥
𝑝

10 𝑦
𝑎
2 𝑥11

𝑝 𝑦𝑎3 𝑦
𝑎
4 𝑥

𝑝

12 (𝑥12 ∨ 𝑥11 ∈ 𝐹 falsified)

𝑥𝑑1 𝑥2
𝑝 𝑥

𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 𝑦
𝑎
1 𝑦𝑎2 𝑦𝑎3 𝑦

𝑎
4 (Assumptions suffice)

𝑥2
𝑝 𝑥4

𝑑 𝑦𝑎1 𝑦𝑎4 (Conflict analysis)

Local core:
𝑥2 ∧ 𝑥4 ∧ 𝑦1 ∧ 𝑦4 → □

𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦4 (Reasons→ Core)
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION: FULL EXAMPLE (UNWEIGHTED CASE)

𝑓 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Found disjoint local cores
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦4
Core 2: 𝑥2 ∧ 𝑥7 → 𝑦2 ∨ 𝑦3 ∨ 𝑦5
Core 3: 𝑥1 ∧ 𝑥4 ∧ 𝑥7 → 𝑦6 ∨ 𝑦7

𝑥1 ∧ 𝑥2 ∧ 𝑥4 ∧ 𝑥7 → (𝑦1 ∨ 𝑦4) ∧ (𝑦2 ∨ 𝑦3 ∨ 𝑦5) ∧ (𝑦6 ∨ 𝑦7)
𝑥1 ∧ 𝑥2 ∧ 𝑥4 ∧ 𝑥7 → 𝐿𝐵 = 3 ≥ 3 = 𝑈𝐵

Soft conflict:
𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 , Conflict 𝑥1 ∨ 𝑥2 ∨ 𝑥4 ∨ 𝑥7 (soft conflict)
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION: FULL EXAMPLE (UNWEIGHTED CASE)

𝑓 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝
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𝑝

7

Found disjoint local cores
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦4
Core 2: 𝑥2 ∧ 𝑥7 → 𝑦2 ∨ 𝑦3 ∨ 𝑦5
Core 3: 𝑥1 ∧ 𝑥4 ∧ 𝑥7 → 𝑦6 ∨ 𝑦7

𝑥1 ∧ 𝑥2 ∧ 𝑥4 ∧ 𝑥7 → (𝑦1 ∨ 𝑦4) ∧ (𝑦2 ∨ 𝑦3 ∨ 𝑦5) ∧ (𝑦6 ∨ 𝑦7)
𝑥1 ∧ 𝑥2 ∧ 𝑥4 ∧ 𝑥7 → 𝐿𝐵 = 3 ≥ 3 = 𝑈𝐵

Soft conflict:
𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 , Conflict 𝑥1 ∨ 𝑥2 ∨ 𝑥4 ∨ 𝑥7 (soft conflict)
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION: FULL EXAMPLE (UNWEIGHTED CASE)

𝑓 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Found disjoint local cores
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦4
Core 2: 𝑥2 ∧ 𝑥7 → 𝑦2 ∨ 𝑦3 ∨ 𝑦5
Core 3: 𝑥1 ∧ 𝑥4 ∧ 𝑥7 → 𝑦6 ∨ 𝑦7

𝑥1 ∧ 𝑥2 ∧ 𝑥4 ∧ 𝑥7 → (𝑦1 ∨ 𝑦4) ∧ (𝑦2 ∨ 𝑦3 ∨ 𝑦5) ∧ (𝑦6 ∨ 𝑦7)
𝑥1 ∧ 𝑥2 ∧ 𝑥4 ∧ 𝑥7 → 𝐿𝐵 = 3 ≥ 3 = 𝑈𝐵

Soft conflict:
𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 , Conflict 𝑥1 ∨ 𝑥2 ∨ 𝑥4 ∨ 𝑥7 (soft conflict)
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION: FULL EXAMPLE (UNWEIGHTED CASE)

𝑓 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8 UB = 3
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Found disjoint local cores
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦4
Core 2: 𝑥2 ∧ 𝑥7 → 𝑦2 ∨ 𝑦3 ∨ 𝑦5
Core 3: 𝑥1 ∧ 𝑥4 ∧ 𝑥7 → 𝑦6 ∨ 𝑦7

𝑥1 ∧ 𝑥2 ∧ 𝑥4 ∧ 𝑥7 → (𝑦1 ∨ 𝑦4) ∧ (𝑦2 ∨ 𝑦3 ∨ 𝑦5) ∧ (𝑦6 ∨ 𝑦7)
𝑥1 ∧ 𝑥2 ∧ 𝑥4 ∧ 𝑥7 → 𝐿𝐵 = 3 ≥ 3 = 𝑈𝐵

Soft conflict:
𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7 , Conflict 𝑥1 ∨ 𝑥2 ∨ 𝑥4 ∨ 𝑥7 (soft conflict)
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
▶ Weight of Local Core 𝐾 = smallest weight of objective literals in 𝐾
▶ Each objective literal can contribute to many cores
▶ The total contribution of a literal cannot exceed its weight

𝑓 𝑡 = 𝑦1 + 𝑦2 + 1𝑦3 + 1𝑦4 + 𝑦5 + 𝑦6 + 1𝑦7 + 𝑦8 UB = 4
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Found local cores
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (weight 2)
Core 2: 𝑥3 ∧ 𝑥4 → 𝑦1 ∨ 𝑦5 (weight 1)
Core 3: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (weight 3)
Conclusion: 𝑥1 ∧ 𝑥2 ∧ 𝑥4 → 𝐿𝐵 = 5 ≥ 4 = 𝑈𝐵 Soft Conflict clause: 𝑥1 ∨ 𝑥2 ∨ 𝑥4
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

SOFT CONFLICT DETECTION (WEIGHTED CASE)

Weighted MaxCDCL
▶ Weight of Local Core 𝐾 = smallest weight of objective literals in 𝐾
▶ Each objective literal can contribute to many cores
▶ The total contribution of a literal cannot exceed its weight

𝑓 𝑡 = 7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 UB = 4
Trail: 𝑥𝑑1 𝑥2

𝑝 𝑥
𝑝

3 𝑥4
𝑑 𝑥

𝑝

5 𝑥
𝑝

6 𝑥
𝑝

7

Found local cores
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (weight 2)
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

PROOF LOGGING SOFT CONFLICTS
To Derive: 𝑥1 + 𝑥2 + 𝑥4 ≥ 1 UB = 4

Found “disjoint” cores (RUP)
Core 1: 𝑥2 ∧ 𝑥4 → 𝑦1 ∨ 𝑦2 (2) id 101
PB: 2𝑥2 + 2𝑥4 + 2𝑦1 + 2𝑦2 ≥ 1

Core 2: 𝑥1 → 𝑦1 ∨ 𝑦6 ∨ 𝑦8 (3) id 102
PB: 3𝑥1 + 3𝑦1 + 3𝑦6 + 3𝑦8 ≥ 1

Multiplication by their weight and addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 5

Model improving constraint

7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≤ 3

In normalized form: id 99
7𝑦1 + 2𝑦2 + 1𝑦3 + 1𝑦4 + 1𝑦5 + 4𝑦6 + 1𝑦7 + 3𝑦8 ≥ 20− 3

By adding literal axioms:
5𝑦1 + 2𝑦2 + 3𝑦6 + 3𝑦8 ≥ 13 − 3

Addition:
3𝑥1 + 2𝑥2 + 2𝑥4 + 5𝑦1 + 5𝑦1 + 2𝑦2 + 2𝑦2 + 3𝑦6 + 3𝑦6 + 3𝑦8 + 3𝑦8 ≥ 13 + 5 − 3

Division by a large enough number (and rounding up): 𝑥1 + 𝑥2 + 𝑥4 ≥ 1
In VeriPB-format: p 101 2 * 102 3 * + 99 y1 2 * + y3 + y4 + y5 + y6 + y7 + + 2 d sBart Bogaerts (KUL) Provably Correct MaxSAT solving 25/11/2024 57/61
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Proof Logging for SAT-Based Optimisation (MaxSAT solving) Branch-And-Bound Search

PROOF LOGGING MAXCDCL

Certifying Optimality:
▶ Unit propagation in MaxCDCL derives conflict at DL = 0
▶ Proof: RUP 0 ≥ 1

Extra techniques included in paper:
▶ Literal Unlocking for unweighted case

▶ Find cardinality constraints over disjoint set literals as “local cores”

▶ Encoding Solution-Improving Constraint using Multi-Valued Decision Diagram encoding
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Conclusion

OUTLINE
1. Introduction

1. The Success of Combinatorial Solving (and the Dirty Little Secret. . . )
2. Ensuring Correctness with the Help of Proof Logging

2. Proof Logging for SAT
1. SAT Basics
2. DPLL and CDCL
3. Proof System for SAT Proof Logging

3. Pseudo-Boolean Proof Logging
1. Pseudo-Boolean Constraints and Cutting Planes Reasoning
2. Pseudo-Boolean Proof Logging for SAT Solving
3. More Pseudo-Boolean Proof Logging Rules

4. Proof Logging for SAT-Based Optimisation (MaxSAT solving)
1. Linear SAT-UNSAT Search
2. Core-Guided Search
3. Branch-And-Bound Search

5. Conclusion
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Conclusion

SUMMING UP

▶ Combinatorial solving and optimization is a true success story

▶ But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

▶ Certifying solvers producing machine-verifiable proofs of correctness seems like most
promising approach

▶ Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet spot between
simplicity and expressivity

▶ Here demonstrated for MaxSAT, but also used in many other applications
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Conclusion

CERTIFIED FIRST-ORDER MODEL EXPANSION (CERTIFOX)

▶ Start from first-order problem representation

▶ Study various forms of proof composition and without-loss-of-generality reasoning

▶ Interested? I’m looking for PostDocs to join the proof logging revolution.

https://www.bartbogaerts.eu/projects/CertiFOX/
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